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Abstract

In most classical Autonomous Vehicle (AV) stacks, the prediction and planning layers are sep-
arated, limiting the planner to react to predictions that are not informed by the planned trajec-
tory of the AV. This work presents a module that tightly couples these layers via a game-theoretic
Model Predictive Controller (MPC) that uses a novel interactive multi-agent neural network pol-
icy as part of its predictive model. In our setting, the MPC planner considers all the surrounding
agents by informing the multi-agent policy with the planned state sequence. Fundamental to the
success of our method is the design of a novel multi-agent policy network that can steer a ve-
hicle given the state of the surrounding agents and the map information. The policy network is
trained implicitly with ground-truth observation data using backpropagation through time and a
differentiable dynamics model to roll out the trajectory forward in time. Finally, we show that
our multi-agent policy network learns to drive while interacting with the environment, and, when
combined with the game-theoretic MPC planner, can successfully generate interactive behaviors.
https://sites.google.com/view/deep—interactive-predict-plan
Keywords: Interactive Prediction, Model Predictive Control, Autonomous Vehicles

1. Introduction

Modern autonomy stacks, specifically those used for self-driving vehicles, consider prediction and
planning different parts of the pipeline. However, this separation assumes a one-way interaction,
where only the ego-vehicle is influenced by the other vehicles/agents. In reality, this assumption is
not valid since the ego-vehicle also influences the other vehicles’ decisions. Considering two-way
interactions results in a game between all the agents, where all the vehicles plan simultaneously and
find an equilibrium for the motion-planning game. Recent work developed methods to solve this
problem (Liniger and Lygeros, 2020; Schwarting et al., 2021; Le Cleac’h et al., 2022). However,
these methods require reward functions for all the agents, which limits these methods to specific
problems like autonomous racing or toy examples. To overcome this limitation, several groups pro-
posed to learn the reward function using inverse optimal control or inverse Reinforcement Learning
(RL) (Sadigh etal., 2018; Zeng et al., 2019; Behbahani et al., 2019; Abbeel and Ng, 2004). However,
this kind of approach has two disadvantages, first, inverse RL problems are often ambiguous and
only work well with linear function approximators, shallow neural networks (Sadigh et al., 2018),
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Figure 1: The joint prediction-planning module takes as inputs a past state buffer of all the vehicles
in the scene and a HD-Map represented as a lane-graph. The Model Predictive Controller
(MPC) inside the prediction-planning module uses the learned prediction module to in-
ternally simulate the multi-agent driving scenario.

or reward functions defined in the image space, which tend to be computationally and memory in-
efficient (Zeng et al., 2019). Second, after recovering the reward function, one still has to solve the
computationally expensive game-theoretic planning problem (Sadigh et al., 2018; Schwarting et al.,
2019). In our work, we propose an alternative route by directly learning a policy of the other agents,
leveraging recent large-scale motion prediction datasets (Houston et al., 2020; Ettinger et al., 2021).
Having access to a policy allows for best-response and leader-follower type algorithms to be used
as a motion planner, drastically simplifying the interactive ego-motion planning problem.

By learning a policy, we can build on top of the ever-growing literature on deep motion predic-
tion methods. However, as we will show, most of these approaches are highly optimized for accurate
predictions but are not suited to reactively change to other vehicles in the prediction stage. Reactive
prediction is a fundamental feature for our interactive planning approach, where the motion predic-
tion policy of the other agents has to react to the proposed planned trajectory. Consequently, we
propose using motion prediction tools such as road graph map integration and interaction layers but
include them in an Interactive Multi-Agent Prediction (IMAP) policy. We further propose to train
the policy in a model-based imitation learning approach. The core idea behind the IMAP policy
is that at each step in the rollout/prediction, the model performs an interaction step both based on
the recurrent state of the policy (intent) as well as the physical state of the agent. Additionally, the
policy uses a map integration step where the relevant information is added from the HD-Map. Given
all this information, the policy then computes actions for our differentiable dynamics model. Given
the dynamics, we can roll out our policy and train it using an imitation loss on the physical states
of the agents (position, heading, and velocity). We show that the policy can learn to predict and
simulate a car on two large-scale motion prediction datasets, Lyft Level 5 (Houston et al., 2020) and
the Waymo Open Motion Dataset (Ettinger et al., 2021). In summary, our contributions are:

* An interactive prediction-planning module to simultaneously predict and plan trajectories,
using game-theoretic planning.

* Formulating motion prediction as a policy learning problem, which we tackled using a novel
model-based imitation learning approach.
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* Design of an interactive motion prediction policy, which captures different types of interaction
between the multiple agents as well as the map.

2. Related Work

Prediction. The motion prediction or forecasting problem focuses on regressing the vehicles’ fu-
ture states conditioned on the historical states and possibly map information as a context variable.
Recently, the prediction problem has been tackled extensively using deep neural networks (Ivanovic
et al., 2018), but also model-based approaches like (Hu et al., 2019) are still used due to their in-
terpretability and data efficiency. The availability of large-scale motion forecasting datasets is the
driving force of deep learning models for prediction, but also the ability to encode interactive mod-
eling directly in the network architecture as a form of inductive bias is fundamental. Modeling
interactions between all the agents in the scene has been addressed by using multi-headed attention
models (Mercat et al., 2020; Rella et al., 2021) or by using Graph Neural Networks (GNN) (Liang
et al., 2020; Gao et al., 2020; Li et al., 2020; Kipf et al., 2018; Graber and Schwing, 2020). More
closely related to our work in planning conditioned prediction models, we can find PiP (Song et al.,
2020) where a Convolutional Neural Network (CNN) style architecture is used to encode the ground
truth future of the vehicle. Although this model could react to a planned trajectory, it does not handle
agent-to-agent interactions in the decoding stage. Trajectron++ (Salzmann et al., 2020) uses a simi-
lar approach to encode the ground truth future of the ego vehicle but using a Conditional Variational
Autoencoder (CVAE) framework (Doersch, 2016) which better captures the distribution of possible
paths an agent could follow conditioned on the ego-future but also lacks agent-to-agent interactions
in the decoding stage. Trajectron++ was used for joint prediction and planning for human-robot
interactions in (Nishimura et al., 2020). (Liu et al., 2021) presents a reactive prediction model that
can be used for planning purposes, the approach uses pre-defined trajectory sets for each traffic
participant, and it is trained via an augmented cross-entropy loss that penalizes collisions with other
vehicles. Similar to our proposed method, TrafficSim (Suo et al., 2021) directly learns a policy in
the decoder stage with the use of a differentiable simulation/dynamics model and a differentiable
collision loss. Our approach aims to learn reactive behavior in continuous state-action spaces purely
via imitation learning and without pre-defining a desired behavior in the loss function. Furthermore,
we use a single recurrent cell that aims to capture the short and long term interactive behavior.

Planning. Planning in autonomous driving, especially in an imitation learning setting, is a difficult
task, particularly due to different state distributions during training and evaluation (covariate-shift)
(Ross et al., 2011). ChauffeurNet (Bansal et al., 2019) addresses this by utilizing a clever data-
augmentation technique that re-generates a feasible trajectory subject to a perturbation in the initial
state of the agent. In the interactive planning literature, Q-learning has been used to longitudinally
control a vehicle using discrete accelerations (Leurent and Mercat, 2019). Game-theoretic trajectory
optimization algorithms for non-cooperative scenarios have been addressed in (Spica et al., 2020;
Wang et al., 2021; Williams et al., 2018; Fridovich-Keil et al., 2020; Di and Lamperski, 2019), but
they require us to solve a full trajectory optimization problem for the other agents, which itself
requires a pre-defined reward function. Reward functions have been successfully learned using
inverse RL in (Sadigh et al., 2018; Schwarting et al., 2019; Peters et al., 2021; Mehr et al., 2021),
but their structure is often limited to simple parameter vectors or too big image-based cost functions
like in (Zeng et al., 2019). Our approach bypasses the reward function learning and uses a learned
imitative policy that implicitly encodes the reward of the agents.
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3. Interactive Motion Prediction

To train our IMAP policy, we employ a reinforcement and imitation learning-inspired approach.
Specifically, we roll out our policy using a physical agent dynamics model. Given the rolled out
agent trajectories, we can train the policy using a backpropagation trough time (BPTT) policy learn-
ing approach with an observation imitation loss. Thus, we can train a policy that generates physical
actions only having access to observations. In the following, we will elaborate on this process, first
introducing our model-based imitation learning approach given an abstract interactive policy and
second introducing the exact design of our IMAP policy

3.1. Model-Based Imitation Learning

Theoretically, motion prediction can be posed as an imitation learning from observations problem
(Torabi et al., 2019; Edwards et al., 2019), where we have observations of all the agents, and the
goal is to find a policy that replicates the agents’ decisions. The challenge with imitation learning
from observations is that the actions are not available, rendering most imitation learning approaches
unsuitable. However, in the case of motion forecasting, we have physical models that can predict
the agents’ motions since the main uncertainty does not come from the dynamics of the agents but
the decision process. Considering that a physical model allows us to generate rollouts we can train
the policies similarly to model-based RL methods (Hafner et al., 2020; Clavera et al., 2020), given
that the model is differentiable with respect to the state and actions. To make this more concrete,
let us first introduce our multi-agent notation. We use the subscript k£ to refer to a time step, and
superscripts ¢ = 1,..., I to refer to an agent, with I the number of agents. Furthermore, we use
superscript = to refer to all agents except agent ¢. Second, we use a unicycle model as our motion
model, as it well explains the motion of cars and other traffic agents. Thus, each agent is described
by a state s° = [X, Y, cos(¢),sin(p),v], where (X,Y) is the position (p), cos(¢), sin(y) is used
as a smooth heading representation, and v is the forward velocity. Furthermore, an agent has the
actions a = [«, r|, where « is the acceleration and r the yaw rate. Hence, the agent’s motion can be
described by a discrete-time dynamical system of the form s a=1r (si,al). Since the state s of the
unicycle does not contain all information, such as the driving style, we use a recurrent policy, which
has further access to a hidden state h* € R¥ . Finally, all agents have access to a map representation
m. Therefore, we can define an abstract multi-agent policy a = 7(s’, h', 5™ h™ m). The policy
gets as the input the physical ego state s’ and hidden state h’, the physical state and hidden state
of all the other agents (s, h™), and finally the map representation m. In consequence, we can
formulate the following model-based policy learning problem,

N I

mm ZZ[, (sk,8%)

k=0 i=1
S.t. SO:SO

Si:+1 = (Ska 2;)
{a;c’ +1} - 7T( ;c kvsk 7h‘ )
i1=1,...I, k=0,..,.N (D)

where, N is the training horizon, and £ is an imitation cost function (in our case, the Huber loss)
that penalizes differences between the state trajectory of the policy rollout and the ground truth
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measurements. Note that we encode the history of all the agents using the same policy, but using
ground truth states (teacher forcing), according to {a};, h;C 1) = W(é};, h};, é;i, h;i, m), with i =
1,..J,and k = — K, ...,0 where K is the history length, finally, the hidden state is initialized with
zero ht. x = 0. The resulting policy learning problem is fully differentiable since the forward model
is differentiable. Thus, we can use a BPTT policy learning algorithm, which can efficiently learn

with the use of the differentiable dynamics.

3.2. Interactive Policy

Given our model-based imitation learning problem (1), we have a method to train our IMAP policy.
However, to achieve a good performance, the structure of the policy is fundamental. For our design,
we recognize three fundamental interaction types that must be considered: first, long-term intention
interaction, second, physical interactions, and finally, map interactions.

Policy Structure. As explained in the previous section, we use a recurrent policy structure, which
we implement as a Gated Recurrent Unit (GRU) cell. The GRU cell takes the previous hidden state
h as the recurrent input and additionally receives the concatenation of our three interaction modules,
which will be explained next. Given the updated hidden state, we use two fully connected layers to
produce the actions for the physical model. The output of our policy is a squashed Gaussian, which
we sample from, this guarantees actions in physically reasonable bounds. However, it requires
reparametrization (Doersch, 2016) of the sampled actions to train our policy.

Intention Interaction. The idea behind the intention interaction is to capture the long-term driving
style, goal, and intention interaction between agents. We argue that these attributes are represented
in the hidden state h of the policy. Hence, the interaction module considers the hidden represen-
tation of all agents. Inspired by (Mercat et al., 2020), we use a multi-headed dot-product attention
mechanism (Vaswani et al., 2017) to model the interaction. Consequently, the embedding of an
agent can be used in combination with linear layers to generate the queries, keys and values for
the attention module. Finally, the output is separated into the individual agents and used within the
policy as an input to the GRU cell.

Physical Interaction. The second type of interaction is considering interactions between the physi-
cal states s of agents. This interaction layer is intended for short-term behaviors and allows to learn
collision avoidance and following skills. We formulate this layer as a GNN since it allows us to
directly include state difference information in terms of edge features which is fundamental for this
task. In our GNN, node features encode the physical state of each agent as well as agent metadata
such as size and type, and edge features the difference in (z,y) coordinates. We consider a fully
connected graph with self connections, do allow for a fast spread of information. We follow (Braso
and Leal-Taixe, 2020) for the implementation details and use the mean as an aggregation function.

Map Interaction. The agents interact not only with each other but also with the environment/map.
Thus, map interaction is a core building block of modern motion prediction networks. In our net-
work, we use a VectorNet (Gao et al., 2020) based map encoder. The encoder uses a GNN on the
polylines describing the map; note that we denote the graph of polylines as m. Given the encoded
polylines, we use an attention mechanism to attend to the important parts of the map. We use a
cross-attention mechanism where the queries for each agent are generated from the output of the
physical interaction layer. This two-stage approach first lets the information be encoded into an
embedded map graph, followed by a learnable extraction mechanism. Note that the approach is also
computationally efficient since the map embedding is shared across all agents in the scene.
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Figure 2: The recurrent IMAP policy  fuses the physical states s¥ and map information m into a
share embedding representation that is then used to to recursively control the dynamics
model f. The single recurrent model is used for the encoding and decoding stage and is
trained via BPTT using a direct loss on the states/observations [,(é}f 11 s}; +1)- IMAP also
uses the hidden embeddings to generate the Keys, Values and Queries (K, V, Q) used in
the intention and map interaction network.

The complete architecture of the policy is shown in Fig. 2, where we can see how the three
interaction modules and the recurrent policy are set up.

Discussion. The core idea behind the training scheme and the policy architecture is to train a model
that can react to changing driving behaviors of other traffic agents. Accordingly, overemphasis
on the encoding phase has to be avoided since otherwise, the agents only extrapolate, which can
result in catastrophic failures (Saadatnejad et al., 2021). We achieve this by performing closed-loop
training, see (1). Thus, we do not learn to predict but learn to drive like the recorded agents. Note
that the policy design is also essential, especially including the information about the other agents
and the map at every step. This allows learning fundamental skills like collision avoidance and lane
following. Hence, our method blurs the line between motion prediction and end-to-end driving,
with our method being able to control traffic agents. One crucial difference is that our policy is not
goal or route driven since we do not know the route of other agents. This is in contrast to end-to-end
networks, which are normally conditioned on a route plan (Zhang et al., 2021; Bansal et al., 2019).

4. Interactive Motion Planning

Motion planning among other agents can be understood as a non-zero-sum game, where all agents
plan trajectories considering their reward function. The reward function is agent-specific and cap-
tures the fundamentals of driving, such as collision avoidance, path following, and comfort. Solving
this game has several drawbacks; first, the reward functions of other agents are generally unknown,
and second, finding a Nash or other equilibrium of this game can be computationally demanding.
Given our multi-agent policy, we can drastically simplify the problem since other agents’ re-
ward functions and even the best responses are directly embedded in the policy. Therefore, we can
formulate the multi-agent motion planning problem by only optimizing over the action sequence

a® = [ag, ..., a%_,] of the ego agent by relying on the learned policy for all other agents. Accord-
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ingly, we only need to specify the ego reward function r(s¢, s7¢) and the interactive policy 7. The
resulting motion planning problem can be formulated as follows,

N-1
max r(sh, 51°)
k=0
st 8§ =55, sh= &b
1 = (s af)
Sk+1 = f(s%,ﬂ’(s%, LSZZJLZZ,WL))
i=1,..0, k=0,..,N )

where, identical to (1), f() is the discrete-time unicycle dynamics. Note that to simplify the notation,
we omitted the recurrent output of the policy. Furthermore, —: in this context still refers to all agents
expect ¢, thus, the ego agent is considered inside the IMAP policy.

We can solve this problem using derivative-free optimization solvers such as the Cross-Entropy
Method (CEM). However, as usual in game theory, the order of play can have a drastic influence.
Thus, in the following, we will propose two possible approaches, one resulting in a leader-follower
style equilibrium and the second in a Nash style equilibrium. Note that these equilibria are for
games in a trajectory space, similar to (Liniger and Lygeros, 2020; Williams et al., 2018), where
each trajectory is interpreted as a strategy of the player.

Both approaches are based on best responses iterations, where agents iteratively update the
strategy by the best possible actions given the current actions of the other agents. Our IMAP policy
naturally reacts with a “best” response to a other agents, even if the trajectory is fixed before hand.
In the implementation we add the ego agent in the IMAP policy, and use the MPC trajectory with
teacher forcing in the rollout. Note the we do not know the reward function of the IMAP policy.

4.1. Iterative Leader-Follower MPC (ILF-MPC)

Our first approach is a leader-follower setup inspired by the Stackelberg equilibrium (Bagar and Ols-
der, 1998), where the leader is the ego agent. The ego agent computes a set of possible trajectories
at each iteration using a CEM approach. The other agents compute their best response for all the
ego trajectories by rolling out the IMAP policy. Given the best response trajectories, the reward of
all the ego trajectories is computed, including collision penalties. The mean of the best trajectories
(elites) is then used to initialize the next CEM iteration. Ideally, the CEM method is run until con-
vergence. However, if the method is terminated early, the only drawback is that the ego trajectory
could be further improved but the behavior of the other agents is still captured by the IMAP policy.

4.2. Iterative Best-Response MPC (IBR-MPC)

The leader-follower MPC proposed in the last section gives much power to the ego-agent, which po-
tentially overestimates its influence. Therefore, we also propose an iterative best-response approach
inspired by the Nash equilibrium (Basar and Olsder, 1998), since all players play a best response
if the method converges, the resulting equilibrium is Nash. Therefore, we change the order of play
and first compute trajectories for all agents with our IMAP policy. Given this starting point, the ego
agent computes the best response with respect to the fixed agent trajectories using the CEM solver.
Given this trajectory, all the other agents compute the best response using the IMAP policy with



DEEP INTERACTIVE MOTION PREDICTION AND PLANNING

the ego trajectory fixed. This approach is repeated for several iterations or until convergence. Note
that this approach needs fewer rollouts of the IMAP policy, but more CEM iterations since, at each
outer-iteration, the ego agent needs to find the best trajectory requiring multiple CEM iterations.

5. Results

The proposed interactive policy is tested in both the prediction and planning tasks. In the prediction
task, the models are ablated against our re-implementation of the Argoverse 2019/2022 competition
winner SAMPP (Mercat et al., 2020) based on standard single modal prediction metrics. Addition-
ally, we show that adding the Non-Linear Least Square (NLLS) perturbation method proposed in
(Bansal et al., 2019) does not hurt the nominal performance of our models. In the planning task,
we explore a lane merge scenario and show how IBP-MPC and ILF-MPC can plan a lane change
behavior while also maximizing the margin to the approaching vehicle. Additionally we show how
ILF-MPC can take advantage of having access to the reactive prediction model in the optimization
step to plan highly interactive trajectories.

5.1. Interactive Motion Prediction

Essential to the success of our joint prediction-planning approach is the simultaneous prediction for
all agents in the scene. We perform an ablation study to demonstrate that our information sharing
mechanisms capture the underlying interactions of urban driving. For the ablation study we consider
two of the most used metrics in trajectory prediction Final Displacement Error (ADE) and Average
Displacement Error (ADE). Similar to other work in the field of trajectory prediction we perform
inference with ego-centered scene information, but in contrast, we evaluate the model using the ego-
agent metrics (ADE®, FDE®) as well as the rest of the agents’ (ADE™¢, FDE™). Note that in our
study, we do not consider multi-modal predictions but compare how different information sharing
mechanisms can learn the underlying interactive behavior of the scene.

Lyft level 5. The Lyft level 5 motion prediction dataset (Houston et al., 2020) consists of several
full-length driving logs sampled at 10Hz. The logs contain information about the tracks of the
perceived agents and the state of the ego vehicle. The level 5 dataset is not designed to output
multi-agent motion sequences, therefore, both the train and validation datasets were preprocessed
by subsampling the logs every 5 seconds and extracting all the motion sequences of the agents in
the vicinity of the AV. Preprocessing the data allows for quicker training and evaluation on a single
GPU. The models for the ablation study are trained only using tracks from vehicles (pedestrians
and bicycles are removed from the dataset). The road graph information was resampled to have
equidistantly spaced points for each polyline, similar to the polylines included in the Waymo dataset.

Waymo. The Waymo Open Motion Dataset (WOMD) (Ettinger et al., 2021) consists of 9 second
sequences sampled at 10Hz each sample contains multi-agent sequences of up to 8 actors that are
probably interacting with each other. The dataset also contains a road graph per sample represented
as a sequence of equidistantly sampled polylines. The models trained for the ablation studies on the
Waymo dataset include the actor type (vehicle, pedestrian, cyclist) represented as a one-hot encoded
embedding. Even though the dataset has sequences of 8s the models trained for the following
ablation study are trained with a 3s horizon.

Ablation Study. All of the models were trained with a 3s prediction horizon, for the level 5 dataset,
we used a 2s encoding buffer, and for the WOMD dataset its standard 1s encoding buffer. During



DEEP INTERACTIVE MOTION PREDICTION AND PLANNING

Table 1: IMAP Policy Ablation Studies

Dataset Lyft @ 3s Waymo @ 3s

Metric ADE® FDE® ADE™ FDE™* ADE® FDE® ADE™ FDE™*
SAMPP* 0.27 0.68 0.39 0.83 0.88 241 1.26 2.80
SAMPP*(plan) 0.06*  0.08%* 0.41 0.84 0.31*  0.43* 1.49 3.06
No Interact. 0.20 0.56 0.32 0.77 0.74 2.19 1.09 2.46
+Interact. 0.20 0.54 0.30 0.69 0.65 1.87 0.99 2.13
+Map 0.17 0.46 0.29 0.67 0.60 1.71 0.97 2.04
+NLLS 0.17 0.46 0.28 0.65 0.60 1.73 0.97 2.03

training, with a probability p = 0.1, the data is perturbed using random agent scene centering and
random SE(2) scene transformation with uniform distribution (Ax, Ay) ~ U[—10m,10m| and
A ~ U[—0.8rad,0.8rad]. The perturbations are essential to mitigate the bias introduced by scene
ego centering. The ablation study, performed on the level 5 and WOMD validation set, shows the
same trends in both datasets, the SAMPP* baseline is outperformed by our proposed model with
a differentiable unicycle propagation model and a stochastic policy. Conditioning SAMPP* on the
ego ground truth trajectory SAMPP*(plan) similar to (Salzmann et al., 2020) does not improve
the predictions of the other agents, showing that such an approach is not suited for our interactive
planning. Once the interaction component is added to our method all the metrics improve, especially
FDE™. The addition of the map encoder helps to improve the predictions of all agents but it
particularly helps the ego predictions showing that the bias introduced due to scene centering is not
fully mitigated via the data perturbations. Lastly, the NLLS perturbation needed for the planning
module is added and we show that it does not hurt the nominal performance of our model. Note
that we only train a single-mode model. As a result, our IMAP policy is not competitive in the
multi-model evaluation metrics used in the WOMD-leaderboard.

5.2. Interactive Motion Planning

The motion planning component of the proposed architecture is tested in a qualitative fashion by
analyzing a lane change scenario. Therefore, we take a scene from WOMD with seven agents and
generate a plan for the ego agent, whereas the others are controlled by the WOMD trained IMAP
policy. Lane changes are the most common type of interaction found in everyday driving and can
be challenging in classical driving stacks. Often, lane changes require cooperation from cars on the
merging lane. This interaction is not neglected in our approach compared to sequential prediction
and planning. Thus, this scenario is used to explore the subtle differences between both proposed
MPCs. Additionally, an adversarial reward term is used in the ILF-MPC method to showcase how
privileged information about the reaction of other agents aids the optimization problem at hand.

Best Response MPC vs. Leader Follower MPC. To compare IBR-MPC and ILF-MPC, we solve
the same lane-changing planning problem with a prediction horizon of 5s. The reward function
uses a distance to target vehicle cost as a proxy for a collision penalty —1/|[pf — p,°||2, a terminal
desired heading reward —anglediff(¢% — ¢*), a regularization term on the acceleration and yaw
rate commands —||a§||3 and finally the orthogonal distance of each point in the trajectory to the
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Figure 3: Planned trajectories and velocities, form left to right, nominal model prediction for all
agents from a WOMD sample, lane-change with IBR-MPC, lane-change with ILF-MPC,
adversarial stopping example with ILF-MPC.

reference lane —proj(p},). The combined reward allows the optimization problem to find a solution
that completes the lane change, but it also emphasises a safe distance to other vehicles. In Fig. 3
we can see that IBC-MPC and ILF-MPC have almost identical outcomes, but in our experiments
we found that ILF-MPC tends to converge significantly faster than IBR-MPC using the same cost
function and hyperparameters for the CEM optimizer. Next, we show how the ILF-MPC exploits
its privileged information on how the agents would react. We introduce an adversarial reward term
of the form —uvy, this reward incentivizes the ego agent to adversarially decrease the speed of the
target agent. In Fig. 3 we can see that the ego agent plans to position itself in front of the target
agent while braking, the policy of the affected agent performs a braking maneuver to avoid collision
with the ego agent. Note that the optimizer is pushing the prediction model outside of the training
data distribution, nonetheless, the policy reacts meaningfully and avoids a rear-end collision. The
target agent does not come to a complete stop at the end. One could use a longer prediction horizon
to overcome this issue or consider terminal constraints in the MPC. Note that we implemented the
same interactive planners with SAMPP*(plan), but the MPC was not able to perform a lane change.

6. Conclusion

We proposed a novel interactive motion prediction and planning framework, where the motion pre-
diction model and the motion planner play a game with each other. Therefore, we proposed a novel
way to formulate the motion prediction problem as a policy learning problem. The policy is learned
using model-based imitation learning, which, combined with our IMAP policy, allows us to learn
a highly interaction-aware prediction model/policy. Given this model, we propose two interactive
motion planners based on best response iterations. One is inspired by a leader-follower structure
and the other by the Nash equilibrium. Finally, we showed simulation results in realistic driving
situations where our deep interactive motion planning and prediction framework can perform chal-
lenging lane changes and even adversarial tasks such as stopping another car. Both our proposed
methods can plan challenging interactive motions, correctly predicting the influence of the own ac-
tion on the other agents. However, ILF-MPC can, by design, plan more interactive trajectories but
it should be studied if human drivers behave according to the modeled leader-follower structure.

10
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