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Abstract
There are much recent interests in solving nonconvex min-max optimization problems due to its
broad applications in many areas including machine learning, networked resource allocations, and
distributed optimization. Perhaps, the most popular first-order method in solving min-max opti-
mization is the so-called simultaneous (or single-loop) gradient descent-ascent algorithm due to
the simplicity in its implementation. However, theoretical guarantees on the convergence of this
algorithm are very sparse since it can diverge even in a simple bilinear problem.

In this paper, our focus is to characterize the finite-time performance (or convergence rates) of
the continuous-time variant of simultaneous gradient descent-ascent algorithm. In particular, we
derive the rates of convergence of this method under a number of different conditions on the under-
lying objective function, namely, two-sided Polyak-Łojasiewicz (PŁ), one-sided PŁ, nonconvex-
strongly concave, and strongly convex-nonconcave conditions. Our convergence results improve
the ones in prior works under the same conditions of objective functions. The key idea in our
analysis is to use the classic singular perturbation theory and coupling Lyapunov functions to ad-
dress the time-scale difference and interactions between the gradient descent and ascent dynamics.
Our results on the behavior of continuous-time algorithm may be used to enhance the convergence
properties of its discrete-time counterpart.
Keywords: Gradient Descent-Ascent Methods, Two-Time-Scale Dynamics, Singular Perturbation
Theory, Min-Max Optimization.

1. Introduction

In this paper, we consider the following min-max optimization problems

min
x∈Rm

max
y∈Rn

f(x, y), (1)

where f : Rm × Rn → R is a nonconvex function w.r.t x for a fixed y and (possibly) nonconcave
w.r.t y for a fixed x. The min-max problem has received much interests for years due to its broad
applications in different areas including control, machine learning, and economics. In particular,
many problems in these areas can be formulated as problem (1), for example, game theory Basar
and Olsder (1998); Shapley (1953), stochastic control and reinforcement learning Altman (1999);
Achiam et al. (2017), training generative adversarial networks (GANs) Goodfellow et al. (2020);
Mescheder et al. (2017), adversarial and robust machine learning Kurakin et al. (2017); Qian et al.
(2019), resource allocation over networks Liu et al. (2013), and distributed optimization Lan et al.
(2020); Chang et al. (2020); to name just a few.
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In the existing literature, there are two types of iterative first-order methods for solving problem
(1), namely, nested-loop algorithms and single-loop algorithms. Nested-loop algorithms implement
multiple inner steps in each iteration to solve the maximization problem either exactly or approx-
imately. However, this approach is not applicable to the setting when f(x, y) is nonconcave in y,
since the maximization problem is NP-hard. Only finding a stationary point of the maximization
problem is likely to affect the quality of solving the minimization problem.

On the other hand, single-loop algorithm simultaneously updates the iterates x and y by using
the vanilla gradient descent and ascent steps at different time scales, respectively. As a result, this
algorithm is applicable to more general settings and more practical due to its simplicity in imple-
mentation. However, single-loop algorithms may not converge in many settings, for example, they
fail to converge even in a simple bilinear zero-sum game Balduzzi et al. (2018). Indeed, theoretical
guarantees of these methods are very sparse.

Our focus in this paper is to study the continuous-time variant of the single-loop gradient
descent-ascent method for solving problem (1). Considering the continuous-time variant will help
us to have a better understanding about the behavior of this method through studying the conver-
gence of the corresponding differential equations using Lyapunov theory. Such an understanding
can then be used to enhance the analysis of the discrete-time algorithms, as recently observed in the
single objective optimization counterpart Krichene et al. (2015); Raginsky and Bouvrie (2012); Su
et al. (2014); Diakonikolas and Orecchia (2019). Our main contributions are summarized below.
Main Contributions. The focus of this paper is to study the performance of the continuous-time
gradient descent-ascent dynamics in solving nonconvex min-max optimization problems. In par-
ticular, we derive the rates of convergence of this method under a number of different conditions
on the underlying objective function, namely, two-sided Polyak-Łojasiewicz (PŁ), one-sided PŁ,
nonconvex-strongly concave, and strongly convex-nonconcave conditions. These rates are summa-
rized in Table 1 and presented in detail in Section 3, where we show that our results improve the
ones in prior works under the same conditions of objective functions. The key idea in our analysis is
to use the classic singular perturbation theory and coupling Lyapunov function of the fast and slow
dynamics to address the time-scale difference and interactions between the gradient descent and
ascent dynamics. Proper choices of step sizes allows us to derive improved convergence properties
of the two-time-scale gradient descent-ascent dynamics.

1.1. Related Works

Convex-Concave Settings. Given the broad applications of problem (1), there are a large number
of works to study algorithms and their convergence in solving this problem, especially in the con-
text of convex-concave settings. Some examples include prox-method and its variant Nemirovski
(2004); Malitsky (2015); Wang and Li (2020); Cherukuri et al. (2017), extragradient and opti-
mistic gradient methods Korpelevich (1976); Mokhtari et al. (2020); Monteiro and Svaiter (2010);
Golowich et al. (2020); Yoon and Ryu (2021); Dang and Lan (2015), and recently Hamiltonian
gradient descent methods Mescheder et al. (2017); Balduzzi et al. (2018); Abernethy et al. (2021).
Some algorithms in these settings have convergence rates matched with the lower bound complex-
ity; see the recent work Yoon and Ryu (2021) for a detailed discussion.

Nonconvex-Concave Settings. Unlike the convex-concave settings, algorithmic development and
theoretical understanding in the general nonconvex settings are very limited. Indeed, finding the
global optimality of nonconvex-nonconcave problem is NP-hard, or at least as hard as solving a
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single nonconvex objective problem. As a result, the existing literature often aims to find a sta-
tionary point of f when the max problem is concave. For example, multiple-loop algorithms have
been studied in Thekumparampil et al. (2019); Kong and Monteiro (2021); Rafique et al. (2021);
Lin et al. (2020b); Nouiehed et al. (2019). Our work in this paper is closely related to the recent
literature on studying single-loop algorithm Lin et al. (2020a); Lu et al. (2020); Yang et al. (2020);
Xu et al. (2020); Zhang et al. (2020). While these works study discrete-time algorithms, we con-
sider continuous-time counterpart. We will show that for some settings, our approach improves the
existing convergence results.

Other Settings. We also want to mention some related literature in game theory Loizou et al.
(2020); Zhang et al. (2019); Cen et al. (2021); Perolat et al. (2018); Zhang et al. (2021); Daskalakis
et al. (2020), two-time-scale stochastic approximation Borkar (2008); Konda and Tsitsiklis (2004);
Dalal et al. (2020); Doan and Romberg (2019); Gupta et al. (2019); Doan (2021b); Kaledin et al.
(2020); Mokkadem and Pelletier (2006); Doan (2021c, 2020), and reinforcement learning Bhatna-
gar and Lakshmanan (2012); Paternain et al. (2019); Ding et al. (2020); Zeng et al. (2021), two-
time-scale optimization , and decentralized optimization . These works study different variants
of two-time-scale methods mostly for solving a single optimization problem, and often aim to find
global optimality (or fixed points) using different structure of the underlying problems (e.g., Markov
structure in stochastic games and reinforcement learning or strong monotonicity in stochastic ap-
proximation). Thus, the techniques therein may not be applicable to the context of problem (1)
considered in the current paper.
Notation. Given any vector x we use ∥x∥ to denote its 2-norm. We denote by ∇xf(x, y) and
∇yf(x, y) the partial gradients of f with respect to x and y, respectively.

2. Two-Time-Scale Gradient Descent-Ascent Dynamics

For solving problem (1), we are interested in studying two-time-scale gradient descent-ascent dy-
namics (GDAD), where we implement simultaneously the following two differential equations

ẋ(t) =
d

dt
x(t) = −α∇xf(x(t), y(t)),

ẏ(t) =
d

dt
y(t) = β∇yf(x(t), y(t)),

(2)

Here, α, β are two step sizes, whose values will be specified later. In the convex-concave setting,
one can choose α = β. However, as observed in Heusel et al. (2017), choosing different step sizes
achieves a better convergence in the context of nonconvex problem. Indeed, we will choose α ≪ β
since in our settings studied in the following sections, the maximization problem is often easier to
solve than the minimization problem. In this case, the dynamic of y(t) is implemented at a faster
time scale (using larger step sizes) than x(t) (using smaller step sizes). The time-scale difference is
loosely defined as the ratio α/β ≪ 1. Thus, one has to design these two step sizes properly so that
the method converges as fast as possible.
Technical Approach. The convergence analysis of (2) studied in this paper is mainly motivated
by the classic singular perturbation theory Kokotović et al. (1999), explained as follows. Since y is
implemented at a faster time scale than x, we consider x(t) = x being fixed in ẏ and separately study
the stability of the system ẏ using Lyapunov theory. Let V2 be the Lyapunov function corresponding
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to ẏ. When ẏ converges to an equilibrium y (e.g., ∇yf(x, y) = 0), one can fix y(t) = y and study
the stability of ẋ. Let V1 be the corresponding Lyapunov function of ẋ. We note that V1 and V2

both depend on x and y, as a result, their time derivatives are coupled through the dynamics in (2).
Addressing this coupling and the time-scale difference between the two dynamics is the key idea in
our approach. To do that, we will consider the following Lyapunov function

V (x, y) = V1(x, y) +
γα

β
V2(x, y), (3)

where α/β represents the time-scale difference, while the constant γ will be properly chosen to
eliminate the impact of x on the convergence of y and vice versa. Proper choices of these constants
will also help us to derive the convergence rates of (2). Similar approach has been used in different
settings of two-time-scale methods, see for example Chow and Kokotovic (1985); Bıyık and Arcak
(2008); Doan (2020); Dutta et al. (2021).

We conclude this section by introducing two assumptions for our analysis studied later.

Assumption 1 The function f(·, ·) has Lipschitz continuous gradients for each variable, i.e., there
exist positive constants Lx, Ly, and Lxy such that for all x1, x2 ∈ Rm, y1, y2 ∈ Rn we have

∥∇xf(x1, y1)−∇xf(x2, y2)∥ ≤ Lx∥x1 − x2∥+ Lxy∥y1 − y2∥,
∥∇yf(x1, y1)−∇yf(x2, y2)∥ ≤ Lxy∥x1 − x2∥+ Ly∥y1 − y2∥.

(4)

Assumption 2 Given any x the problem maxy f(x, y) has a nonempty solution set Y⋆(x), i.e.,
there exists y⋆(x) ∈ Y⋆(x) such that

y⋆(x) = arg max
y∈Rn

f(x, y), where f(x, y⋆(x)) is finite.

Table 1: Convergence rates of GDAD for solving (1) given some accuracy ϵ > 0. The abbreviations
NCvex, NCave, SCvex, SCave, and PŁ stand for nonconvex, nonconcave, strongly convex,
strongly concave, and Polyak-Łojasiewicz condtions, respectively. Condition number κ is
defined in (9), and R is the size of compact set used in Nouiehed et al. (2019).

OBJECTIVES PRIOR WORKS THIS PAPER

PŁ& PŁ O
(
κ3 log( 1ϵ )

)
YANG ET AL. (2020) O

(
κ2 log( 1ϵ )

)
- THEOREM 1

NCVEX & PŁ O
(
R2Lxy log(

1
ϵ )ϵ

−2
)

NOUIEHED ET AL. (2019) O
(
L2
xyϵ

−2
)
- THEOREM 2

NCVEX & SCAVE O
(
L2
xyϵ

−2
)

XU ET AL. (2020) O
(
L2
xyϵ

−2
)
- THEOREM 3

SCVEX & NCAVE O
(
L2
xyϵ

−2
)

XU ET AL. (2020) O
(
L2
xyϵ

−2
)
- THEOREM 4

3. Main Results

In this section, we present the main results of this paper, where we derive the convergence rates
of GDAD under different conditions on f(x, y). Our results are summarized in Table 1. First,
our approach improves the analysis in Yang et al. (2020), where we show in Section 3.1 that for
two-sided PŁ functions the convergence of GDAD only scales with κ2 instead of κ3 studied in Yang
et al. (2020). Our result addresses the conjecture raised in Yang et al. (2020), where the authors state
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that such an improvement may not be possible. Second, our analysis achieves a better result than
the one in Nouiehed et al. (2019) for the case of one-sided PL function by a factor of log(1/ϵ). We
note that a nested-loop is studied in Nouiehed et al. (2019) while GDAD is a single-loop method.
Finally, our result is the same as the one in Xu et al. (2020) when f(x, y) is either strongly concave
in y for fixed x. In Section 3.4, we will show that this observation also holds when f(x, y) is either
strongly convex in x and nonconcave in y. Note that as compared to the analysis in Xu et al. (2020),
we use a simpler analysis and simpler choice of step sizes to achieve these results. Due to space
limitation, some proofs of technical lemmas in this paper can be found in Doan (2021a).

3.1. Two-Sided Polyak–Łojasiewicz Conditions

We first study the convergence rates of GDAD when f satisfies a two-sided Polyak–Łojasiewicz
(PŁ) condition, which is considered in Yang et al. (2020) and stated here for convenience.

Definition 1 (Two-Sided PŁ Conditions) A continuously differentiable function f : Rm × Rn →
R is called to satisfy two-sided PŁ conditions if there exist two positive constants µx and µy such
that µx, µy ≤ min{Lx, Ly, Lxy} the following conditions hold for all (x, y) ∈ Rm × Rn:

2µx[f(x, y)−min
x

f(x, y)] ≤ ∥∇xf(x, y)∥2,

2µy[max
y

f(x, y)− f(x, y)] ≤ ∥∇yf(x, y)∥2.
(5)

The two-sided PŁ condition, which we will assume to hold in this subsection, is a generalized vari-
ant of the popular PŁ condition, proposed by Polyak (1963) as a sufficient condition to guarantee
that the classic gradient descent method converges exponentially to the optimal value of an uncon-
strained minimization problem. As shown in Karimi et al. (2016), the PŁ condition also implies the
quadratic growth condition, i.e., given any x we have

max
z∈Rm

f(x, z)− f(x, y) ≥ µy

2
∥PY⋆(x)[y]− y∥2, ∀y ∈ Rm, (6)

where we assume that Y⋆(x) is a nonempty solution set of maxy f(x, y) and PY⋆(x)[y] is the pro-
jection of y to this set. More discussions on PŁ condition can be found in Karimi et al. (2016), while
some examples of functions satisfying the two-sided PŁ condition are given in Yang et al. (2020).

Our focus in this section is to show that GDAD converges exponentially to the global min-max
solution (x⋆, y⋆) of f under the two-sided PŁ condition. To do that, we consider the following
assumption and lemmas, which are useful for our analysis considered later. We first consider an
assumption on the existence of (x⋆, y⋆), a global min-max solution of f .

Assumption 3 There exists a global min-max solution (x⋆, y⋆) of f , i.e.,

x⋆ = arg min
x∈Rm

f(x, y⋆) and y⋆ = arg max
y∈Rn

f(x⋆, y).

Next, we consider the following lemma about the Lipschitz continuity of the gradient of f(x, y⋆(x)),
which is a variant of the well-known Danskin lemma Bertsekas (1999)[Proposition B.25] and stud-
ied in Nouiehed et al. (2019)[Lemma A.5].

Lemma 1 Suppose that Assumptions 1– 3 hold. Then, the function maxy f(x, y) is differentiable
and its gradient ∇xf(x, y

⋆(x)) is Lipschitz continuous with a constant Lx +
Lxy

µy
.
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Finally, for our analysis we consider the following two Lyapunov functions

V1(x) = max
y∈Rn

f(x, y)− min
x∈Rm

max
y∈Rn

f(x, y) and V2(x, y) = max
y

f(x, y)− f(x, y),

where it is obvious to see that V1 and V2 are nonnegative. The time derivatives of V1 and V2 over ẋ
and ẏ are given in the following lemma, where its proof can be found in Doan (2021a).

Lemma 2 Suppose that Assumptions 1– 3 hold. Then we have

V̇1(x) ≤ −α

2
∥∇xf(x, y

⋆(x))∥2 +
L2
xyα

µy
V2(x, y). (7)

V̇2(x, y) ≤ −β∥∇yf(x, y)∥2 +
3α

2
∥∇xf(x, y

⋆(x))∥2 +
5L2

xyα

µy
V2(x, y). (8)

As mentioned, the dynamics of ẋ and ẏ are implemented at different time scales, loosely defined as
the ratio β/α > 1. To capture such time-scale difference in our analysis, we will utilize the coupling
Lyapunov function defined in (3). We denote by µ = min{µx, µy} and the condition number

κ =
Lxy

µ
≥ 1. (9)

representing the condition number of f(x, y). The convergence rate of GDAD under the two-sided
PŁ condition is formally stated in the following theorem.

Theorem 1 Suppose that Assumptions 1– 3 hold. Let γ, α, β be chosen as

γ =
L2
xy

µ2
y

, α =
µ2

10µxL2
xy

, β =
µ2

µxµ2
y

· (10)

Then we have for all t ≥ 0

V (x(t), y(t)) ≤ e−
t

20κ2 V (x(0), y(0)). (11)

Proof By (5) we have

∥∇yf(x, y)∥2 ≥ 2µy[max
y

f(x, y)− f(x, y)] = 2µyV2(x, y).

Thus, by using Lemma 2, (3), and the preceding relation we have

V̇ (x(t), y(t)) = V̇1(x(t)) +
γα

β
V̇2(x(t), y(t))

≤ −α

2
∥∇xf(x(t), y

⋆(x(t)))∥2 +
L2
xyα

µy
V2(x(t), y(t))

− 2µyγαV2(x(t), y(t)) +
3γα2

2β
∥∇xf(x(t), y

⋆(x(t)))∥2 +
5L2

xyγα
2

µyβ
V2(x(t), y(t))

= −α

4
∥∇xf(x(t), y

⋆(x(t)))∥2 − µyγα

2
V2(x(t), y(t))

−
(
1

2
− 3γα

β

)
α

2
∥∇xf(x(t), y

⋆(x(t)))∥2

−

(
3µyγ

2
−

L2
xy

µy
−

5L2
xyγα

µyβ

)
αV2(x(t), y(t)). (12)
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Using (10) , (5), and y⋆(x) = argmaxy f(x, y) into (12) we obtain

V̇ (x(t), y(t)) ≤ −α

4
∥∇xf(x(t), y

⋆(x(t)))∥2 − µyγα

2
V2(x(t), y(t))

≤ −µxα

2
(max

y
f(x(t), y)−min

x
max
y

f(x, y))− µyγα

2
V2(x, y)

≤ −µxα

2
(V1(x(t)) +

γα

β
V2(x(t), y(t))) = −µxα

2
V (x(t), y(t)),

where the last inequality is due to µxα = µ2

10L2
xy

≤ µyβ = µ2

µxµy
. Taking the integral on both sides

of the equation above immediately gives (11).

3.2. Nonconvex–Polyak-Łojasiewicz Conditions

We next consider an extension of the previous section, where we assume that the objective function
f(x, ·) satisfies the Polyak-Łojasiewicz condition given any x and f(·, y) is nonconvex given any y.

Assumption 4 (One-Sided PŁ Conditions) We assume that f : Rm × Rn → R is nonconvex in
x for any fixed y and satisfies the PŁ condition in y for any fixed x, that is, there exists a positive
constants µy such that the following condition hold for any x ∈ Rm:

2µy[max
y

f(x, y)− f(x, y)] ≤ ∥∇yf(x, y)∥2. (13)

Since f satisfies only one-sided PŁ condition, we are giving up the hope to find a global optimal
solution of (1), as studied in Theorem 1. Instead, we will show that GDAD will return a stationary
point of f , as studied in Nouiehed et al. (2019). Note that under Assumption 2 the result in Lemma
1 still holds since the work in Nouiehed et al. (2019) only assumes one-sided PŁ condition. In
addition, since we relax the two-sided PŁ condition, we introduce the following two Lyapunov
functions for our analysis studied later.

V1(x, y) = f(x, y)− min
x∈Rm

min
y∈Rn

f(x, y) and V2(x, y) = max
y

f(x, y)− f(x, y),

where it is obvious to see that V1 and V2 are nonnegative. The time derivatives of V1 and V2 over the
trajectories ẋ and ẏ are given in the following lemma, whose proof can be found in Doan (2021a).

Lemma 3 Suppose that Assumptions 1, 2, and 4 hold. Then we have

V̇1(x(t), y(t)) = −α∥∇xf(x(t), y(t))∥2 + β∥∇yf(x(t), y(t))∥2. (14)

V̇2(x(t), y(t)) ≤ −β∥∇yf(x(t), y(t))∥2 +
α

2
∥∇xf(x(t), y(t))∥2 +

L2
xyα

µy
V2(x(t), y(t)). (15)

The convergence rate of GDAD under the nonconvex-PŁ condition is formally stated as follows.

Theorem 2 Suppose that Assumptions 1, 2, and 4 hold. Let γ, α, β be chosen as

γ =
32L2

xy

µ2
y

, α =
1

8L2
xy

, β =
1

µ2
y

· (16)

Then we have for all T ≥ 0

min
0≤t≤T

∥∥∥∥∥ ∇xf(x(t), y(t))

∇yf(x(t), y(t))

∥∥∥∥∥ ≤
4Lxy

√
V1(x(0), y(0)) + 4V2(x(0), y(0))√

T
· (17)
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Proof By using (14), (15), and (3) we have

V̇ (x(t), y(t)) = V̇1(x(t)) +
γα

β
V̇2(x(t), y(t))

≤ −α∥∇xf(x(t), y(t))∥2 + β∥∇yf(x(t), y(t))∥2

− γα∥∇yf(x(t), y(t))∥2 +
γα2

8β
∥∇xf(x(t), y(t))∥2 +

4L2
xyγα

2

µyβ
V2(x, y)

= −α

2
∥∇xf(x(t), y(t))∥2 −

γα

2
∥∇yf(x(t), y(t))∥2

− γα

4
∥∇yf(x(t), y(t))∥2 + β∥∇yf(x(t), y(t))∥2

− γα

4
∥∇yf(x(t), y(t))∥2 +

4L2
xyγα

2

µyβ
V2(x, y)

− α

2
∥∇xf(x(t), y(t))∥2 +

γα2

8β
∥∇xf(x(t), y(t))∥2

≤ −α

2
∥∇xf(x(t), y(t))∥2 −

γα

2
∥∇yf(x(t), y(t))∥2

− γα

4
∥∇yf(x(t), y(t))∥2 + β∥∇yf(x(t), y(t))∥2

− µyγα

2

(
1−

4L2
xyα

µ2
yβ

)
V2(x, y)−

α

2

(
1− γα

4β

)
∥∇xf(x(t), y(t))∥2, (18)

where in the last inequality we use (13) to have

∥∇yf(x, y)∥2 ≥ 2µy[max
y

f(x, y)− f(x, y)] = 2µyV2(x, y).

Using (16) and the preceding relation into (18) gives

V̇ (x(t), y(t)) ≤ −α

2
∥∇xf(x(t), y(t))∥2 −

γα

2
∥∇yf(x(t), y(t))∥2.

Taking the integral on both sides over t ∈ [0, T ] for some T ≥ 0 and rearranging we obtain

α

2

∫ T

t=0
∥∇xf(x(t), y(t))∥2dt+

γα

2

∫ T

t=0
∥∇yf(x(t), y(t))∥2dt ≤ V (x(0), y(0)),

which since γ ≥ 1 and by using (16) immediately gives us (17).

3.3. Nonconvex–Strongly Concave Conditions

In this subsection, we study the rate of GDAD when the function f(x, y) is nonconvex given any y
and strongly concave given any x. In particular, we consider the following assumption.

Assumption 5 The objective function f(·, y) is nonconvex for any given y and f(x, ·) is strongly
concave with constant µy > 0 for any given x. The latter is equivalent to

f(x, y1)− f(x, y2)− ⟨∇f(x, y2), y1 − y2⟩ ≤ −µy

2
∥y1 − y2∥2, ∀y1, y2 ∈ Rn. (19)
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For our analysis of in this section, we introduce the following two Lyapunov functions

V1(x, y) = f(x, y)−min
(x,y)

f(x, y), and V2(x, y) =
1

2
∥ẏ∥2 = 1

2
∥β∇yf(x, y)∥2.

The time derivatives of V1 and V2 are given below, whose proof can be found in Doan (2021a).

Lemma 4 Suppose that Assumptions 1 and 5 hold. Then we have

V̇1(x(t), y(t)) ≤ − 1

α
∥ẋ(t)∥2 + 1

β
∥ẏ(t)∥2. (20)

V̇2(x(t), y(t)) ≤ Lxyβ∥ẏ(t)∥∥ẋ(t)∥ − µyβ∥ẏ(t)∥2. (21)

We next derive the convergence rate of GDAD under Assumption 5 in the following theorem, where
we show that GDAD converges sublinear to a stationary point of f .

Theorem 3 Suppose that Assumptions 1 and 5 hold. Let γ, α, β be chosen as

γ = µyL
2
xy, α =

1

L2
xy

, β =
4

µ2
y

. (22)

Then we have for all T ≥ 0

min
0≤t≤T

∥∥∥∥∥ ∇xf(x(t), y(t))

∇yf(x(t), y(t))

∥∥∥∥∥ ≤
Lxy

√
2V1(x(0), y(0))√

T
+

2Lxy∥∇yf(x(0), y(0))∥√
µyT

· (23)

Proof By using (20) and (21) we consider

V̇ (x(t), y(t)) = V̇1(x(t), y(t)) +
γα

β
V̇2(x(t), y(t))

≤ − 1

α
∥ẋ(t)∥2 + 1

β
∥ẏ(t)∥2 + Lxyγα∥ẏ(t)∥∥ẋ(t)∥ − µyγα∥ẏ(t)∥2

= − 1

2α
∥ẋ(t)∥2 − µyγα

4
∥ẏ(t)∥2 − (

µyγα

4
− 1

β
)∥ẏ(t)∥2

− 1

2α
∥ẋ(t)∥2 + Lxyγα∥ẏ(t)∥∥ẋ(t)∥ −

µyγα

2
∥ẏ(t)∥2

≤ − 1

2α
∥ẋ(t)∥2 − µyγα

4
∥ẏ(t)∥2.

where in the last inequality we use (22). Using (2) we obtain

V̇ (x(t), y(t)) ≤ − 1

2α
∥ẋ(t)∥2 − µyγα

4
∥ẏ(t)∥2

= −α

2
∥∇xf(x(t), y(t))∥2 −

4L2
xyα

µ2
y

∥∇yf(x(t), y(t))∥2

≤ −α

2

(
∥∇xf(x(t), y(t))∥2 + ∥∇yf(x(t), y(t))∥2

)
,

9
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which when taking the integral on both sides over t from 0 to T and rearrange we obtain

α

2

∫ T

t=0

(
∥∇xf(x(t), y(t))∥2 + ∥∇yf(x(t), y(t))∥2

)
dt ≤ V (x(0), y(0)).

Thus, the preceding relation gives (23), i.e., for all T > 0

min
0≤t≤T

∥∥∥∥∥ ∇xf(x(t), y(t))

∇yf(x(t), y(t))

∥∥∥∥∥ ≤
√

2V (x(0), y(0))√
αT

≤
√

2V1(x(0), y(0))√
αT

+

√
2V2(x(0), y(0))√

αT

=
Lxy

√
2V1(x(0), y(0))√

T
+

2Lxy∥∇yf(x(0), y(0))∥√
µyT

·

3.4. Strongly Convex–Nonconcave Conditions

As mentioned, the single-loop GDA method is applicable to the convex-nonconcave min-max prob-
lem, while the nested-loop GDA method is not. In this section, we complete our analysis by studying
the rate of GDAD when the function f(x, y) is strongly convex given any y and nonconcave given
any x. The analysis in this section is symmetric to the one in Section 3.3, so it is omitted here for
brevity. More detail can be found in Doan (2021a).

Assumption 6 The objective function f(x, ·) is nonconcave for any given x and f(·, y) is strongly
convex with constant µx > 0 for any given y. The latter is equivalent to

f(x1, y)− f(x2, y)− ⟨∇f(x2, y), x1 − x2⟩ ≥
µx

2
∥x1 − x2∥2, ∀x1, x2 ∈ Rm. (24)

The convergence rate of GDAD under Assumption 6 is presented in the following theorem, which
basically is similar to the one in Theorem 3

Theorem 4 Suppose that Assumptions 1 and 6 hold. Let γ, α, β be chosen as

γ = µxL
2
xy, α =

4

µ2
x

, β =
1

L2
xy

. (25)

Then we have for all T ≥ 0

min
0≤t≤T

∥∥∥∥∥ ∇xf(x(t), y(t))

∇yf(x(t), y(t))

∥∥∥∥∥ ≤
Lxy

√
2V1(x(0), y(0))√

T
+

2Lxy∥∇xf(x(0), y(0))∥√
µxT

· (26)

4. Concluding Remarks

In this paper, we consider two-time-scale gradient descent-ascent dynamics for solving nonconvex
min-max optimization problems. Our main focus is to derive the convergence rates of this method
for different settings of the underlying objective functions. Our techniques are mainly motivated
by the classic singular perturbation, where we show that our analysis improves the existing results
under the same conditions. A natural extension from this work is to provide a better analysis for
the discrete-time variant of GDAD. Another interesting future direction is to consider the stochastic
setting and its accelerated counterpart.
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