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Abstract

We propose a piecewise learning framework for controlling nonlinear systems with unknown dy-
namics. While model-based reinforcement learning techniques in terms of some basis functions are
well known in the literature, when it comes to more complex dynamics, only a local approximation
of the model can be obtained using a limited number of bases. The complexity of the identifier
and the controller can be considerably high if obtaining an approximation over a larger domain is
desired. To overcome this limitation, we propose a general piecewise nonlinear framework where
each piece is responsible for locally learning and controlling over some region of the domain. We
obtain rigorous uncertainty bounds for the learned piecewise models. The piecewise affine (PWA)
model is then studied as a special case, for which we propose an optimization-based verification
technique for stability analysis of the closed-loop system. Accordingly, given a time-discretization
of the learned PWA system, we iteratively search for a common piecewise Lyapunov function in a
set of positive definite functions, where a non-monotonic convergence is allowed. This Lyapunov
candidate is verified on the uncertain system to either provide a certificate for stability or find a
counter-example when it fails. This counter-example is added to a set of samples to facilitate the
further learning of a Lyapunov function. We demonstrate the results on two examples and show
that the proposed approach yields a less conservative region of attraction (ROA) compared with
alternative state-of-the-art approaches. Moreover, we provide the runtime results to demonstrate
potentials of the proposed framework in real-world implementations.
Keywords: Nonlinear systems, learning-based control, system identification, piecewise affine,
Lyapunov analysis

1. Introduction

The flexibility of piecewise affine (PWA) systems makes them suitable for different approaches
in control. Hence, the control problem of piecewise systems has been extensively studied in the
literature (see, e.g., Marcucci and Tedrake (2019); Zou and Li (2007); Rodrigues and Boyd (2005);
Baotic (2005); Strijbosch et al. (2020); Christophersen et al. (2005); Rodrigues and How (2003)).
Moreover, various applications can be found for PWA systems, including robotics (Andrikopoulos
et al., 2013; Marcucci et al., 2017), automotive control (Borrelli et al., 2006; Sun et al., 2019), and
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power electronics (Geyer et al., 2008; Vlad et al., 2012). Since PWA systems are highly adaptable
to different problems, various techniques are presented to efficiently fit a piecewise model to data
(see, e.g., Toriello and Vielma (2012); Breschi et al. (2016); Ferrari-Trecate et al. (2003); Amaldi
et al. (2016); Rebennack and Krasko (2020); Du et al. (2021)). A review of some of the techniques
can be found in Gambella et al. (2021); Garulli et al. (2012).

Solving the optimal control problem for PWA systems has also been the topic of various works.
In Zou and Li (2007), the robust model predictive control (MPC) strategy is extended to PWA sys-
tems with polytopic uncertainty, where multiple PWA quadratic Lyapunov functions are employed
for different vertices of the uncertainty polytope in different partitions. In another work by Marcucci
and Tedrake (2019), hybrid MPC is formulated as a mixed-integer program to solve the optimal con-
trol problem for PWA systems. However, these techniques are only available in the open-loop form,
which decreases their applicability for real-time control.

Deep neural networks (DNN) offer an efficient technique for control in the closed loop. How-
ever, one drawback of DNN-based control is the difficulty in stability analysis. This becomes even
more challenging when PWA are considered. Chen et al. (2020) suggested a sample-efficient tech-
nique for synthesizing a Lyapunov function for the PWA system controlled through a DNN in the
closed loop. In this approach, the analytic center cutting plane method (ACCPM) (Goffin and Vial,
1993; Nesterov, 1995; Boyd et al., 2004) is first used for searching for a Lyapunov function. Then,
this Lyapunov candidate is verified on the closed-loop system using mixed-integer quadratic pro-
gramming (MIQP). This approach relies on the exact model of the system and therefore cannot be
directly implemented on an identified PWA system with uncertainty.

Although learning with guarantees has motivated plenty of recent research Chang et al. (2020);
Chen et al. (2020); Dai et al. (2021), fewer works have explicitly considered the model uncertainty.
In Berkenkamp et al. (2016), the authors consider an approach that learns the region of attraction
(ROA) from experiments on a partially unknown system. Based on regularity assumptions on the
model errors in terms of a Gaussian process (GP) prior, they employ an underlying Lyapunov func-
tion to determine an ROA from which the system is asymptotically stable with high probability.
Even though a partially unknown model including uncertainty is considered in this approach, the
approach may not computationally scale well with the number of samples considering the use of a
GP learner.

Model-based learning approaches in the literature are mainly categorized under reinforcement
learning (RL) in two groups: value function and policy search methods. Approximate/adaptive
dynamic programming techniques (Wang et al., 2009; Lewis and Vrabie, 2009; Balakrishnan et al.,
2008) as a well-known value-based approach can efficiently approximate the solution to the optimal
control problem. Even though a set of polynomial bases, for instance, is known to be sufficient as
a universal approximator over a compact domain (Kamalapurkar et al., 2018), the number of bases
required for a tight approximation of the dynamics over a given domain may be exceedingly high.
This highly impedes implementations, especially in an online learning and control setting.

On the other hand, employing a piecewise approach can improve the applicability of model-
based learning greatly by keeping the online computations needed for updating the model and con-
trol in a tractable size, since at any instance only a particular mode of the system is involved. Hence,
in this paper, we consider a partition of the domain consisting of different pieces, where for each
piece, we run a local learner in terms of a limited number of bases using a structured online learning
(SOL) approach (Farsi and Liu, 2020, 2021, 2022) to obtain a piecewise feedback control. Then,
by considering the special case of PWA systems, an optimization-based technique is employed to
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verify a variant of the piecewise model to obtain rigorous stability guarantees. Two examples are
shown to demonstrate the advantages of the proposed framework in terms of providing less con-
servative stability guarantees in terms of the size of the verified ROA, compared with Lyapunov
functions learned using neural networks for systems with known dynamics (Chang et al., 2020).

Due to the page limit, some of the theoretical and simulation results are omitted in this paper.
However, the extended version of this work can be accessed on arXiv (Farsi et al. (2022)).

2. Problem Formulation

Consider the nonlinear system in control-affine form

ẋ = F (x, u) = f(x) + g(x)u = f(x) +

mX

j=1

g

j

(x)u

j

, (1)

where x 2 D ⇢ Rn, u 2 ⌦ ⇢ Rm, f : D ! Rn, and g : D ! Rn⇥m.
The cost functional to be minimized along the trajectory, starting from the initial condition

x(0) = x

0

, is considered to be in the following linear quadratic form

J(x

0

, u) = lim

T!1

Z
T

0

e

��t

�
x

T

Qx+ u

T

Ru

�
dt, (2)

where Q 2 Rn⇥n is positive semi-definite, � � 0 is the discount factor, and R 2 Rm⇥m is a
diagonal matrix with only positive values, given by the design criteria.

3. The Piecewise Learning and Control Framework

We approximate the nonlinear system (1) by a piecewise model with a bounded uncertainty

ẋ = W

�

�(x) +

mX

j=1

W

j�

�(x)u

j

+ d

�

, (3)

where d

�

2 Rn is a time-varying uncertainty, W
�

and W

j�

2 Rn⇥p are the matrices of the coef-
ficients for � 2 {1, 2, . . . , n

�

} and j 2 {1, 2, . . . ,m}, with a set of differentiable bases �(x) =

[�

1

(x) . . . �

p

(x)]

T , and n

�

denoting the total number of pieces. Moreover, any piece of the sys-
tem is defined over a convex set given by a set of linear inequalities as ⌥

�

= {x 2 D|Z
�

x  z

�

},
where � 2 {1, . . . , n

�

} and Z

�

and z

�

are a matrix and a vector, respectively, of appropriate dimen-
sions.

We assume that the set {⌥
�

} forms a partition of the domain and its elements do not share any
interior points, i.e.

S
n�
�=1

⌥

�

= D and int[⌥
�

]

T
int[⌥

l

] = ; for � 6= l and �, l 2 {1, 2, . . . , n
�

}.
Furthermore, the piecewise model is assumed to be continuous across the boundaries of {⌥

�

}
(see Appendix A.1 of Farsi et al. (2022)). The control input and the uncertainty are assumed
to be bounded and lie in the sets ⌦ = {u 2 Rm||u

j

|  ū

j

, 8j 2 {1, 2, . . . ,m}} and �

�

=

{d
�

2 Rn||d
�i

|  ¯

d

�i

, 8i 2 {1, 2, . . . , n}}, respectively. The uncertainty upper bound ¯

d

�

=

(

¯

d

�1

, · · · , ¯d
�n

) is to be determined.
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3.1. System Identification

Having defined the parameterized model of the system, we employ a system identification approach
to update the system parameters. For each pair of samples obtained from the input and state of the
system, i.e., (xs, us), we first locate the element in the partition {⌥

�

} that contains the sampled
state xs. Then, we locally update the system coefficients of the particular piece from which the state
is sampled. In Farsi and Liu (2020), the weights are updated according to

[

ˆ

W

�

ˆ

W

1�

. . .

ˆ

W

m�

]

k

= argmin

¯

W

k ˙

X

k�

� ¯

W⇥

k�

k2
2

, (4)

where k is the time step, and ⇥

k�

includes a matrix of samples with

⇥

k

s

= [�

T

(x

s

) �

T

(x

s

)u

s

1

. . . �

T

(x

s

)u

s

m

]

T

k

,

for the sth sample in the �th partition. Correspondingly, ˙

X

k�

contains the sampled state derivatives.
While in principle any identification technique can be used, e.g., Yuan et al. (2019); Brunton et al.
(2016), the linearity with respect to the coefficients allows us to employ least-squares techniques.
In this paper, we implement the recursive least-squares (RLS) (Ljung and Söderström, 1983; Liu
et al., 2016; Wu et al., 2015) technique that provides a more computationally efficient way to update
the parameters. Accordingly, only one sample at each time is used to update the weights, instead of
processing a history of samples.

3.2. Feedback Control

In Farsi and Liu (2020), a matrix differential equation is proposed using a quadratic parametrization
in terms of the basis functions to obtain a feedback control. Here, we adopt a similar learning
framework, but consider a family of n

�

differential equations, each of which corresponds to one
particular mode of the system in the piecewise model. We integrate the following state-dependent
Riccati differential equation in forward time:

� ˙

P

�

=

¯

Q+ P

�

@�(x)

@x

W

�

+W

T

�

@�(x)

@x

T

P

�

� �P

�

� P

�

@�(x)

@x

✓
mX

j=1

W

j�

�(x)r

�1

j

�(x)

T

W

T

j�

◆
@�(x)

@x

T

P

�

. (5)

The solution to the differential equation (5) characterizes the value function defined by

V

�

= �

T

P

�

�, (6)

based on which we obtain a piecewise control

u

j

= �r

�1

j

@V

�

@x

T

g

j

(x) = ��(x)

T

r

�1

j

P

�

@�(x)

@x

W

j�

�(x). (7)

4. Analysis of Uncertainty Bounds

We use the uncertainty in the piecewise system (3) to capture approximation errors in identification.
In this section, we analyze the worst-case bounds to provide guarantees for the proposed framework.
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There exist two sources of uncertainty that affect the accuracy of the identified model. The first
is the mismatch between the identified model and the observations made. The latter may also be
affected by the measurement noise. The second is due to unsampled areas in the domain. We can
estimate the uncertainty bound for any piece of the model by combining these two bounds. In what
follows, we discuss the procedure of obtaining these bounds in more detail.

Assumption 1 For any given (x

s

, u

s

), let F
i

(x

s

, u

s

) be the ith element of F (x

s

, u

s

). We as-
sume that F

i

(x

s

, u

s

) can be measured with some tolerance as ˜

F

i

(x

s

, u

s

), where | ˜F
i

(x

s

, u

s

) �
F

i

(x

s

, u

s

)|  %

e

| ˜F
i

(x

s

, u

s

)| with 0  %

e

< 1 for all i 2 {1, · · · , n}.

We make predictions ˆ

F

i

(x

s

, u

s

) of the state derivatives for any sample using the identified
model. Hence, we can easily compute the distance between the prediction and the approximate eval-
uation of the system by using the samples collected for any piece. This gives the loss | ˆF

i

(x

s

, u

s

)�
˜

F

i

(x

s

, u

s

)|. The proof of the following result can be found in Appendix B.1 of Farsi et al. (2022).

Theorem 1 Let Assumption 1 hold, and S

⌥�

denote the set of indices for sample pairs (x

s

, u

s

)

such that xs 2 ⌥

�

. Then, an upper bound of the prediction error, regarding any sample (xs, us) for
s 2 {1, . . . , N

s

}, is given by

| ˆF
i

(x

s

, u

s

)� F

i

(x

s

, u

s

)|  ¯

d

e�i

:= max

s2S⌥�

(| ˆF
i

(x

s

, u

s

)� ˜

F

i

(x

s

, u

s

)|+ %

e

| ˜F
i

(x

s

, u

s

)|),

where � 2 {1, . . . , n
�

}, and i 2 {1, . . . , n}.

The samples may not be uniformly obtained from the domain. Depending on how smooth the
dynamics are, there might be unpredictable behavior of the system in the gaps among the samples.
Hence, the predictions made by the identified model may be misleading in the areas we have not
visited yet. To take this into account, we assume a Lipschitz constant is given for the system. More
specifically, we let %

x

2 Rn

+

and %

u

2 Rn

+

denote the Lipschitz constants of F (x, u) with respect to
x and u on D ⇥ ⌦, respectively. We use this to bound the uncertainty for the unsampled areas.

The procedure starts with searching for the largest gaps in the state and control spaces that
do not contain any samples as described in detail in Appendix B.2 of Farsi et al. (2022). Let
(x

s⇤
, u

s⇤
) be the closest sample indexed in S

⌥�

to the center point (c⇤
x�

, c

⇤
u�

) of the sample gap
(as a Euclidean ball) with radii (r⇤

x�

, r

⇤
u�

). We need to compute the worst case of the prediction
error at the center point that is given by | ˆF

i

(c

⇤
x�

, c

⇤
u�

) � F

i

(c

⇤
x�

, c

⇤
u�

)|, where ˆ

F (·, ·) denotes an
evaluation of the identified model. However, according to Assumption 1, we do not have access
to the original system to exactly evaluate F (·, ·). Therefore, we obtain the bound in terms of the
approximate value instead.

Theorem 2 Let Assumptions 1-4 hold and (r

⇤
x�

, r

⇤
u�

) be given by the solutions of (20) and (21)
(details and the assumptions are given in Appendix B.2 of Farsi et al. (2022)). Then, an upper
bound for the prediction error can be obtained regarding all unvisited points x 2 ⌥

�

and u 2 ⌦ as
below

|F
i

(x, u)� ˆ

F

i

(x, u)|  ¯

d

�i

= %

ui

r

⇤
u�

+ %

xi

r

⇤
x�

+

¯

d

e�i

+ %̂

ui

r

⇤
u�

+ %̂

xi

r

⇤
x�

. (8)

The proof can be found in Appendix B.3 of Farsi et al. (2022).
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5. Stability Verification for Piecewise-Affine Learning and Control

5.1. Piecewise Affine Models

A special case of system (3) can be obtained when we choose �(x) =

⇥
1 x

T

⇤
.

We consider system coefficients in the form of W
�

=

⇥
C

�

A

�

⇤
and W

j�

=

⇥
B

j�

0

⇤
. Clearly,

A

�

, B
j�

, and C

�

can be used to rewrite the PWA system in the standard form

ẋ = A

�

x+

mX

j=1

B

j�

u

j

+ C

�

+ d

�

, (9)

5.2. MIQP-based Stability Verification of PWA Systems

In this section, we adopt an MIQP-based verification technique based on the approach presented in
Chen et al. (2020). In this framework, by considering a few steps ahead, we verify that the Lyapunov
function is decreasing. However, it may not be necessarily monotonic, meaning that it may be in-
creasing in some steps and then be decreasing greatly in some other steps to compensate. Regarding
the fact that this approach is inherently a discrete technique, we need to consider a discretization of
(9). By an Euler approximation, we have

x

k+1

=

ˇ

F

d

(x

k

, u

k

) =

ˇ

A

�

x

k

+

mX

j=1

ˇ

B

j�

u

jk

+

ˇ

C

�

+ d

�

, (10)

where ˇ

A

�

, ˇ

B

j�

, and ˇ

C

�

are the discrete system matrices of the same dimension as (9). Moreover,
we re-adjust the uncertainty bound as ¯

d

�

:= h

¯

d

�

, where h denotes the time step.
We refer the uncertain closed loop system with the control u

jk

= !

j

(x

k

) as

x

k+1

=

ˇ

F

d,cl

(x

k

). (11)

For this system, let the convex set ¯

D = {x 2 D|Z
¯

D

x  z

¯

D

} be a user-defined region of interest
(ROI), within which obtaining a region of attraction (ROA) is desirable.

5.2.1. LEARNING AND VERIFICATION OF A LYAPUNOV FUNCTION

Assuming u

j

= �r

�1

j

B

T

j�

P

3�

x

k

, and defining ˇ

A

cl,�

=

ˇ

A

�

�
P

m

j=1

r

�1

j

ˇ

B

j�

B

T

j�

P

�

, the discrete
closed-loop system becomes x

k+1

=

ˇ

A

cl,�

x

k

+

ˇ

C

�

+ d

�

.
Now, consider the Lyapunov function

V (x

k

,

ˆ

P ) =


x

k

x

k+1

�
T

ˆ

P


x

k

x

k+1

�
(12)

characterized by ˆ

P 2 F , where

F = { ˆP 2 R2n⇥2n|0  ˆ

P  I, V (x

k+1

,

ˆ

P )� V (x

k

,

ˆ

P ) < 0, 8x
k

2 ¯

D\{0}, d
�

2 �

�

}.

The structure of the Lyapunov function is suggested by Chen et al. (2020) that employs a piece-
wise quadratic function to parameterize the Lyapunov function. This approach combines the non-
monotonic Lyapunov function Ahmadi and Parrilo (2008) and finite-step Lyapunov function Bobiti
and Lazar (2016); Aeyels and Peuteman (1998) techniques to provide a guarantee by looking at the
next few steps. It should be noted that the Lyapunov function may not be necessarily decreasing
within any single step, while it must be decreasing within the finite steps taken into account.
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The Learner: To realize a Lyapunov function, one needs a mechanism to look for the appropriate
values of ˆ

P within F . For this purpose, we obtain an over-approximation of F by considering an
only finite number of elements in (

¯

D,�). Let us first define the increment on the Lyapunov function
as

�V (x,

ˆ

P ) = V (

ˇ

F

d,cl

(x),

ˆ

P )� V (x,

ˆ

P ) =

"
ˇ

F

d,cl

(x)

ˇ

F

(2)

d,cl

(x)

#
T

ˆ

P

"
ˇ

F

d,cl

(x)

ˇ

F

(2)

d,cl

(x)

#
�


x

ˇ

F

d,cl

(x)

�
T

ˆ

P


x

ˇ

F

cl

(x)

�
,

where ˇ

F

(2)

d,cl

(x) =

ˇ

F

d,cl

(

ˇ

F

d,cl

(x)).
Furthermore, assume that the set of N

s

number of samples is given as below

S = {(x, ˇF
d,cl

(x),

ˇ

F

(2)

d,cl

(x))

1

, . . . , (x,

ˇ

F

d,cl

(x),

ˇ

F

(2)

d,cl

(x))

Ns}.

Note that S implicitly includes samples of the disturbance input and the state.
Now, using S we obtain the over-approximation

˜F = { ˆP 2 R2n⇥2n|0  ˆ

P  I,�V (x,

ˆ

P )  0, 8x 2 S , d

�

2 �

�

}.

To find an element in ˜F , there exist efficient iterative techniques that are well-known as cutting-
plane approaches. See e.g. Atkinson and Vaidya (1995); Elzinga and Moore (1975); Boyd and
Vandenberghe (2007). In Chen et al. (2020), the analytic center cutting-plane method (ACCPM)
(Goffin and Vial, 1993; Nesterov, 1995; Boyd et al., 2004) is employed in an optimization problem:

ˆ

P

(i)

= argmin

ˆ

P

�
X

x2Si

log(��V (x,

ˆ

P ))� log det(I � ˆ

P )� log det(

ˆ

P ) (13)

where i is the iteration index. If feasible, the log-barrier function in the first term guarantees the
solution within ˜F for which the negativity of the Lyapunov difference holds. The other two terms
ensure 0  ˆ

P

(i)  I . The solution gives a Lyapunov function V based on the set of the samples S
i

in the ith stage. On the other hand, if a solution does not exist, the set F is concluded to be empty.

The Verifier: The Lyapunov function candidate suggested by (13) may not guarantee asymptotic
stability for all x 2 ¯

D and d

�

2 �

�

since only the sampled space was considered. Therefore, in the
next step, we need to verify the Lyapunov function candidate for the uncertain system. To do so, a
mixed-integer quadratic program is solved based on the convex hull formulation of the PWA:

max

x

j
,u

j
,d

j
,µ

j


x

1

x

2

�
T

ˆ

P

(i)


x

1

x

2

�
�


x

0

x

1

�
T

ˆ

P

(i)


x

0

x

1

�
(14)

subject to

Z

¯

D

x

0  z

¯

D

, kx0k1 � ✏ (15)

u

j

= !(x

j

) (16)

Z

�

x

j

�

 µ

j

�

z

�

, Z

u

u

�

 µ

j

�

z

u

, |dj
�i

|  µ

j

�

¯

d

�i

, (17)

(1, x

j

, u

j

, d

j

, x

j+1

) =

N�X

�=1

(µ

j

�

, x

j

�

, u

j

�

, d

j

�

, A

�

x

j

�

+B

�

u

j

�

+ µ

j

�

c

�

+ d

j

�

) (18)

µ

�

2 {0, 1}, 8� 2 {1, . . . , N
�

}, i 2 {1, . . . , n}, j 2 {0, 1}, (19)
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where a ball of radius ✏ around the origin is excluded from the set of states, and ✏ is chosen small
enough in (15). This is due to Remark 5 in Appendix C.3 of Farsi et al. (2022) and the fact that
the numerical value of the objective becomes considerably small when approaching the origin. This
makes the negativity of the objective too hard to verify around the origin. For more details in the
implementation of the algorithm, we refer the reader to Chen et al. (2020).

The system is given by (18) and (19). To define the piecewise system in a mixed-integer prob-
lem, similar to Chen et al. (2020), we use the convex-hull formulation of piecewise model that is
presented in Marcucci and Tedrake (2019). However, to consider the uncertainty, we compose a
slightly different system where we define extra variables to model the disturbance input.

Constraints (15), and (17) define the sets of the initial condition, the state, the control, and the
disturbance inputs, respectively. Furthermore, the feedback control is implemented by (16).

To certify the closed-loop system as asymptotically stable, the optimal value returned by the
MIQP (14) is required to be negative. Otherwise, the argument (x0⇤, x1⇤, x2⇤) of the optimal solu-
tion is added to the set of samples S as a counter-example.

5.3. Stability Analysis

Combining the uncertainty bounds in Section 4 and the Lyapunov-based verification results of this
section, we are able to prove the following practical stability results of the closed-loop system.

Theorem 3 Suppose that the MIQP (14) yields a negative optimal value. Let B
✏

denote the set
{x 2 Rn|kxk1  ✏}, i.e., the ball of radius ✏ in infinity norm around the origin. Then the set
B

✏

is asymptotically stable for the closed-loop system (11). The largest sub-level set of V , i.e.,
{x 2 Rn |V (x)  c} for some c, contained in ¯

D is a verified under-approximation of the real ROA.

The proof can be found in Appendix C.3 of Farsi et al. (2022). Remark 5 in Appendix C.3 also
discusses how to bridge the gap between convergence to B

✏

and the convergence to the origin.

6. Numerical Results

To validate the proposed piecewise learning and verification technique we implemented the ap-
proach on the pendulum system and the dynamical vehicle system Pepy et al. (2006). Moreover,
we compared the results with other techniques presented in the literature. To make a fair compar-
ison, we have taken the parameters of the system from Chang et al. (2020). We performed all the
simulations in Python 3.7 on a 2.6 GHz Intel Core i5 CPU.

6.1. Pendulum System

For the pendulum system, we discuss the simulation results in three sections. In the first section,
we will explain the procedure of identifying the uncertain PWA model with a piecewise feedback
control. In the second section, we verify the closed-loop uncertain system and obtain an ROA in ¯

D.
In the third section, we will present the comparison results.

6.1.1. IDENTIFY AND CONTROL

Control objective is to stabilize the pendulum at the top equilibrium point given by xeq = (0, 0).
First, we start with learning a piecewise model together with the uncertainty bounds, and the feed-
back control. For this purpose, we sample the system, and update our model as discussed in section

8
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3.1. We set the sampling time as h = 5ms. Accordingly, the value function and the control rule
are updated online as in section 3.2. Then, to verify the value to be decreasing within each mode, it
only remains to calculate the uncertainty bounds using the results obtained in section 4.

To make a visualization of the nonlinearity in the pendulum system possible, we portray the
second dynamic assuming u = 0 in Fig. 1(g)subfigure, where the first dynamic is only linear. The
procedure of learning is illustrated through several stages in Fig. 1. In the first column from the
left, we illustrated the estimations only for the second dynamic with u = 0 to be comparable to Fig.
1(g)subfigure. Accordingly, it can be observed that the system identifier is able to closely approxi-
mate the nonlinearity with a piecewise model. More details on the uncertainty bounds obtained are
provided in Appendix D of Farsi et al. (2022).

(a) (b) (c)

(d) (e) (f )

(g)

Figure 1: The procedure for learning the dynamics by the PWA model is illustrate step-by-step that
shows the convergence of the identifier. Subfigure (g) illustrates the second dynamic of
pendulum system assuming u = 0 that is f

2

(x

1

, x

2

). Subfigures (a)-(f) show the im-
provement of estimations of f

2

(x

1

, x

2

) given by (g), as the number of samples increases.

6.1.2. VERIFICATION

Having the system identified and the feedback control, we can apply the verification algorithm based
on MIQP problem. As done in Chen et al. (2020), we implemented the learner in CVXpy Diamond
and Boyd (2016) with MOSEK ApS (2020) solver, and the verifier in Gurobi 9.1.2 Gurobi (2020).

We choose ¯

D such that x
1

and x

2

2 [�6, 6]. To verify the system, we ran the algorithm and
obtained a matrix ˆ

P (who numerical values are given in Appendix D of Farsi et al. (2022)) in that
characterizes the Lyapunov function as in (12).

The largest level set of the associated Lyapunov function in ¯

D is pictured in Fig. 2(a)subfigure
as the the ROA of the closed-loop system. Moreover, we illustrate different trajectories of the
controlled system that confirms the verified Lyapunov function by constructing an ROA around the
origin.

6.1.3. COMPARISON RESULTS

To highlight the merits of the proposed piecewise learning approach, we compare the ROA obtained
by different approaches in the literature. Chang et al. (2020) proposed a neural network (NN)
Lyapunov function for stability verification. According to Chang et al. (2020), the comparison done
on the pendulum system with linear quadratic regulator (LQR) and sums-of-squares (SOS) showed
noticeable superiority of the NN-based Lyapunov approach. Following the comparison results from
Chang et al. (2020), we compare the ROA obtained by our approach with NN, SOS, and LQR
techniques in Fig. 2(b)subfigure. Clearly, the ROA obtained by the piecewise controller with the

9
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(a) (b)

Figure 2: (a). The obtained ROA of the closed-loop PWA system is illustrated for x
1

and x

2

2
[�6, 6]. The uniform grids denote the modes of the PWA system. Multiple trajectories
of the system are shown in a phase portrait where colormap represents the magnitude
in the vector field. (b). The comparison results for ROA of the closed-loop system
is illustrated for x

1

and x

2

2 [�6, 6], together with the trajectories of the system. The
comparison results for LQR, NN, and SOS are taken from Chang et al. (2020).

non-monotonic Lyapunov function is considerably larger than the ones obtained by NN, SOS, and
LQR algorithms as shown in Chang et al. (2020).

6.2. Dynamic Vehicle System with Skidding

We have also implemented the proposed approach in a more complex dynamic vehicle system with
skidding, which shows promising results. The results are omitted in the main paper due to the space
limit. They can be found in Appendix D of Farsi et al. (2022).

7. Conclusion

For regulating nonlinear systems with uncertain dynamics, a piecewise nonlinear affine framework
was proposed in which each piece is responsible for learning and controlling over a partition of the
domain locally. Then, in a particular case of the proposed framework, we focused on learning in the
form of the well-known PWA systems, for which we presented an optimization-based verification
approach that takes into account the estimated uncertainty bounds. We used the pendulum system
as a benchmark example for the numerical results. Accordingly, an ROA resulting from the level
set of a learned Lyapunov function is obtained. Furthermore, the comparison with other control
approaches in the literature illustrates a considerable improvement in the ROA using the proposed
framework. As another example, we implemented the presented approach on a dynamical vehicle
system with considerably higher number of partitions and dimensions. The results demonstrated
that the approach can scale efficiently, hence, can be potentially implemented on more complex
real-world problems in real-time.
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