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Abstract

Reinforcement learning for power distribution systems has so far been studied using customized
environments due to the proprietary nature of the power industry. To encourage researchers to
benchmark reinforcement learning algorithms, we introduce PowerGym, an open-source reinforce-
ment learning environment for Volt-Var control in power distribution systems. Following OpenAl
Gym APIs, PowerGym targets minimizing power losses and voltage violations under physical net-
worked constraints. PowerGym provides four distribution systems (13Bus, 34Bus, 123Bus, and
8500Node) based on IEEE benchmark systems and design variants for various control difficulties.
To foster generalization, PowerGym offers a detailed customization guide for users working with
their distribution systems. As a demonstration, we examine state-of-the-art reinforcement learn-
ing algorithms in PowerGym and validate the environment by studying controller behaviors. The
repository is available at ht tps://github.com/siemens/powergym.

Keywords: Reinforcement learning for physical systems, Benchmark environments, Power distri-
bution systems, Volt-Var control

1. Introduction

Volt-Var control refers to the control of voltage (Volt) and reactive power (Var) in power distribution
systems to achieve healthy operation of the systems. By optimally dispatching voltage regulators,
switchable capacitors, and controllable batteries, Volt-Var control helps to flatten voltage profiles
and reduce power losses across the power distribution systems. It is hence rated as the most desired
function for power distribution systems (Borozan et al., 2001).

The core of the Volt-Var control problem is an optimization for voltage profiles and power losses
governed by networked constraints. Represent a power distribution system as a tree graph (N, £),
where N is the set of nodes or buses and ¢ is the set of edges or lines and transformers. Denote
node ¢ as j’s parent. The physical networked constraints are given in Eq. (1) (Farivar et al., 2013).
p, q are active and reactive power consumed at nodes or edges, v, £ denote bus voltage magnitude
and squared current magnitude, I?, X are resistance and reactance. Capital letters stand for given
parameters otherwise variables. The constraints in Eq. (1) have quadratic equalities, making any
optimization upon it nonconvex. Researchers have either tightly relaxed the constraints with strict
nodal injection assumptions (Gan et al., 2014) or used linearization that assumes the distribution
systems operates at a fixed operating point (Yang et al., 2016). Both methods require tremendous
efforts in trimming and conversion of a model that is readily available in commercial circuit simula-
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tion software to specific optimization formulations. Together with many integer decision variables
in controllable devices not shown above, the Volt-Var control problem becomes extremely hard to
scale to a system with thousands of buses, a typical size for distribution systems.
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With recent breakthroughs in deep reinforcement learning (RL), power system researchers have
attempted to use RL for power system operations. One such example is learning to operate a trans-
mission systems operation in the LZRPN competition (Marot et al., 2021). Though transmission
systems are fundamentally different from distribution systems in both network topology (looped vs.
radial) and typical problem types (dynamic vs. quasi-static), RL has shown promising results (Yoon
et al., 2020) in operating transmission systems. While there are existing works on RL for distribution
systems, researchers have used their own custom training environments. One reason is due to the
regulatory and conservative nature of the power engineering industry: being safety-critical, the real-
life distribution system topologies and control settings are proprietary. To encourage power systems
researchers to make fair comparisons on the developed RL algorithms without having the concern of
proprietary information leakage, we have developed PowerGym, a Gym-like environment (Brock-
man et al., 2016) for optimizing Volt-Var control using IEEE benchmark test systems (PES, 2010;
Dugan and Arritt, 2010). It further serves as a base for power systems engineers to implement RL
algorithms on their proprietary systems with minor customization.

PowerGym supports Gym-like functionalities such as reset, step, random action sampling, and
visualization; hence it is readily applicable with off-the-shelf RL algorithms. On top of the Gym
design, PowerGym provides a wide range of environment variations of the IEEE benchmark sys-
tems. These variations affect the environment’s physical constraints and ultimately the difficulty
of the control problem, allowing users to choose an environment that is easier to control but more
abstracted or harder to control yet more realistic. Details can be found in Fan et al. (2021).

Our contributions are as follows. We introduce PowerGym as a unified benchmark to help
power system researchers evaluate their controls and RL algorithms. To the best of our knowledge,
there are no existing state-of-the-art or similar benchmarks. This is the first publicly accessible
environment focusing on Volt-Var control in power distribution systems. Second, our implemen-
tation philosophy strongly encourages the usability and extendibility of PowerGym. We provide
variations of IEEE benchmark systems to enable different control difficulties, along with a detailed
customization guide. Additionally, we showcase the applicability of PowerGym on two popular RL
algorithms, PPO (Schulman et al., 2017) and SAC (Haarnoja et al., 2018) for validation purposes.
We also explain the effect of the horizon and the controllers’ physical behaviors via a case study.

2. Related Work

The application of RL to control and manage various aspects of power systems is a well-studied
topic in literature (Zhang et al., 2020). There has been renewed interest in this topic due to algo-
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rithmic advancements, allowing RL to go beyond tabular settings and scale to large state and action
spaces using neural networks as expressive function approximators. Examples of such work in-
clude home/building energy control (Sun et al., 2020; Pigott et al., 2021), power systems stability
control (Ernst et al., 2004), microgrid control (Henri et al., 2020), and load frequency control for re-
newable energy (Yan and Xu, 2019). In the context of Volt-Var control, various studies leverage RL
to optimize various aspects of the problem, such as emphasizing the constraint satisfaction (Wang
et al., 2019, 2020) or the sample efficiency and scalability (Zhang et al., 2021). Nevertheless, most
of these results are based on non-standardized implementations of various systems with the environ-
ment tuned to the specifics of the problem. This has led to the difficulty of evaluating and comparing
results and remains a crucial challenge in these areas, as highlighted by Gao and Yu (2021).

In other domains of deep RL, researchers recognized the importance of having high-quality
benchmark environments to facilitate the research into RL application. This has led to the develop-
ment of environments such as OpenAl Gym for training RL agents to play a variety of games and
for robotic control (Brockman et al., 2016), Safety Gym for safe RL exploration (Ray et al., 2019)
and ns3-gym for training RL in networks research problems (Gawtowicz and Zubow, 2018). More
closely related benchmarks include the Grid2Op (Donnot, 2020) and Gym-ANM (Henry and Ernst,
2021). Grid2Op is the platform used for the Learning To Run Power Network (L2PRN) challenge,
controlling unpredictable power generation from renewable energy sources through power systems’
topology change (Marot et al., 2020). Gym-ANM is an RL environment that models Active Network
Management (ANM) for renewable energy. Nevertheless, a standardized benchmark for Volt-Var
control environments with the flexibility of instantiating systems of various sizes and difficulty is
still lacking. To this end, we hope that PowerGym serves to fill the gap in the community as a
unified benchmark environment for RL research in Volt-Var control.

3. Reinforcement Learning Preliminaries

A reinforcement learning (RL) environment is often modeled by the Markov Decision Process
(MDP) with two common MDPs: infinite-horizon discounted MDP M, = (S, A, T, r,~y) and finite-
horizon episodic MDP M, = (S, A, {T;},{ri}, H). S, A are the state and action spaces. T/{T;},
r/{r;} are the stationary/non-stationary state transition function and reward function. v € (0, 1),
H € N are the discount factor and the horizon. We assume a stationary state transition in M,:
T; =T fori € [0...H — 1]. The goal of RL is to find a policy to maximize the cumulative rewards:
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The optimal policy of My is stationary while that of M, is non-stationary (Agarwal et al., 2019)[Chap-
ter 1]; hence in Eq. (2), the policy is denoted as 7 in M and as {7;} in M. To reduce the model
complexity, most RL experiments are formulated into My if the stationarity holds. However, M,
is inevitable when the reward is non-stationary. Depending on the applications, we implement both
stationary and non-stationary rewards, which will be discussed in the next section.
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4. A Volt-Var Control Environment

4.1. Power Distribution Systems and Objectives

Power distribution systems are networks for delivering electric power from the power transmission
system to end consumers. Due to the distribution loss, voltage drops along the power delivery line,
possibly causing voltage violations and power losses. Thus, Volt-Var optimization is required. In
power distribution systems, the Volt-Var optimization problem is to control devices (e.g., regulators,
capacitors, and batteries, represented as x.) under constraints. z affects the voltage, resistance,
reactance, and power in the physical networked constraints, so Eq. (1) is a constraint of Eq. (3).

ming fvolt(l') + fctrl(x) + fpower(x)
s.t. Eq. (1) and device constraints.

3

The Volt-Var optimization’s objective is a combination of three losses: fyo¢ for voltage violations,
fem for control errors, and fpower for power losses. The device constraints ensures the devices
operates within its physical limits. While Eq. (3) only accounts for a single time step, in practice we
solve it at every time step. Solving a sequence of Volt-Var optimization, Eq. (3), becomes a Volt-Var
control problem. In short, we call a problem Volt-Var optimization if solving a single Eq. (3) and
Volt-Var control if solving a sequence of Eq. (3) connected by device constraints over time. We use a
Python version of OpenDSS to solve for the physical networked constraints of Eq. (3). OpenDSS is
an open-source power flow solver developed by EPRI. It takes p, ¢ from Eq. (1) as known variables
and solves the nonlinear equations of voltages and currents using fixed-point iterations.

Shifting the focus to elements in power distribution systems, we define each element to be multi-
phase following the fact that power is usually delivered in multi-phases. As shown in Figure 1, a
(multi-phase) node, or a bus, can be a pure connection point or include node objects like loads,
capacitors, or batteries. A (multi-phase) edge is formed by a line, a transformer, or a regulator.
Loads model the power consumption from the consumers. Capacitors provide reactive power and
batteries are energy (active power) storage. Lines imitate the connection from one (multi-phase)
node to another subject to Ohm’s law. Transformers and regulators are used for voltage adjustment
from one node to another. We highlight that these elements included in PowerGym are designed
to mirror the most common elements found in OpenDSS, with the intention of facilitating an easy
adoption and common understanding among the power systems community.
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4.2. Volt-Var Control as An RL Problem

In this subsection, we describe the Volt-Var control problem in the language of RL. As an example,
we consider a finite-horizon MDP with H = 24 steps as the horizon representing a daily control
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Variable Type Range

Bus voltage cont. [0.8,1.2] Variable Type Range
Capacitor status disc. {0,1} Capacitor status | disc. {0,1}
Regulator taps disc.  {0,..., Nregact — 1} Regulator taps disc.  {0,..., Nregact — 1}
State-of-charge (soc) | cont. [0,1] Discharge power | disc. {0, ..., Nparact — 1}
Discharge power cont. [-1,1] Discharge power | cont. [-1,1]

Table 1: Observation Space. Here, both discrete ~ Table 2: Action Space. The discrete battery uses

and continuous batteries give the normalized dis- the discretized discharge power while the continu-
charge power. Nieg o is the number of taps of a reg- ous battery uses the normalized one. Npy et 1S the
ulator (default value of 33 taps, following the con-  number of a discrete battery’s discharge power.
vention of OpenDSS.

with the control frequency being one action per hour. Nevertheless, the horizon remains a customiz-
able variable in our implementation is further discussed in subsection 5.2 and Fan et al. (2021). The
following paragraphs give the details about the observation space, the action space, the state transi-
tion, and the reward function of PowerGym.

4.2.1. OBSERVATION AND ACTION SPACES

The observation and action spaces, as summarized in Tables 1 and 2, are products of discrete and
continuous variables. The discrete variables are from the physical constraints of the controllers; for
example, a capacitor either turns on or off, a regulator operates on a finite number of modes (tap
number), and a discrete battery only has a finite number of discharge powers. The continuous vari-
ables are normalized into some bounded ranges; for example, the (per-unit) voltage is represented
into the unit of the base voltage on a bus, and hence usually bounded in [0.8, 1.2]. The battery’s
state-of-charge (soc) defined as (charge / max charge) is in [0.0, 1.0]. The continuous battery’s nor-
malized discharge power (discharge power / max discharge power) is in [-1.0, 1.0], where negative
values denote charging and the positive values mean discharging.

Depending on the device constraints and specific problem formulation, a battery control can be
either discrete or continuous. This affects the action space (Table 2) since the action representations
are different. However, since we can always post-process the observation after receiving it, we unify
the representation of discrete and continuous batteries by mapping the discrete battery’s discharge
power to the normalized form in the observation space (Table 1). We left the final representation
(discrete or continuous) of the battery as part of the design of the problem formulation, which
enables greater flexibility for researchers to customize the environment. This will result in an action
space that is either multi-discrete or a product of multi-discrete and continuous spaces. Either way,
the problem becomes non-trivial for a tabular policy or a policy that encodes the actions as one-
hot vectors (e.g., DDQN (Van Hasselt et al., 2016)) because the size of the discrete part of action
space scales exponentially in the number of controllers. Further, the possibility of mixing discrete
and continuous actions presents an additional challenge to design the architecture of the policy. All
things considered, the representations of the observation and action spaces for PowerGym discussed
above is designed to reflect a realistic system as close as possible while being flexible enough for
customization. Technically, it comes with some non-trivial aspects (mixed actions space) to foster
research into developing scalable RL controllers for power distributions systems. Nonetheless, the
range of observation and action space can also be masked based on the researcher’s use case.
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4.2.2. STATE TRANSITION

We now describe the state transition function s’ = T'(s, a) in PowerGym. With the descriptions in
Table 1 and 2, s is represented as

s’ = [Vols(s, a), cap(a), reg(a), soc(s,a), dis(s, a)]. 4)

Vols(s, a) is the next set of voltages and depends on action a and the stochasticity of loads, which
we model using the load profiles (discussed in environment design). cap(a) and reg(a) are the next
statuses of capacitors and regulators, while soc(s, a) and dis(s, a) are the next soc’s and discharge
powers of batteries. Both of soc(s, a) and dis(s, a) depend on the current state s because a battery’s
soc cannot go beyond full charge (soc = 1) or depleted (soc = 0). To enforce this, we project any
attempted discharge power to the allowed range based on s, making dis(s, a) a function of (s, a).

4.2.3. REWARD FUNCTION

We implement the objective of a Volt-Var problem, Eq. (3), into a reward function as follows:

T(S, 5,7 Z) = _fvolt(sl) - fctrl(5> 5/7 Z) - fpower(sl) (5)
PowerLoss(s")

— 6
TotalPower(s’) ©

f power ( 3/) = Wpower

s is a concatenation of all observations in the current step, s’ denotes the next observation, and
i € [0,...,H — 1] is the episode step. The dependency on step ¢ implies the reward could be
non-stationary. The power loss term, expanded in Eq. (6), is a ratio of the overall power loss to
the total power. The voltage violation and control error terms are expressed in Eq. (7) and (8).
Eq. (5) is expressed as (s, ', 1), not (s, a, ), because the action «a is a part of the next state s'.
Mathematically, r(s, a,i) and 7(s, s’, ) are equivalent because s’ = T'(s, a) is a function of (s, a)
under the state transition function 7'. The voltage violation, Eq. (7), is the sum of worst-case voltage
violations among all phases across all buses. The upper/lower violation thresholds (V//V) are set as
+5% of the per-unit voltage V' due to the US voltage regulation standard (ANSI, 2011).

fron() = D max Vap(s) =V)et (V= min  Vip(s))s, ™
neN

where (-)+ is a shorthand for max(-, 0). Thereby, the upper violation (max, V,,,, — V) is positive
when max, V;,, > V and zero otherwise. The control error, Eq. (8), is a sum of capacitors’ and
regulators’ switching penalties (1% row) and batteries’ discharge penalty and soc penalty (2" row).
These penalties discourage the policy from making frequent changes and slow the wear out of the
control devices. Note the discharge error P”(P&, with Py, being the max power, has a (-) function
as the battery degradation is primarily causedbby the battery discharging power P;, > (. Besides, the
soc penalty has an indicator of the last time step I,— ;7 to encourage a battery b to return to its initial
state-of-charge socgp. Hence, the reward is stationary if wg,. = 0 and non-stationary otherwise.

fan(s,s',) = Y Weap|Status.(s) — Statuse(s')| + > Wieg|Tap,(s) — Tap,.(s')]

cecaps reregs

by(s')s )
+ ) Wais 5 T Wacllizrrsocy(s') — soco.
bebats b
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where ¢, 7, b represent a capacitor, a regulator, and a battery. Status., Tap,., Py, soc, are status of
¢, tap number of 7, discharge power of b, and soc of b. In summary, the composite reward function
defined above serves as one possible template for Volt-var control that optimizes the system from
multiples aspects. Our results (shown below) have demonstrated that using SOTA RL algorithms, a
controller can be trained to yield decent performance. Nevertheless, this reward function remains a
modular part of the PowerGym environments and can be easily modified.

5. Design of PowerGym

This section is a brief overview of the designs of PowerGym. To showcase the generality of the
design, we mainly discuss the environment registration and customization. Further details on default
environments, gym-like usages (e.g., reset, step), and load profiles can be found in Fan et al. (2021).

5.1. Environment Instantiation
Similar to the OpenAl Gym, PowerGym provides the function make_env () :
make_env (env_name, worker_idx=None)

to instantiate an environment, where env_name is the name of the registered environment. The
argument worker_idx (if not None) is used for parallel execution, which we detail in the sub-
section of load profiles. The function make_env () reads the following information. First, Power-
Gym reads DSS-based circuit files into the environment class and uses OpenDSS in the backend to
compile the circuit files, as shown in Figure 1. To define the hyper-parameters that affects the RL
training under the same system, PowerGym requires information such as the horizon, number of
actions of a regulator/battery and customizable weights of the power loss, capacitor’s switch loss,
regulator’s switch loss, battery’s discharge loss, battery’s state-of-charge (soc) loss in the reward
function. The next subsection introduces the customization of such information.

5.2. Environment Registration and Customization

Our implementation allows users to customize the environment by registering a new environment
name associated with the required information. This can be achieved by appending the information
to the dictionaries within PowerGym’s register. An example of defining a new 13-bus environment
in the dictionary in shown below. The dss_file entry is the main circuit file that OpenDSS
compiles. Users may edit dss_file to change the underlying circuit’s objects (nodes and edges
shown in Figure 1 and structure (topology of the power system) to customize the environment from
a domain point of view. Users can also modify the hyper-parameters related to the formulation
of the RL problem. In the example shown, max_episode_steps is the horizon (24 steps by
default for daily control, act_num is the shorthand of the number of actions, where the battery is
continuous if bat_act_num is infinity and discrete if finite. The remaining parameters are the
weights in the reward function shown in Eq. (5).
"13Bus’ : {

"system_name’: "13Bus’,

"dss_file’: "IEEE13Nodeckt_daily.dss’,

"max_episode_steps’: 24,

"reg_act_num’: 33,

"bat_act_num’: 33,

"power_w’: 10.0,

"cap_w’: 1.0/33,

"reg_w’: 1.0/33,
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"soc_w’: 0.0/33,
"dis_w’: 6.0/33 }

Besides the information shown above, PowerGym depends on the load profiles (details in Fan
etal. (2021)) and additional auxiliary circuit files. These files are also customizable and can be found
in the folder of systems/{system_name} of the repository. For example, the above shows
users can find customizable files in the folder systems/13Bus. For more detailed information
on customizing these files, we refer readers to the code’s repository.

6. Experimental Validations
6.1. Cumulative Rewards in Default Environments

13Bus 34Bus 123Bus led 8500Node
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T
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Figure 2: Cumulative rewards on test load profiles for different agents in 40k steps. The labels denote the
average and standard deviation of the final rewards.

To demonstrate the applicability of PowerGym, we trained two popular RL algorithms as initial
benchmarks on our environments: Proximal Policy Optimization (PPO) (Schulman et al., 2017) and
Soft Actor-Critic (SAC) (Haarnoja et al., 2018), with the implementations of PPO based on Fujita
et al. (2021) and SAC on Fan and Wang (2021). Since PPO is on-policy while SAC is off-policy,
these two algorithms give us a proxy of the expected performance of on-policy versus off-policy
algorithms in the environments. For fair comparison, both PPO and SAC have been trained on multi-
discrete actions versions of the environment. In addition, SAC has been trained on environments
with continuous batteries (cbat) to compare the effect of different battery settings on the difficulty
of the environment. The experiments run on a server with one AMD Ryzen Threadripper 3970X
CPU and one Nvidia RTX 3090 GPU. The experiments have been designed as follows: The load
profiles are randomly partitioned into two halves, one for training and the other for testing. During
training, the policy is tested on test load profiles every five episodes; or equivalently every 120 steps
as the horizon is 24. Lastly, all experiments are performed across ten random seeds.

In Figure 2, the label "random” denotes an untrained policy that samples actions uniformly from
the action space. As expected, SAC converges faster and outperforms PPO across all environments,
which aligns with the SAC paper (Haarnoja et al., 2018) that has been demonstrated on the MuJoCo
(Todorov et al., 2012). Due to the experiment design (evaluation at every 120 steps), all curves start
at step 120 instead of step 0. The first evaluation (step 120) reveals the algorithms’ performance
based on the first few updates: PPO is similar to random policy while SAC isn’t. The fact that PPO’s
initial performance is close to the random policy validates the clipping nature of its policy gradient.
Clipping it’s loss function makes PPO updates it’s weights conservatively and hence it behaves
similar to random policy in the early steps. As for SAC, because its DDPG-style policy gradient
(Silver et al., 2014) isn’t clipped, SAC suffers more from the initial inaccuracy of Q-function and
hence deviates from the random policy in the early steps. Finally, the performances of SAC and
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cbat_SAC are very similar, implying discrete and continuous batteries share similar behaviors,
and SAC successfully adapts to both. To sum up, we demonstrated the applicability of two popular
RL algorithms in PowerGym for four different IEEE power distribution systems. In our experiments
above, we observed that both PPO and SAC demonstrate learning capabilities when compared to a
random policy, with SAC being outperforming PPO and being significantly more sample efficient.
We highlight that these results serves to validate the correctness of the PowerGym environment as a
benchmark as well as an initial baseline for future research, rather than comparing the applications
of existing algorithms.

6.2. Case Study: 123Bus with Different Variations

We take the 123Bus system (Figure 4) as an example to further analyze the behavior of the control
policy in PowerGym. Specifically, we focus on the continuous battery scenario because batteries
may arbitrarily discharge/charge within an allowable range in practice. For this case study, we
consider four variations: vanilla (cbat), scaled loads (cbat_s2.5), with soc penalty (soc),
and scaled loads with soc penalty (cbat_soc_s2.5). Scaling the loads of the system reflects a
larger power consumption, thus increases the difficulty of controlling the system while a soc penalty
introduces a non-stationary reward. As such, we would like to see how the control policy adapts to
different scenarios. The first row of Figure 3 visualizes the average switching errors of capacitors
and regulators respectively for all four scenarios. Both errors are small in most time steps across
all scenarios. Hence, the policies for both capacitors and regulators only make large changes when
needed while making small adjustments the rest of the time. Note the behavior of the initial steps

and the later steps are different because the RL exploration starts after a 1000 initial random steps.
The second row of Figure 3 shows
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Figure 3: Immediate errors on 4 variations of 123Bus_cbat.
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than their un-scaled counterparts.
This is because large voltage vio-
lations cause large voltage differ-
ences on the lines, which brings up
the power loss on the lines. Ad-
ditionally, due to the load scaling,
the 2.5-scaled environments have the
higher voltage violations than the un-
scaled environments (cbat_s2.5
> cbat and cbat_soc_s2.5
> cbat_soc). Furthermore, the
voltage violation of soc_s2.5 is
greater than that of s2.5 as the soc
penalty makes the policy on batteries
more restrictive and non-stationary.
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Finally, the third row of Figure 3 shows the battery ac-

tivity in discharge and soc errors. Since the battery is an

| !_;,_4——— / \ energy storage device, it is useful when the environment

— s e—o—r . w lacks power and has high voltage violations. Hence, the
:_w_";”_‘jj—“ T e battery barely discharges in the un-scaled environments

e\ .m_ﬁ j{+—=—w——= and maintains mostly zero soc error. As for the scaled

5 i_,_TM _ | '——— environments (s2.5 & soc_s2.5), because s2 .5 dis-
_— _ ZIZ_I_T_::i“\;“‘“/_ J.,_ i charges frequently, it has smaller voltage violations but

higher a soc error. In comparison, soc_s2 . 5 discharges
st less, has a higher voltage violation, but also incurs a
smaller soc error. Therefore, there is a trade-off between
battery activity and voltage violation in heavily-loaded
environments: the more battery activity, the less voltage
violation, and the RL controller need to find a delicate
balance between the two. In summary, the soc penalty and the load scale affect the difficulty of a
PowerGym environment, and this difficulty can be evaluated by power losses, voltage violations,
and battery activities. Higher power losses, voltage violations, and battery activities can generally
be expected from a harder environment.

Figure 4: Layout of 123Bus system

6.3. Effects of Varying Horizons

123805 chat SAC = 8500Node, chat SAC Figure 5 shows the cumulative testing reward
e .
o p————— o W w.r.t. the horizon for 123Bus and 8500Node
% 0 Bl | systems. We only analyze the continuous
g Y battery scenario with the SAC algorithm as
3- S-41 | .. . .
e || g ‘w this is the setting with the best performance
° _600 h24:-7.53x027 | © =31 M h24: -269.24+64.78 . . .
hag: -11792073 | (| na:see74x30787 | according to Figure 2. As the cumulative re-
h96: -19.21+0.26 h96: -1136.34+182.24

oo s 1o 15 20 oo o5 1o 15 2o ward scales linearly w.r.t. the horizon, h48’s

e - e " cumulative reward is roughly twice of h24’s

Figure 5: Effects of horizon in 20k steps. h24, h48, and h96’s is four times of h24’s. Also, the
h96 denotes horizon = 24, 48, 96 respectively. convergence speeds w.r.t. horizons are

similar in 123Bus due to the fact that the 123Bus system is a more stable system and less likely to
have voltage violations. On the other hand, 8500Node is less stable, resulting in convergence with
longer steps for a longer horizon.

7. Conclusion

We develop a gym-like open-source environment, PowerGym, to facilitate RL research/adaptation
for Volt-Var control in power distribution systems. PowerGym encourages power system researchers
to make fair comparisons on RL algorithms using the same benchmarking environment. It includes a
wide variations (problem size, base voltage violation, load scale, and soc penalty) to study different
aspects of the Volt-Var control. PowerGym also acts as a stepping point for researchers/engineers to
adopt RL algorithms to power distribution systems in real life and provides a detailed customization
guide for researchers/engineers who use PowerGym with their own proprietary power distribution
systems. Our RL experiments suggest the correctness of the PowerGym design. The cumulative
rewards achieved by our RL agents serve as a baseline for the PowerGym users.
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