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Abstract

A natural goal when designing online learning algorithms for non-stationary environments is to
bound the regret of the algorithm in terms of the temporal variation of the input sequence. Intu-
itively, when the variation is small, it should be easier for the algorithm to achieve low regret, since
past observations are predictive of future inputs. Such data-dependent “pathlength” regret bounds
have recently been obtained for a wide variety of online learning problems, including online convex
optimization (OCO) and bandits. We obtain the first pathlength regret bounds for online control and
estimation (e.g. Kalman filtering) in linear dynamical systems. The key idea in our derivation is
to reduce pathlength-optimal filtering and control to certain variational problems in robust estima-
tion and control; these reductions may be of independent interest. Numerical simulations confirm
that our pathlength-optimal algorithms outperform traditional Hs and H,, algorithms when the
environment varies over time.

1. Introduction

Online learning has traditionally focused on minimizing regret against static policies. For example,
in the multi-armed bandit problem, we compare the rewards obtained by the online learner to the
rewards that the learner could have counterfactually obtained if they had simply pulled the same
arm in each round. However, many real-world environments are non-stationary, e.g. the rewards
associated to actions vary over time. In such settings, it is more natural to compare the actions of the
online learner against a time-varying sequence of actions, rather than a single fixed action. It is also
natural to bound the regret of the online algorithm in terms of the temporal variation in the reward
sequence. Intuitively, when the variation is small, it should be easier for the algorithm to achieve low
regret, since past observations are predictive of future rewards. Such data-dependent “pathlength”
regret bounds have recently been obtained for a wide variety of online learning problems, including
online convex optimization (OCO) and bandits, e.g. Zinkevich (2003); Wei and Luo (2018); Bubeck
et al. (2019); Goel and Wierman (2019).

A particularly challenging problem not considered in these prior works is obtaining pathlength
regret bounds for online algorithms in environments with underlying dynamics. Intuitively, learning
is harder in such settings because the rewards and actions are tightly coupled across rounds via the
state; selecting a poor action in one round affects the rewards obtained in all subsequent rounds.
This is in stark contrast to classical online learning problems (e.g. bandits), where a single poor
decision results in a low reward for the algorithm in that round, but does not directly affect the
rewards in future rounds. We ask: is it possible to design algorithms for online decision-making in
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dynamical systems which have regret bounded by pathlength? Answering this question has taken
on a newfound urgency with the recent deployment of autonomous control systems such as drones
and self-driving cars; these systems invariably encounter non-stationarity in their environments (e.g.
changing weather, shifting traffic patterns, etc.)

1.1. Contributions of this paper

In this paper, we obtain the first pathlength regret bounds for online control and estimation (e.g.
Kalman filtering) in linear dynamical systems. Our results show that it possible to design con-
trollers and filters which dynamically adapt to regularity in the disturbance sequence, even though
the rewards are strongly coupled across time by dynamics. We construct a controller whose regret
against a clairvoyant offline optimal controller has optimal dependence on the pathlength of the driv-
ing disturbance. Similarly, we construct a filter whose regret against the optimal smoothed estimator
has optimal dependence on the pathlength of the measurement disturbance. The key idea underpin-
ning our results is to reduce pathlength-optimal filtering and control to certain variational problems
widely studied in the context of robust estimation and control during the 1980s. In Section 3, we
show that the problem of obtaining a pathlength-optimal controller in the original dynamical sys-
tem can be reduced to the problem of obtaining the H ,,-optimal controller in a specially constructed
synthetic system. Similarly, in Section 4 we reduce pathlength-optimal filtering to the classical Ne-
hari problem from robust control. This problem, first introduced in 1957 in an operator theoretic
context by Zeev Nehari Nehari (1957), asks how closely a noncausal function can be approximated
by a causal one. We describe the pathlength-optimal filter in terms of a computationally efficient
state-space solution to the Nehari problem. In Section 5, we present numerical experiments which
confirm that our pathlength-optimal algorithms outperform traditional Hs and H, algorithms when
the environment varies over time. Our results show that classical techniques from H, estimation
and control, which were originally designed with the aim of ensuring robustness, can instead be
used to obtain adaptivity.

To comply with the page limit requirements, in this short version of our paper we focus on
simply describing the state-space solutions of the pathlength-optimal controller and pathlength-
optimal filter; we present a detailed derivation of all of our results, as well as additional experiments,
in the full version of our paper, available at https://arxiv.org/abs/2110.12544.

1.2. Related work

The idea of bounding dynamic regret by pathlength was introduced in the seminal work of Zinkevich
Zinkevich (2003); this idea was further explored in Chiang et al. (2012). Dynamic regret bounds in
terms of pathlength were obtained for the multi-armed bandit problem in Besbes et al. (2015); Wei
et al. (2016). More recently, static regret bounds (i.e. regret against the best fixed arm) in terms of
pathlength were obtained in Wei and Luo (2018); Bubeck et al. (2019). Pathlength regret bounds
for online convex optimization with switching costs were obtained in Goel and Wierman (2019).
The problem of designing controllers with optimal dynamic regret was studied in the finite-
horizon, time-varying setting in Goel and Hassibi (2021c), in the infinite-horizon LTI setting in
Sabag et al. (2021), and in the measurement-feedback setting in Goel and Hassibi (2021b). These
works all bounded regret by the energy in the disturbances; the pathlength regret bounds we obtain in
this paper also imply energy regret bounds which are optimal up to a factor of 4. Filtering algorithms
with energy regret bounds were obtained in the finite-horizon setting in Goel and Hassibi (2021c¢)
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and the infinite-horizon setting in Sabag and Hassibi (2021). Gradient-based control algorithms
with low dynamic regret against the class of disturbance-action policies were obtained in Zhao et al.
(2021); the stronger metric of adaptive regret was studied in Gradu et al. (2020). We also note recent
work Goel and Wierman (2019); Goel and Hassibi (2021a), which considered control through the
lens of competitive ratio, a multiplicative analog of dynamic regret.

2. Preliminaries
2.1. Control setting

We focus on the linear-quadratic (LQ) control setting, where a linear time-invariant (LTI) system
evolves according to the dynamics

Tyr1 = Az + Byup + Bywy,

where x; € R"™ is the state, u; € R™ is the control and w; € RP is an external disturbance. We
incur a quadratic cost
i Qry + uy Ruy

in each round, where () > 0, R > 0. Naturally, our goal is to select the control actions u so as to
minimize the aggregate cost across rounds (note that cost minimization can be reframed as reward
maximization). As is standard in infinite-horizon control, we assume that (A, B,,) is stabilizable
and (A, Q'/?) is detectable. We consider both the causal setting, where the control u; is selected
after observing the state x; and the disturbance w;, and the strictly causal setting, where the control
uy is selected after observing x; but before observing w;.

It is convenient to reparameterize the system dynamics and costs as follows. Let L be a square-
root of () (e.g. L*L = @) and let RY/2 denote a square-root of R. Define s; = Ly, vy = RY2q,;
note that we can easily recover u; from v; by setting u; = RY 2p;. With this notation, the cost
incurred by an online algorithm which selects v in response to w is

ALG(w) = [ls]3 + Ilv]l3-
The dynamics can also be rewritten in terms of s; and vy:
Tyr1 = Az + BuR71/2vt + Bywy, S; = Lxy.
We can cleanly capture the dynamics in terms of transfer matrices as
s=Fv+ Guw

where F', GG are strictly causal transfer matrices encoding { 4, By,R™Y 2 Buw, L}.

Our goal is to design a controller which minimizes regret against a clairvoyant offline optimal
controller Ky which selects the optimal control given perfect noncausal knowledge of w. One can
show (Theorem 11.2.1 in Hassibi et al. (1999)) that the offline optimal control policy is

Ko(w) = —(I + F*F)" ' F*Gu, (1)
and the corresponding offline optimal cost is
OPT(w) = w*G*(I + FF*)"'Gu. )

Formally, we seek to solve the following problem:
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Problem 1 (Pathlength-optimal control at level ). Given v > 0, find a causal (or strictly causal)
controller K whose cost, ALG(w), satisfies

ALG(w) — OPT(w) < ¥* - PATHLENGTH(w), (3)
or determine whether no such controller exists.

Once this feasibility problem is solved, it is easy to recover the optimal value of -y via bisection;
we define the pathlength-optimal controller to be the controller which satisfies (3) with the smallest
possible .

Our proof technique is to reduce the problem of finding a controller satisfying (3) to an H
control problem:

Problem 2 (H.-optimal control at level ). Given v > 0, find a causal (or strictly causal) con-
troller K whose cost, ALG(w), satisfies

ALG(w) < 4* - ENERGY (w),
or determine whether no such controller exists.
2.2. Filtering setting
We consider a linear time-invariant (LTT) system that evolves according to the dynamics
Tpp1 = Axy + Bwy, yr = Cxp + vy

where x; € R" is the state, y; is a noisy linear measurement of the state, and w; € R™ and v; € R?
are external disturbances. Our goal is to estimate a linear function of the states:

st = Ly,

given the measurements, where L € R". The special case where » = n and L = I corresponds to
estimating the state itself. In each round, we output an estimate $; based on the current observation
y; and all previous observations and incur a squared-error loss

150 — sell3-

Naturally, our goal is to select the estimates so as to minimize the aggregate loss across all rounds.
As is standard in infinite-horizon estimation, we assume that (A, B) is stabilizable and (A, C) is
detectable.

In this paper, we obtain the pathlength-optimal filter using frequency domain analysis. We let
J(z) be the transfer matrix mapping the disturbance w to the signal s:

J(z) = L(zI — A)~'B
and let H (z) be the transfer matrix mapping the disturbance w to the observations y:

H(z)=C(zI — A)7'B.
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Any filter K naturally induces a transfer matrix 7 which maps the disturbances w and v to the
estimation error § — s incurred by K:

Our goal is to design a filter K which minimizes regret against the optimal smoothed estimator,

i.e. the estimator which minimizes estimation error given noncausal access to the observations .

One can show (Theorem 10.3.1 in Hassibi et al. (1999)) that the optimal smoothed estimator in the
z-domain is

Ko(2) = J(2)H* (27" ) + H(z)H" (=) )

In this paper, we focus on bounding the regret by the pathlength of the measurement disturbance
v and the energy of w; we leave the problem of bounding regret by the pathlength of both w and v
for future work. Formally, we seek to solve the following problem:

Problem 3 (Pathlength-optimal filtering at level ). Given y > 0, find a filter K such that the regret
* * * * w
[w* '] (T§ Tk — Th, Txy) M
is at most

7 - (ENERGY (w) + PATHLENGTH(v)), ®)

or determine whether no such filter exists.
Once this feasibility problem is solved, it is easy to recover the optimal value of -y via bisection;
we define the pathlength-optimal filter to be the filter which satisfies (5) with the smallest possible

value of ~.
Our proof technique reduces the problem of finding a filter satisfying (5) to Nehari problem:

Problem 4 (Nehari problem at level y). Given v > 0 and a strictly anticausal function T'(z), find a
causal and bounded function K (z)s such that

1K (2) = T(2)]loc <, ©)
or determine whether no such K (z) exists.

Recall that

IK(E) =T = sup o (K(e) = T(c7)).
0€[0,27]

Informally, the Nehari problem seeks to find a causal function K (z) which is y-close to the anti-
causal function 7'(z) at every frequency 6 € [0, 27].

3. Pathlength-optimal control

Our main control-theoretic result is a computationally efficient state-space description of a controller
satisfying condition (3):
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theorempathlength-optimal-controller-thm-ih Suppose (A, B,) is stabilizable and (A, Q'/?) is
detectable. A causal infinite-horizon controller satisfying (3) exists if and only if there exists a
solution to the Ricatti equation

where
(A -B,Ky ] 5 |Buu;'? _[B.
L— [L O:|, A— I:O A—BwKQ:l w BwZ;l/Q ) u 0 )
B=[B. Bs. R=|" °| m=rh+BPB
u w| 0 _I Y )

where f~1~, ?w, I~( 2, 29 are defined in the full paper, such that
1. A— BH 'B*PA is stable;

2. R and H have the same inertia;

3. P>0.
In this case, a causal infinite-horizon H, controller satisfying (3) is given by

u = —R7YV2H'BXP(A¢ + Bywl),
where H = I + B;PBU and the dynamics of £ are
&1 = A& + Byuy + By
and we initialize &y = 0. The synthetic disturbance w’ can be computed using the recursion
Vip1 = Avy + Byuwy, w; = 2;/2(K2Vt + wy),

A strictly causal infinite-horizon controller satisfying (3) exists if and only if conditions 1 and 3
hold, and additionally

B*PB, <~*I, I+ B:P(I—B,(—~*I+ B:PB,)"'B
In this case, a strictly causal controller satisfying (3) is given by
w = —RV2E B P A,

Proof We refer to the full version of our paper, available at ht tps://arxiv.org/abs/2110.
12544.
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4. Pathlength-optimal filtering

We obtain a computationally efficient state-space description of a filter satisfying condition (5):
theoremfilter satisfying (5) exists if and only if

a(ZI) <1,
where Z and II are solutions of the Lyapunov equations
Z =F'ZF+ H"H, 1l =FIF*+ GG*

and
H=ILWyAy(I— Ayt F=A4; G=c5;"% (7

In this case, a filtered estimator satisfying (5) is given by
5 = E§1/25t — K3my,
where 3, 7 have the dynamics
i1 = (A — AW L* K3)my + A1W1L*E§1/2f3t, Br = A3(1)Q(1) 2z + ap — 1.

The variable « is given by
o = HIEL, +€7),

where &1, €2 have dynamics
* *g—1/2
=Pl + Kz, € = 438+ 05,

where

—1/2
2 =X, / yr — Cey,  epp1 = Agey + Koy,

The matrices A3(1)Q(1), A1, Aa, X9, X3, Ko, K3, W1, F,, K, are defined in the full paper.

Proof We refer to the full version of our paper, available at ht tps://arxiv.org/abs/2110.
12544.

5. Experiments
5.1. Pathlength-optimal control

We benchmark our pathlength-optimal controller in a nonlinear inverted pendulum system. The
inverted pendulum system has two scalar states, 6 and 0, representing angular position and angular
velocity, respectively, and a single scalar control input u. The state (6, 9) evolves according to the
nonlinear evolution equation

dfo 6
dt 0] ngesin9+§ucost9+§wc059 ’

where w is an external scalar disturbance, and m, ¢, g, J are physical parameters describing the sys-
tem; we assume that units are scaled so that these parameters are 1. Although these dynamics are
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Figure 1: Relative performance of LQ controllers in an inverted pendulum system driven by sinu-
soidal noise.

nonlinear, we can benchmark the regret-optimal controller against the Hs-optimal, H,.-optimal,
and clairvoyant offline optimal controllers using Model Predictive Control (MPC). In the MPC
framework, we iteratively linearize the model dynamics around the current state, compute the opti-
mal control action in the linearized system, and then update the state in the original nonlinear system
using this control action. In all of our experiments we take (), R = I and initialize § and 0 to zero.
We set the discretization parameter §; = 0.001 and sample the dynamics at intervals of d;.

In Figures 1 and 2, we plot plot the relative performance of the pathlength-optimal, Hs-optimal,
and offline optimal controllers across different input disturbances. In our first experiment the cost in-
curred by the H,-optimal controller is orders of magnitude higher than that of the other controllers
and is not shown in the corresponding figure. We first consider a sinusoidal disturbance with ampli-
tude 1 and period 207; this disturbance is temporally 0.1-Lipschitz, and hence has low pathlength.
In our second experiment, the disturbance is a step-function: it is +1 for 500 timesteps and —1 for
the next 500 timesteps. While this disturbance has high energy, its pathlength is only 4. In both of
these experiments, the pathlength-optimal controller outperforms the Hy-optimal and H,-optimal
controllers and closely tracks the clairvoyant offline optimal controller. For more experiments, we
refer to the full version of our paper, available at https://arxiv.org/abs/2110.12544.

5.2. Pathlength-optimal filtering

We consider a one-dimensional tracking problem, where the goal is to estimate an object’s position
given noisy observations of its trajectory. We consider the state-space model

Tepr| |1 O] |y 0 B B
|:I/t+1:| o |:0 1:| |:Z/t:| + |:6t:| at,  Yp = Tt +Ut, St = Ty,

where z; is the object’s position, v is the object’s velocity, o is the object’s instantaneous acceler-
ation due to external forces, and v; is measurement noise. We take 6; = 0.01 and initialize zg = O.
In this system, the optimal value of ~y is v* = 35.64.
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Figure 2: Relative performance of LQ controllers in an inverted pendulum system driven by step-
function noise.

We benchmark the performance of the pathlength-optimal filter against that of the Kalman filter
(e.g. the Ho-optimal filter). Recall that the key innovation of the pathlength-optimal filter relative
to standard filters is that the pathlength-optimal filter is designed to achieve low regret when the
measurement disturbance v has low pathlength; for this reason, we focus on measuring how the
performance varies across many different values of v. For simplicity, we take the driving disturbance
« to be picked i.i.d from a standard Gaussian across all of our experiments. In Figure 3, we plot
the relative performance of the pathlength-optimal filter against that of the Kalman filter when the
measurement disturbance is constant, i.e. vy = 1 for all ¢£. This disturbance has high energy but
zero pathlength - as expected, the pathlength-optimal filter easily beats the Kalman filter, achieving
orders-of-magnitude less estimation error. In Figure 4, v varies sinusoidally with period 2007r. This
disturbance has very low pathlength, and in fact is temporally 0.01-Lipshitz, e.g. ||vi4+1 —v¢]| < 0.01
for all ¢. Again, the pathlength-optimal filter outperforms the Kalman filter by orders of magnitude.
Together, these plots are consistent with the message of this paper: when the pathlength of the
measurement disturbance is small, the pathlength-optimal filter produces very accurate estimates of
the state and outperforms standard filtering algorithms. For more experiments, we refer to the full
version of our paper, available at https://arxiv.org/abs/2110.12544.
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Figure 3: The driving disturbance is drawn i.i.d from a standard Gaussian and the measurement
disturbance is constant (v; = 1 for all ¢). The pathlength of the measurement disturbance is zero,
though its energy is large.
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Figure 4: The driving disturbance is drawn i.i.d from a standard Gaussian and the measurement
disturbance varies sinusoidally with period 2007. The pathlength of the measurement disturbance
is small, relative to its energy.
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