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Abstract
In stochastic Nash equilibrium problems (SNEPs), it is natural for players to be uncertain

about their complex environments and have multi-dimensional unknown parameters in their mod-
els. Among various SNEPs, this paper focuses on locally coupled network games where the ob-
jective of each rational player is subject to the aggregate influence of its neighbors. We propose a
distributed learning algorithm based on the proximal-point iteration and ordinary least-square es-
timator, where each player repeatedly updates the local estimates of neighboring decisions, makes
its augmented best-response decisions given the current estimated parameters, receives the realized
objective values, and learns the unknown parameters. Leveraging the Robbins-Siegmund theorem
and the law of large deviations for M-estimators, we establish the almost sure convergence of the
proposed algorithm to solutions of SNEPs when the updating step sizes decay at a proper rate.

1. Introduction

Nash equilibrium problems, rooted in the seminal work by Nash et al. (1950), model and describe
the interactions among multiple decision-makers or players where they aim at optimizing their own
payoffs given the strategies of others. In a stochastic Nash equilibrium problem (SNEP), players
take the uncertainty in their payoffs into account when deciding on their actions (Facchinei and
Kanzow (2010); Shanbhag (2006)). This type of problem can be applied to model a considerable
number of applications such as power markets (Kannan et al. (2011, 2013)), engagement of multiple
humanitarian organizations in disaster relief (Nagurney et al. (2020)), and the traffic assignment of
strategic risk-averse users (Nikolova and Stier-Moses (2014)), to name a few.

The past decade has witnessed significant progress in the distributed solution of Nash equilib-
rium problems (NEPs) under both deterministic and stochastic setups (Yi and Pavel (2019); Pavel
(2019); Bianchi et al. (2020); Shi and Pavel (2017)). It is often assumed that either each player
is allowed to communicate with the players affecting its objective or each player maintains a local
estimate of the decisions of all the other players. To model network games with better scalabil-
ity, considerable effort has been spent on studying network games with special structures, such as
average aggregative games (AAGs) and network aggregative games (NAGs) (Parise and Ozdaglar
(2021)). Here, we focus on locally coupled network games, where the objective of each player
depends on its own decision and some linear transformation of the decisions of its neighbors, deter-
mined by an underlying communication network. In particular, if the influence of its neighbors can
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be expressed as a convex combination of their decisions, it corresponds to NAGs, the properties and
distributed solutions of which have been extensively investigated in Parise et al. (2015, 2020).

Most of the aforementioned work designs distributed solutions under the fundamental assump-
tion that each player has perfect knowledge of the payoff function. Nevertheless, in general, players
may not be perfectly aware of their environments, and the outcomes of their actions may not al-
ways coincide with the predictions (Kirman (1975); Frydman (1982)). Consequently, each player
needs to modify its model or the parameters of its models in light of the observations it makes
(Esponda et al. (2021)). On the other end of the spectrum, there is an emerging research interest in
finding Nash equilibria through bandit/zeroth-order online learning schemes, assuming the players
are completely oblivious to the game mechanism, perhaps even ignoring its existence (Bravo et al.
(2018); Héliou et al. (2021); Tatarenko and Kamgarpour (2020), etc.). In this work, we consider the
setting where the players are aware of their own objectives’ functional forms and feasibility con-
straints while uncertain about some parameters in their objectives, and they participate in sequential
repetitions of the same game while learning the parameters over this process.

To learn equilibria while confronted with unknown parameters, the authors of Jiang et al. (2017)
present two distributed schemes to solve SNEP without observations of others’ strategies. The first
scheme is based on the stochastic gradient method which constructs the learning problems inde-
pendent of the computation of Nash equilibria (NEs); the second scheme solves stochastic Nash-
Cournot games via iterative fixed-point methods under a common knowledge assumption concern-
ing the cost functions and strategy sets of their competitors. The authors of Lei and Shanbhag
(2020) further extend the first scheme in Jiang et al. (2017) and design an asynchronous inexact
proximal best-response solution to the unknown problems. Nevertheless, in most practical appli-
cations and online learning settings, the parameter learning and NE seeking processes tangle with
each other and players are unwilling to share their local information over the whole network. On
that account, the authors of Meigs et al. (2017, 2019) instead consider the case where the parameter
estimation process is intrinsically coupled with the strategy update process. Moreover, they postu-
late that each player can observe the necessary information for parameter learning (e.g. aggregates
of neighbors’ strategies in NAGs) without the common-knowledge assumption. The learning algo-
rithm considered in this paper is similar to the one in Meigs et al. (2019), while we extend the results
by proposing a solution that can handle a more general class of games with multi-dimensional un-
known parameters in objectives. Furthermore, we establish the convergence without requiring the
contractiveness of the NE-seeking algorithm, and the theoretical analysis can be further extended to
the solutions of generalized Nash equilibrium problems (GNEPs) Facchinei and Kanzow (2010).

In this paper, we develop a distributed learning algorithm that guarantees almost-sure conver-
gence to stochastic Nash equilibria (SNEs) in locally coupled network games with unknown param-
eters. We assume that after all players determine their decisions, each player can observe its own
realized objective value and the decisions made by its neighbors. At each iteration, every player
selects its decision indicated by the solution of its augmented best-response function parameterized
by the current parameter estimates along with some random exploration vector. Then each player
receives feedback about the objective values and neighbors’ decisions and updates its parameters via
an ordinary least squares estimator (OLSE). Furthermore, unlike most of the existing work that en-
joys contractive iterations in the NE seeking dynamics, the fixed-point iteration operator considered
in this work only satisfies (quasi)nonexpansiveness, due to the partial-information setting (and the
global resource constraints in GNEPs). By leveraging the Robbins-Siegmund theorem, we establish
the main convergence theorem for the proposed algorithm and discuss the conditions needed to en-
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sure the convergence to solutions. We derive an upper bound for the asymptotic convergence rate of
the OLSE and discuss the proper choice of step sizes to guarantee the convergence. The technical
proofs and complementary examples and discussions are included in Huang and Hu (2022)

Basic Notations: For a set of matrices {Vi}i∈S , we let blkd(V1, . . . , V|S|) or blkd(Vi)i∈S denote
the diagonal concatenation of these matrices, [V1, . . . , V|S|] their horizontal stack, and [V1; · · · ;V|S|]
their vertical stack. For a set of vectors {vi}i∈S , [vi]i∈S or [v1; · · · ; v|S|] denotes their vertical stack.
For a matrix V and a pair of positive integers (i, j), [V ](i,j) denotes the ith row and the jth column
of V . For a vector v and a positive integer i, [v]i denotes the ith entry of v. Denote R := R∪{+∞},
R+ := [0,+∞), and R++ := (0,+∞). Sn+ (resp. Sn

++) represents the set of all n × n symmetric
positive semi-definite (resp. definite) matrices. ιS(x) is defined to be the indicator function of a set
S, i.e., if x ∈ S, then ιS(x) = 0; otherwise, ιS(x) = +∞. NS(x) denotes the normal cone to the
set S ⊆ Rn at the point x: if x ∈ S, then NS(x) := {u ∈ Rn | supz∈S⟨u, z − x⟩ ≤ 0}; otherwise,
NS(x) := ∅. If S ∈ Rn is a closed and convex set, the map PjS : Rn → S denotes the projection
onto S, i.e., PjS(x) := argminv∈S∥v − x∥2. We use ⇒ to indicate a point-to-set map. For an
operator T : Rn ⇒ Rn, Zer(T ) := {x ∈ Rn | Tx ∋ 0} and Fix(T ) := {x ∈ Rn | Tx ∋ x} denote
its zero set and fixed point set, respectively. We denote dom(T ) the domain of the operator T and
gra(T ) the graph of it. The resolvent and reflected resolvent of T are defined as JT := (I + T )−1

and RT := 2JT − I , respectively.

2. Preliminaries of Stochastic Locally Coupled Network Games

2.1. Formulation of Locally Coupled Network Games

We consider a game played among a group of self-interested players indexed by N := {1, . . . , N},
whose interactions are specified by an underlying communication network G = (N , E). We use
(i, j) to denote a directed edge having player i as its tail and j as its head. Although each edge
e ∈ E admits certain direction, the communication through the edge e are undirected, i.e., each
player i can send messages to both its in-neighbors N+

i := {j ∈ N | (j, i) ∈ E} and out-neighbors
N−

i := {j ∈ N | (i, j) ∈ E}, the cardinalities of which are denoted by N+
i and N−

i , respectively.

Assumption 1 (Communicability) The underlying communication graph G = (N , E) is undirected
and connected. Furthermore, it has no self-loops.

The goal of each player i is to minimize an expected-value objective defined by Ji(xi;x+i , w∗
i ) :=

E[Ji(xi; si(x+i ; ξi, w∗
i ))] which depends on its own decision xi ∈ Rni and the decisions of its in-

neighbors x+i := [xj ]j∈N+
i

. It is worth mentioning that x+i are treated as parametric inputs of Ji. We

use si to denote the neighboring aggregate function si(x
+
i ; ξi, w

∗
i ) := w∗

ii +
∑

j∈N+
i
w∗T
ji xj + ξi,

where w∗
ii ∈ R and w∗

ji ∈ Rnj are some constant parameters, and we let the random variable
ξi : Ω → R capture uncertainty in si. The local decision xi made by player i is subject to a set
of local feasibility constraints Xi ⊆ Rni . We further define w∗

i := [w∗
ji]j∈{i}∪N+

i
, w∗ := [w∗

i ]i∈N ,

n :=
∑

i∈N ni, n+
i =

∑
j∈N+

i
nj , and X :=

∏
i∈N Xi. The feasible parameter set of player i is

denoted by Wi, and w∗
i ∈ Wi. Altogether, the local stochastic optimization problem of player i can

be formally written as:
minimizexi∈Xi Ji(xi;x

+
i , w

∗
i ) (1)

The solution concept of the problem described in (1) we focus on in this paper is stochastic
Nash equilibria (SNEs) (Ravat and Shanbhag (2011)), whose definition is given as follows:
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Definition 1 The collective decision x∗ ∈ X is an SNE if no player can benefit by unilaterally
deviating from x∗, i.e., ∀i ∈ N , Ji(x∗i ;x

∗+
i , w∗

i ) ≤ Ji(xi;x∗+i , w∗
i ) for any xi ∈ Xi.

We then make the following regularity assumptions concerning the objective functions, feasible
sets, and solution sets. In particular, Assumption 2 (iii) is imposed to facilitate our later analysis
regarding the convergence of the parameter learning and SNE seeking algorithm.

Assumption 2 (Local Objectives) For each i ∈ N , given any fixed sample ωi ∈ Ωi and the precise
parameters w∗

i , the scenario-based and expected-value objectives Ji and Ji satisfy:
(i) Ji(xi; si(x+i , ξi;w

∗
i )) is convex in xi given any fixed x+i ;

(ii) Ji(xi; si(x+i , ξi;w
∗
i )) is proper and lower-semicontinuous in xi and x+i ;

(iii) Ji can be written as Ji(xi;x+i , ŵi) = fi(xi;x
+
i )+gi(xi;x

+
i , ŵi), where for any fixed x+i , fi

is convex in xi and gi is differentiable in xi. Moreover, gi is continuous in ŵi and ∇xigi is Lipschitz
in ŵi with the constant αg,i∥x+i ∥2 + βg,i (αg,i, βg,i ≥ 0) on Wi for any fixed xi ∈ Xi and x+i .

Assumption 3 (Feasible Sets) For each i ∈ N , Xi is nonempty, compact, convex, and satisfies
Slater’s constraint qualification (CQ).

Assumption 4 (Existence of SNE) The SNEP considered admits a nonempty set of SNEs.

By stacking the partial gradients ∂xiJi(xi;x
+
i , w

∗
i ), we can construct the so-called pseudo-

gradient operator Fw∗ : X ⇒ Rn as Fw∗ : x 7→ [∂xiJi(xi;x
+
i , w

∗
i )]i∈N . This operator plays

a significant role in regulating different types of games, analyzing the properties of solution sets,
etc. Games with maximally monotone pseudo-gradient Fw∗ are called monotone games. As has
been shown in (Palomar and Eldar, 2010, Prop. 12.4, Sect. 12.2.3), to compute SNEs of (1), we
can instead solve the corresponding generalized variational inequality (GVI): find a pair of vectors
(x∗, g∗) such that x∗ ∈ X and g∗ ∈ Fw∗(x∗) and (x − x∗)T g∗ ≥ 0, ∀x ∈ X . The Karush-Kuhn-
Tucker (KKT) problem of the corresponding GVI can be written as follows:

0 ∈ ∂xiJi(xi;x
+
i , w

∗
i ) +NXi(xi),∀i ∈ N , (2)

under the proper CQ. To motivate our analysis, we briefly discuss one typical example of locally
coupled network games below and another one in (Huang and Hu, 2021, Appendix G).

Example 1 (Scalar linear quadratic games (Parise and Ozdaglar (2019))) There is a finite set
of players indexed by i = 1, . . . , N , each making a scalar non-negative bounded strategy xi to
optimizing its quadratic objective Ji(xi;x+i ) :=

1
2(xi)

2+(Ki
∑

j∈N+
i
wijxj−aj)xi, where Ki, ai ∈

R, and wij indicates the influence of player j’s decision on the objective function of player i. This
model has been applied to investigate various economic settings including the private provision of
public goods and games with local payoff complementarities but global substitutability. For more
examples of locally coupled network games satisfying the assumptions discussed, see Parise and
Ozdaglar (2019, 2021) and the references therein.

2.2. Distributed Solution via Proximal-Point Algorithm with Precise Parameters

We start by proposing a distributed solution for the SNE problem with precise knowledge of the
involved parameters. Some iterative algorithms for computing NEs with an emphasis on algorithms
amenable to decomposition have been proposed, such as the best-response (BR) iteration Meigs
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et al. (2019) and the proximal BR iteration (Palomar and Eldar, 2010, Sec. 12.6). In these algo-
rithms, the implementation of the fixed-point scheme can be carried out in a distributed and inde-
pendent manner, and each player makes decisions based on others’ decisions from the last iteration.
Nevertheless, the convergence properties rely on the contractiveness of their fixed-point iterations,
which requires additional regularities on the objectives and network structures.

To tackle a more general class of games, we design the fixed-point iteration in light of the
proximal-point algorithm (PPA) and the Krasnosel’skii-Mann algorithm (KM) (Bauschke, 2017,
Thm. 23.41, Thm. 5.15). Given a finite-dimensional maximally monotone operator A, the resolvent
JA := (I + A)−1 is firmly nonexpansive. Combining PPA and KM yields the following fixed-
point iteration prototype x(k+1) := x(k) + γ(k)(JAx

(k) − x(k)), which will generate a sequence
converging to a point in Zer(A), the zero set of A. Here, (γ(k))k∈N satisfies γ(k) ∈ [0, 1] and∑

n∈N γ(k)(1− γ(k)) = +∞.

For each player i ∈ N , we endow it with a local estimate yji for the decision of each of its
in-neighbors j ∈ N+

i . In what follows, we use yii to denote the local decision of player i, y+i :=

[yji ]j∈N+
i

the stack of the local estimates of its in-neighbors’ decisions, and y−i := [yij ]j∈N−
i

the

stack of local estimates of yii maintained by player i’s out-neighbors. Let yi := [yii; [y
j
i ]j∈N+

i
],

and y := [yi]i∈N . The feasible region of the stack vector yi is given by X̃i := Xi × Rn+
i . Let

X̃ :=
∏

i∈N X̃i ⊆ Rñ, where ñ := n+
∑

i∈N n+
i . With the introduction of local estimates, we can

construct the extended pseudo-gradient F̃w∗ : X̃ ⇒ Rn as F̃w∗ : y 7→ [∂yii
Ji(yii; y

+
i , w

∗
i )]i∈N , and

the selection matrix R as R := blkd({Ri}i∈N ), where each Ri := [Ini ,0ni×n+
i
].

The use of local estimate yji can be interpreted as introducing a ”pseudo-player” ji into the
network. Each pseudo-player ji is connected to player j, where player j and pseudo-player ji
for all i ∈ N−

j constitute a connected component. We then conceptually disconnect the edges
in E , which gives rise to a new dependency network G̃ with N such connected components. Let
L denote the Laplace matrix of the network G̃, which has eigenvalue zero with multiplicity N
and other eigenvalues greater than zero. Each zero eigenvalue is associated with an eigenvector
corresponding to the consensus within a connected component. By further extending each entry
of L to a square matrix with proper dimension, we obtain a square matrix L̃ ∈ Rñ×ñ that we can
leverage to obtain a compact form of the fixed-point iteration. We define the following operator T
whose zeros correspond to exactly the SNEs of (1):

T : y 7→ ∂(
∑
i∈N

Ji(yii; y+i , w
∗
i ) + ιXi(y

i
i)) + ρL̃y = RT F̃w∗(y) +NX̃ (y) + ρL̃y, (3)

where ρ ∈ R++ is a constant controlling the contribution of local estimation errors. The formal
statement of the equivalence is given below and the proof is reported in (Huang and Hu, 2022,
Appendix A).

Theorem 2 Suppose Assumptions 1 to 3 hold, and there exists y∗ ∈ Zer(T). Then L̃y∗ = 0 and
the tuple {yi∗i }i∈N satisfies the KKT conditions (2) for an SNE. Conversely, if the problem (1) has a
solution {yi†i }i∈N , then there exist local estimates yj†i such that their stack y† ∈ Zer(T).

Since the matrix L̃ couples the updates of all yi and thus the resolvent of T can not be computed
distributedly, we introduce a design matrix Φ := τ−1 − ρL̃ and compute the resolvent of Φ−1 T
instead, where τ := blkd(τ 1, . . . , τN ) and each τ i := blkd(τi0 ⊗ Ini , {τij ⊗ Inj}j∈N+

i
) ∈ Sni+n+

i
++
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is a diagonal matrix with all diagonal entries (step sizes) positive. Moreover, to ensure that the zero
set of T and Φ−1 T are equivalent and the associated Hilbert space is well-defined, the selected step
sizes in τ should be sufficiently small such that Φ is positive definite. According to the Gershgorin
circle theorem (Bell (1965)), for each player i, it suffices to set the step size of the local decision
τ−1
i0 > 2ρN−

i and the step sizes of the local estimate τ−1
ij > 2. Let K be the Hilbert space obtained

by endowing the vector space Rñ with the inner product ⟨y, y′⟩K = ⟨Φy, y′⟩. With all the introduced
elements, we can compute a zero of Φ−1 T by utilizing the following iteration:

ỹ(k+1) := JΦ−1 T(y
(k)), y(k+1) := y(k) + γ(k)(ỹ(k+1) − y(k)). (4)

The detailed implementation of (4) consists of the optimization of augmented best-response ob-
jectives Ĵ(k)i ’s and some linear updates, where Ĵ(k)i (ỹii;w

∗
i ) := Ji(ỹii; ỹ

+(k+1)
i , w∗

i )+ρ(
∑

j∈N−
i
y
i(k)
i −

y
i(k)
j )T ỹii +

1
2τi0

∥ỹii − y
i(k)
i ∥22, which is omitted here for brevity. In the following, we describe a

modified version that will be used throughout the learning dynamics in Section 2.3. With the intro-
duction of the local estimates yji and the extended pseudogradient F̃w∗ , the operator T is no longer
maximally monotone and the resolvent JΦ−1 T does not possess the firmly nonexpansive property
in general. We denote the greatest (resp. smallest) out-neighbor count in G by N̄− (resp.

¯
N−),

i.e., N̄− := max{N−
i : i ∈ N} (resp.

¯
N− := min{N−

i : i ∈ N}). To prove the convergence
for the iteration with precise parameters, we will need to impose the following assumption on the
pseudo-gradient Fw∗ and the extended pseudo-gradient F̃w∗ .

Assumption 5 (Regularity of Pseudo-Gradient) At least one of the following statements holds:
(i) The operator RT F̃w∗ +ρL̃ is maximally monotone;
(ii) The pseudogradient Fw∗ is strongly monotone and Lipschitz continuous, i.e., there exist

η > 0 and θ1 > 0, such that ∀x, x′ ∈ Rn, ⟨x − x′,Fw∗(x) − Fw∗(x′)⟩ ≥ η∥x − x′∥2 and
∥Fw∗(x)− Fw∗(x′)∥ ≤ θ1∥x− x′∥. The operator RT F̃w∗ is Lipschitz continuous, i.e., there exists
θ2 > 0, such that ∀y, y′ ∈ RnN , ∥F̃w∗(y) − F̃w∗(y′)∥ ≤ θ2∥y − y′∥. Moreover, the weight of ρL̃
satisfies ρ ≥ 1

σ1

(
N̄−+1

¯
N−+1

(θ1+θ2)2

4η + θ2
)
.

From one perspective, the convergence result under Assumption 5 (i) directly follows from the
monotone operator theory and firmly nonexpansive fixed-point iterations. Nevertheless, verifying
the fulfillment of this assumption is cumbersome and often can only be done numerically (See
(Johansson and Rantzer, 2012, Sec. 4.2.3) for examples). From another perspective, for a mono-
tone game, i.e., games with monotone Fw∗ , when restricted to the consensus subspace yji = yjj
for all i ∈ N and j ∈ N+

i , T enjoys maximally monotonicity and its resolvent JΦ−1 T possesses
firmly nonexpansiveness. Controlling the growth rate of F̃w∗ w.r.t. local estimates with Lipschitz
continuity, Assumption 5 (ii) extends the above statement and allows for a violation of the consen-
sus constraints if the missing monotonicity of F̃ can be compensated by the measure of violation
ρ
2y

T L̃y. A weaker concept that emerges under (ii) is quasinonexpansiveness: a general operator A
is called quasinonexpansive if ∀x ∈ domA and ∀y ∈ Fix(A), ∥Ax − y∥ ≤ ∥x − y∥. Now we are
ready to formulate the theorem providing sufficient conditions for the proposed algorithm to work
with perfect information of its model parameters. The proof is reported in (Huang and Hu, 2022,
Appendix A).

Theorem 3 Suppose Assumptions 1 to 5 hold, and τ is properly chosen such that Φ is positive
definite. Then JΦ−1 T is a continuous quasinonexpansive operator, and the sequence (y(k))k∈N
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generated by the fixed-point iteration (4) will converge to a zero of T, where γ(k) ∈ [0, 1] and∑
n∈N γ(k)(1− γ(k)) = +∞.

2.3. SNE Problems with Unknown Parameters

Subroutine 1: Distributed Nash Equilibrium Seeking

Available variables: {y(k)i }, {ŵ(k)
i } ;

At the k-th iteration, each player i ∈ N :
Receive {yj(k)j }j∈N+

i
from its in-neighbors and {yi(k)j }j∈N−

i
from its out-neighbors;

ỹ
j(k+1)
i = y

j(k)
i − τijρ(y

j(k)
i − y

j(k)
j ), ∀j ∈ N+

i ;

ỹ
i(k+1)
i = argmin

ỹii∈Xi

{
Ji(ỹii; ỹ

+(k+1)
i , ŵ

(k)
i ) + ρ(

∑
j∈N−

i

y
i(k)
i − y

i(k)
j )T ỹii +

1
2τi0

∥ỹii − y
i(k)
i ∥22

}
;

y
(k+1)
i = y

(k)
i + γ(k)(ỹ

(k+1)
i − y

(k)
i ).

We now shift to the setting where at each iteration k, each player i has no access to the pre-
cise parameter w∗

i while it maintains a parameter estimate ŵ
(k)
i := [ŵ

(k)
ji ]j∈{i}∪N+

i
. We investigate

the following simple learning dynamics where at each iteration, each player i first makes a deci-
sion which is determined by the optimizer of the given augmented objective using the estimated
parameters and certain random exploration factor, then observes the realized objective value and
the decisions made by its neighbors, and finally updates the estimates the unknown parameters.
Note that instead of minimizing the augmented objective Ĵ(k)i (ỹii;w

∗
i ), player i now makes a best-

response decision w.r.t. Ĵ(k)i (ỹii; ŵ
(k)
i ). This substitution in parameters gives rise to an estimated

operator T(k) for T, with F̃w∗ replaced by F̃ŵ(k) . For notational brevity, we let the exact iterations
be denoted by R∗ := JΦ−1 T and P∗ := I + γ(k)(R∗ − I), and the estimated iterations (based on
parameter estimates) be denoted by R(k) := JΦ−1 T(k) and P(k) := I + γ(k)(R(k) − I). The SNE
seeking dynamics is then described by y(k+1) := P(k)y(k), and the intermediate result is given by
ỹ(k+1) := R(k)y(k). The detailed implementation is included in Subroutine 1.

3. Parameter Learning Model

In this section, we consider the proper way to generate the estimate sequence (ŵ
(k)
i )k∈N when each

player i has no clue or is uncertain about the parameters w∗
i inside its objective Ji. Assume that each

player has access to a bandit feedback system, which returns the realized objective function value
based on the decision profile of the whole player network. To enable each player to perform ordinary
least squares estimation to learn ŵ

(k)
i at each iteration k, we make the following assumption:

Assumption 6 (Parameter Learning) For each player i ∈ N and at each iteration k ∈ N, the
following conditions hold:

(i) (ξ
(k)
i )k∈N is a sequence of real independent random variables with expectation zero and

range bounded;
(ii) The scenario-based function Ji is invertible in si;
(iii) The feasible parameter set Wi ⊆ Rn+

i +1 is convex and compact. In addition, for any
ŵi ∈ Wi, the augmented objective Ĵ(k)i (·; ŵi) is a strictly convex function on Xi.
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Note that the uniformly “thin” tail of the random variable ξi is essential to apply the large devi-
ations result for later convergence analysis, and Assumption 6 (i) prescribes a sufficient condition
where this requirement is satisfied. Condition (ii) enables each player to recover the values si based
on the observed objective values. Condition (iii) ensures that Ĵ(k)i (·; ŵi) with ŵi ∈ Wi admits a
unique argmin solution and the resolvent JΦ−1 T is well-defined and single-valued in K.

To estimate the unknown parameters, each player i ∈ N picks the pivot point yi(k+1)
i ∈ Xi

where this player seeks to observe its payoff and estimate the parameters. Moreover, player i draws
a random exploration vector δ(k)i : Ω → Rni and plays y̌i(k+1)

i := y
i(k+1)
i +δ

(k)
i . The random vector

δ
(k)
i should satisfy the following assumption.

Assumption 7 (Random Exploration) For each player i ∈ N , (δ(k)i )k∈N is a sequence of indepen-
dent identically distributed (i.i.d.) random variables with zero mean, bounded range, and positive
definite covariance matrix.

Nevertheless, the feasibility issue will arise with the introduction of the random exploration
δ
(k)
i . In the spirit of Agarwal et al. (2010); Bravo et al. (2018), we assume in the following that each

local feasible set Xi is a convex body in Rni , i.e., it has a nonempty topological interior. Moreover,
we will introduce a ”safe net”, and adjust the chosen pivot point yi(k+1)

i to reside within a suitably
shrunk zone of Xi. In details, let Bri(pi) be an ri-ball centered at some pi ∈ Xi so that Bri(pi) ⊆ Xi.
Then, instead of directly perturbing y

i(k+1)
i by δ

(k)
i , we consider the feasibility adjustment δ̃(k)i :=

δ
(k)
i − δ̄ir

−1
i (y

i(k+1)
i − pi), where δ̄i := max{∥δi(ω)∥2 : ω ∈ Ω} satisfies δ̄ir−1

i < 1. Each player i
plays yi(k+1)

i + δ̃
(k)
i instead of yi(k+1)

i + δ
(k)
i . This adjustment moves each pivot O(δ̄i)-closer to the

interior base point pi with y
i(k+1)
iδ = y

i(k+1)
i −δ̄ir

−1
i (y

i(k+1)
i −pi), and then perturbs yi(k+1)

iδ by δ
(k)
i .

Given the fact that y̌i(k+1)
i := y

i(k+1)
iδ +δ

(k)
i = (1− δ̄ir

−1
i )y

i(k+1)
i + δ̄ir

−1
i (pi+riδ̄

−1
i δ

(k)
i ) ∈ Xi and

pi + riδ̄
−1
i δ

(k)
i ∈ Bri(pi), feasibility of the query point is then ensured. After the above feasibility

adjustment, let s(k)i = w∗
ii +

∑
j∈N+

i
w∗T
ji y̌

j(k+1)
j + ξ

(k)
i and ℓ

(k)
i = [1; [y̌

j(k+1)
j ]j∈N+

i
]. Based on

the observed values available at the k-th iteration, the OLSE ŵ
(k+1)
i is given by

ŵ
(k+1)
i := argminwi∈Wi

1

k + 1

k∑
t=0

(s
(t)
i − ⟨ℓ(t)i , wi⟩)2. (5)

The complete parameter learning dynamics is given in Subroutine 2.

Subroutine 2: Unknown Parameter Estimation
At the k-th iteration:
Each player i ∈ N :

Randomly picks an exploration factor δ(k)i ;
Makes its decision to play y̌

i(k+1)
i := y

i(k+1)
i + δ

(k)
i − δ̄ir

−1
i (y

i(k+1)
i − pi);

Observes Ji(y̌
i(k+1)
i ; s

(k)
i ) and receives {y̌j(k+1)

j }j∈N+
i

from its in-neighbors;

Estimates the unknown parameters ŵ(k+1)
i by solving (5).
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4. Learning Dynamics and Convergence Analysis

Assembling the updating steps of NE seeking and those of parameter estimation together, the learn-
ing dynamics of NE seeking with unknown parameters in objectives is described in Algorithm 3.

Algorithm 3: Distributed Learning of v-SGNE with Unknown Parameters

Initialize: {y(0)i }, {ŵ(0)
i } with y

(0)
i ∈ Xi and ŵ

(0)
i ∈ Wi;

Iterate until convergence:
1) NE seeking updating step: run Subroutine 1;
2) parameter estimation updating step: run Subroutine 2;

Return: {y(k)i }, {ŵ(k)
i }.

We start by establishing the following convergence result for a fixed-point iteration with the K-
M scheme and a general continuous quasinonexpansive fixed-point iteration operator R∗ : H → H
and its approximates (R(k))k∈N :

x(k+1) := x(k) + γ(k)(R(k)x(k) − x(k)), (6)

where H is a finite-dimensional Hilbert space, with its inner product and norm denoted by ⟨, ⟩H
and ∥·∥H, respectively. Before proceeding, we introduce the following notations to facilitate the
later discussion and analysis. The estimated iteration error and its norm in H at each iteration k
are defined as: ϵ(k) := R(k)(x(k)) − R∗(x

(k)) and ε(k) := ∥ϵ(k)∥H. A residual function res(x) :=
∥x− R∗(x)∥H is introduced such that res(x∗) = 0 is a necessary condition for x∗ ∈ Fix(R∗). The
proof of the following convergence theorem is reported in (Huang and Hu, 2022, Appendix B).

Theorem 4 Let (Ω,F ,P) be a probability space and F0 ⊆ F1 ⊆ F2 ⊆ · · · be a sequence of
sub-σ-fields of F . Suppose for k = 0, 1, . . ., x(k) is an Fk-measurable random vector generated
by the inexact fixed-point iteration (6), where R∗ : H → H is a continuous quasinonexpansive
operator and (R(k))k∈N denotes a sequence of its approximates subject to stochasticity. Moreover,
suppose the sequence (γ(k))k∈N satisfies 0 ≤ γ(k) ≤ 1 and

∑
k∈N γ(k)(1 − γ(k)) = +∞. If the

approximates (R(k))k∈N and the generated (x(k))k∈N satisfy the following two conditions:
(i) (∥x(k)∥H)k∈N is bounded a.s.; (ii)

∑
k∈N γ(k)E[ε(k) | Fk] < +∞ a.s.,

then (x(k))k∈N will almost surely converge to a fixed point of R∗.

We now consider the specific iteration for the locally coupled network games discussed in Sec-
tion 2.3. Let (y(k))k∈N denote the sequence generated by applying (P(k))k∈N , i.e., y(k+1) :=

P(k) ◦ · · · ◦ P(0)(y(0)). We further define y
(k+1)
∗ := P∗(y

(k)) for each k ∈ N. For brevity, we
shall write {δ(k)i } in replacement of {δ(k)i }i∈N and similarly for other sets indexed by N , unless
otherwise specified. For each k ≥ 2, define the sub-σ-field Fk as follows:

Fk := σ{y(0), ŵ(0), {δ(0)i }, {ξ(0)i }, . . . , {δ(k−2)
i }, {ξ(k−2)

i }}; (7)

and define F0 := σ{y(0)} and F1 := σ{y(0), ŵ(0)}. In the next theorem, we will prove that
the sequence produced by Algorithm 3 satisfies the conditions required in Theorem 4. Define
∥∆ŵ

(k)
i ∥2 := ∥ŵ(k)

i − w∗
i ∥2, ∥∆ŵ(k)∥2 := ∥ŵ(k) − w∗∥2, and the estimated iteration error ϵ(k) :=

9
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R(k)(y(k)) − R∗(y
(k)) and its norm ε(k) := ∥ϵ(k)∥K, with R(k) and R∗ given in Sec. 2.3. The

detailed proof is reported in (Huang and Hu, 2022, Appendix B).

Theorem 5 Consider the sequence (y(k))k∈N generated by Algorithm 3. Suppose Assumptions 1
to 6 hold, and given a sequence (γ(k)) where 0 ≤ γ(k) ≤ 1 and

∑
k∈N γ(k)(1 − γ(k)) = +∞, the

sequence (γ(k)E[∥∆ŵ(k)∥2 | Fk])k∈N is a.s. absolutely summable. Then (∥y(k)∥K)k∈N is bounded
a.s., and the estimated iteration error satisfies

∑
k∈N γ(k)E[ε(k) | Fk] < ∞ a.s.

To establish the convergence of Algorithm 3, Theorems 4 and 5 suggest that the sequence
(γ(k)E[∥∆ŵ(k)∥2 | Fk])k∈N should fulfill the summability assumption a.s. Our aim in what fol-
lows will be proving the following asymptotic convergence rate result of OLSE and investigating
the relation between the estimation error ∥∆ŵ(k)∥2 and the total number of observations made until
the k-th iteration by utilizing the law of large deviation for OLSEs. We refer the interested readers
to (Huang and Hu, 2022, Appendix C) for the detailed proof.

Theorem 6 Suppose Assumptions 6 and 7 hold, and each player i ∈ N at the iteration k ∈ N
uses Subroutine 2 to obtain an estimate ŵ

(k)
i . Let α2 ∈ (0, 12) be an arbitrary constant. Then on a

sample set Ω̂ with probability one, for any ω̂ ∈ Ω̂, there exists a sufficiently large index Klse(ω̂) ∈ N
such that for all k > Klse(ω̂), E[∥∆ŵ

(k)
i ∥2 | Fk](ω̂) ≤ C∆,ik

α2−1/2 holds for each i ∈ N , where
C∆,i is a constant independent of ω̂ and k.

To conclude, we note that as long as the sequence of step sizes is chosen as γ(k) := 1/kα1 with
1/2 < α1 ≤ 1, there always exists a feasible α2 =

1
2(α1 − 1

2) ∈ (0, 14 ], such that by Theorem 6 for

any ω̂ ∈ Ω̂ and k > Klse(ω̂), γ(k)E[∥∆ŵ
(k)
i ∥2 | Fk](ω̂) ≤ C∆,ik

− 1
2
α1− 3

4 for all i. This together
with Theorems 4 and 5 implies the almost-sure convergence of Algorithm 3, i.e., yi(k)i

a.s.→ x∗i and
ŵ(k) a.s.→ w∗

i for all i, where x∗ := [x∗i ]i∈N denotes an SNE of (1).

5. Conclusion and Future Directions

This paper develops a distributed solution to find Nash equilibria in stochastic locally coupled net-
work games with unknown parameters by combining the proximal-point algorithm for Nash equi-
librium seeking and the ordinary least square estimator for parameter learning. Almost-sure conver-
gence of the solution algorithm is established, which can be further extended to handle generalized
Nash equilibrium problems and iterations using inexact solvers. There remain several open prob-
lems. In the learning dynamics, to fulfill the identifiability condition for the estimator, each player
is required to add random exploration factors to its decisions, and the actual decisions (perturbed
by random exploration factors) it plays throughout the iteration will eventually bounce within some
ϵ-neighborhood of a true Nash equilibrium, instead of converging to it. Hence, one of our future
directions is to design learning dynamics such that the actual sequences of play can converge to the
true Nash equilibria. Another potential future direction resides in considering an estimator which
can better deal with the nonlinear parameter estimation and can work more efficiently in an online-
learning fashion with suitable guarantees on convergence rate. In addition, even though we can
extend the current analysis and similarly prove the convergence to a generalized Nash equilibrium
when taking locally coupled constraints and global resource constraints, the actual action sequence
may violate these coupled constraints during the iterations, which prevents the application of the
proposed solution in some practical situations. We intend to address these questions in future work.
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