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Abstract
Implicit neural networks are a general class of learning models that replace the layers in traditional
feedforward models with implicit algebraic equations. Compared to traditional learning models,
implicit networks offer competitive performance and reduced memory consumption. However,
they can remain brittle with respect to input adversarial perturbations.

This paper proposes a theoretical and computational framework for robustness verification of
implicit neural networks; our framework blends together mixed monotone systems theory and con-
traction theory. First, given an implicit neural network, we introduce a related embedded network
and show that, given an ℓ∞-norm box constraint on the input, the embedded network provides an
ℓ∞-norm box overapproximation for the output of the original network. Second, using ℓ∞-matrix
measures, we propose sufficient conditions for well-posedness of both the original and embed-
ded system and design an iterative algorithm to compute the ℓ∞-norm box robustness margins for
reachability and classification problems. Third, of independent value, we show that employing a
suitable relative classifier variable in our analysis will lead to tighter bounds on the certified ad-
versarial robustness in classification problems. Finally, we perform numerical simulations on a
Non-Euclidean Monotone Operator Network (NEMON) trained on the MNIST dataset. In these
simulations, we compare the accuracy and run time of our mixed monotone contractive approach
with the existing robustness verification approaches in the literature for estimating the certified
adversarial robustness.
Keywords: Implicit Neural Networks, Robustness Analysis, Verification, Mixed Monotone Sys-
tems Theory, Contraction Theory

1. Introduction

Neural networks are increasingly being deployed in real-world applications, including natural lan-
guage processing, computer vision, and self-driving vehicles. However, they are notoriously vul-
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nerable to adversarial attacks; slight perturbations in the input can lead to large deviations in the
output (Szegedy et al., 2014). Understanding this input sensitivity is essential in safety-critical ap-
plications, since the consequences of adversarial perturbations can be disastrous. Several different
strategies have been proposed in the literature to design neural networks that are robust with respect
to adversarial perturbations (Goodfellow et al., 2015; Papernot et al., 2016). Unfortunately, many
of these approaches are based on robustness with respect to specific attacks and they do not provide
formal robustness guarantees (Madry et al., 2018; Carlini and Wagner, 2017). Recently, there has
been a large interest in providing provable robustness guarantees for neural networks. Most existing
approaches focus on either the ℓ2-norm or ℓ∞-norm robustness measures. For neural networks with
high-dimensional inputs and subject to dense perturbations, the ℓ2-norm robustness measures are
known to provide overly conservative estimates of robustness and are less informative than their
ℓ∞-norm counterparts. Rigorous verification methods generally fall into four different categories
(i) Lipschitz bound methods (Fazlyab et al., 2019; Virmaux and Scaman, 2018; Combettes and Pes-
quet, 2020), (ii) interval bound methods (Mirman et al., 2018; Gowal et al., 2018; Zhang et al.,
2020; Wang et al., 2018), (iii) optimization-based methods (Wong and Kolter, 2018; Zhang et al.,
2018), and (iv) probabilistic methods (Cohen et al., 2019; Li et al., 2019). However, these methods
suffer from several limitations. Regarding the Lipschitz bound approach, the proposed methods
are either too conservative (Szegedy et al., 2014), not scalable to large-scale problems (Virmaux
and Scaman, 2018; Combettes and Pesquet, 2020), or only applicable to a specific class of activa-
tion functions (Wang et al., 2018). Similar concerns apply to interval-bound propagation methods
and optimization-based methods. Finally, probabilistic approaches provide some guarantees for
ℓ1 and ℓ2-norm robustness but there are theoretical limitations in their applicability for certifying
ℓ∞-robustness (Blum et al., 2020).

In this paper we study the robustness properties of implicit neural networks, a recently proposed
class of learning models with strong scalability properties. Implicit neural networks replace the
notion of layer in the traditional neural networks with an implicit fixed-point equation (Bai et al.,
2019; El Ghaoui et al., 2021). Compared to layer-based neural networks, implicit neural networks
are known to (i) be significantly more memory efficient (Bai et al., 2019), (ii) generalize tradi-
tional architectures such as feedforward, convolutional, and residual networks (El Ghaoui et al.,
2021), and (iii) enjoy improved training due to fewer vanishing and exploding gradients (Kag et al.,
2020). Additionally, preliminary empirical evidence indicates that appropriately-trained implicit
neural networks are more robust than traditional feedforward models (Pabbaraju et al., 2021); how-
ever this phenomenon is not yet well understood and open questions remain regarding the stability
and robustness of implicit models.

We propose a rigorous computationally efficient certification method for implicit neural network
robustness. We note that many of the robustness analysis tools for traditional neural networks
are either not applicable to implicit neural networks or provide overly-conservative results. Our
novel approach is derived from mixed monotone systems theory and contraction theory. Unlike the
robustness verification approaches based on Lipschitz bounds, our framework takes into account the
propagation of the ℓ∞-error bounds through the network and is scalable with the size of the network.

Related works

Implicit learning models. Implicit neural networks are a class of learning algorithms that replace
the recursive function evaluations in traditional neural networks with an implicit algebraic equation.
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In literature, implicit neural networks have been introduced under different names including deep
equilibrium networks (Bai et al., 2019), implicit deep learning models (El Ghaoui et al., 2021), and
equilibrated neural networks (Kag et al., 2020). One of the main challenges in studying implicit neu-
ral networks is their well-posedness, i.e., existence and uniqueness of solutions for their fixed-point
equation. The work (El Ghaoui et al., 2021) proposes a sufficient spectral condition for convergence
of the Picard iterations associated with the fixed-point equation. In (Winston and Kolter, 2020; Re-
vay et al., 2020), using monotone operator theory, a suitable parametrization of the weight matrix is
proposed which guarantees convergence of suitable fixed-point iterations. Our previous work (Ja-
farpour et al., 2021b) proposes non-Euclidean contraction theory to design implicit neural networks
and study their well-posedness, stability, and robustness with respect to the ℓ∞-norm; the general
theory is developed in (Davydov et al., 2021) and a short tutorial is given in (Bullo et al., 2021).

Robustness of neural networks. Starting with (Szegedy et al., 2014), there has been a large body
of work in machine learning to understand adversarial examples (Athalye et al., 2018). Rigor-
ous verification of feedforward neural networks has been studied using abstract interpretation ap-
proaches (Katz et al., 2017), interval bound propagation methods (Wang et al., 2018; Zhang et al.,
2018; Mirman et al., 2018; Gowal et al., 2018), and convex-relaxation approaches (Wong and Kolter,
2018; Fazlyab et al., 2020). Regarding implicit neural networks, there are far fewer works on their
robustness guarantees. In (El Ghaoui et al., 2021) a sensitivity-based robustness analysis for implicit
neural network is proposed. Approximation of the Lipschitz constants of deep equilibrium networks
has been studied in (Pabbaraju et al., 2021; Revay et al., 2020). Recently, ellipsoidal methods (Chen
et al., 2021) and interval-bound propagation methods (Wei and Kolter, 2022) have been proposed
for robustness certification of deep equilibrium networks.

Mixed monotone system theory. Mixed monotone systems theory (Enciso et al., 2006; Angeli
et al., 2014; Coogan and Arcak, 2015; Coogan, 2020) provides a generalization of classical mono-
tone systems theory (Smith, 1995; Farina and Rinaldi, 2000; Angeli and Sontag, 2003), applicable
to all dynamical systems bearing a locally Lipschitz continuous vector field (Yang and Ozay, 2019;
Abate et al., 2021). A dynamical system is mixed monotone when there exists a related decomposi-
tion function that separates the system’s vector field or update map into increasing and decreasing
components. Such a decomposition then facilitates robustness analysis for the initial mixed mono-
tone system and specifically enables, e.g., the efficient computation of robust reachable sets and
invariant sets (Abate and Coogan, 2020).

Contributions

Based on mixed monotone system theory, this paper proposes a theoretical and computational
framework to study the robustness of implicit neural networks. Given an implicit neural network,
we introduce an associated embedded network with twice as many inputs and outputs as the original
system. This embedded implicit network takes an ℓ∞-norm box as its input and generates an ℓ∞-
norm box as its output. Then, we study the connection between the well-posedness of the embedded
network and the robustness of the original implicit network. Our main theoretical contribution is as
follows: if the ℓ∞-matrix measure of the original network’s weight matrix is less than one, then (i)
the implicit neural network has a unique fixed-point, (ii) the embedded network has a unique fixed-
point which can be computed using a suitable average-iteration, and (iii) for a given ℓ∞-norm box
constraint on the input of the implicit neural network, the output of the embedded implicit neural
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network is an ℓ∞-norm box overapproximation of output the original implicit network. In particu-
lar, result (iii) above shows how bounds on the network output are obtained directly from bounds
on the network input, allowing for efficient reachability analysis for implicit neural networks. How-
ever, the output bounds obtained using this approach can lead to conservative robustness estimates
in classifications. As a practical contribution, we use a suitable classifier variable together with
mixed monotone systems theory to provide sharper robustness estimates in classification. In order
to evaluate the robustness guarantees of implicit neural networks, we empirically examine their cer-
tified adversarial robustness. We then use (i) estimates of Lipschitz bounds, (ii) the interval bound
propagation method, and (iii) our mixed monotone contractive approach to provide lower bounds on
certified adversarial robustness. Finally, we compare the certified adversarial robustness of the three
approaches mentioned above on a pre-trained implicit neural network. Our simulation results show
that the mixed monotone contractive approach significantly outperforms the other two methods.

2. Mathematical preliminaries

Vectors and matrices. Given a matrix B ∈ Rn×m, we denote the non-negative part of B by
[B]+ = max(B, 0) and the nonpositive part of B by [B]− = min(B, 0). The Metzler and non-
Metzler part of square matrix A ∈ Rn×n are denoted by ⌈A⌉Mzl and ⌊A⌋Mzl, respectively, where

(⌈A⌉Mzl)ij =

{
Aij Aij ≥ 0 or i = j

0 otherwise,
⌊A⌋Mzl = A− ⌈A⌉Mzl.

For matrices C ∈ Rn×m and D ∈ Rp×q, the Kronecker product of C and D is denoted by C ⊗D.

Matrix measures. For every η ∈ Rn
>0, the diagonally weighted ℓ∞-norm is defined

by ∥x∥∞,[η]−1 = maxi |xi|/ηi, the diagonally weighted ℓ∞-matrix measure is defined by
µ∞,[η]−1(A) = maxi∈{1,...,n}Aii +

∑
j ̸=i

ηj
ηi
|Aij |.

Lipschitz constants. Let F : Rn × Rm → Rn be a locally Lipschitz map in the first argument.
For every u ∈ Rm and every α ∈ (0, 1], we define the α-average map Fα : Rn × Rm → Rn by
Fα = (1−α)I+αF, where I is the identity map on Rn. Given a positive vector η ∈ Rn

>0, F(x, u) is
Lipschitz in x with respect to the norm ∥ · ∥∞,[η]−1 with constant Lipx∞,[η]−1(F) ∈ R≥0 if, for every
x1, x2 ∈ Rn and every u ∈ Rm,

∥F(x1, u)− F(x2, u)∥∞,[η]−1 ≤ Lipx∞,[η]−1(F)∥x1 − x2∥∞,[η]−1 ,

Mixed monotone mappings. Given a map F : Rn × Rm → Rn and a Lipschitz function d :
R2n × R2m → Rn, we say F is mixed monotone with respect to d, if for every i ∈ {1, . . . , n},

(i) di(x, x, u, u) = Fi(x, u);
(ii) di(x, x̂, u, û) ≤ di(y, ŷ, u, û), for every x ≤ y such that xi = yi, and every ŷ ≤ x̂;

(iii) di(x, x̂, u, û) ≤ di(x, x̂, v, v̂), for every u ≤ v and every v̂ ≤ û.

Conditions (i)–(iii) are sometimes referred to as the Kamke conditions for mixed monotonicity1 as
developed in (Abate et al., 2021); see also (Coogan, 2020) for an equivalent infinitesimal character-
ization of mixed monotonicity. Every locally Lipschitz map F is mixed monotone with respect to

1. These are the conditions for ensuring that the continuous-time dynamical system with vector field defined by such a
mapping (possibly added to a scaling of identity) is mixed monotone.
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some decomposition function (Abate et al., 2021), however, finding a closed form decomposition
function is in general challenging. A remarkable property of implicit neural networks, shown below,
is that a decomposition function is easily available in closed-form.

3. Implicit neural networks

An implicit neural network is described by the following fixed-point equation:

x = Φ(Ax+Bu+ b) := N(x, u)

y = Cx+ c (1)

where x ∈ Rn is the hidden variable, u ∈ Rr is the input and y ∈ Rq is the output. The matrices
A ∈ Rn×n, B ∈ Rn×r, and C ∈ Rq×n are weight matrices, b ∈ Rn and c ∈ Rq are bias vectors,
and Φ(x) = (ϕ1(x1), . . . , ϕn(xn))

T is the diagonal matrix of activation functions, where, for every
i ∈ {1, . . . , n}, ϕi : R → R satisfies 0 ≤ ϕi(x)−ϕi(y)

x−y ≤ 1, for every x, y ∈ R. Compared to
feedforward neural networks, one of the main challenges in studying implicit neural networks is
their well-posedness; a unique solution for the fixed-point equation (1) might not exist. We refer the
readers to (Winston and Kolter, 2020; El Ghaoui et al., 2021; Revay et al., 2020; Jafarpour et al.,
2021b) for discussions on the well-posedness of implicit networks.

Training implicit neural networks Given an input data U = [u1, . . . , um] ∈ Rr×m and its
corresponding output data Y = [y1, . . . , ym] ∈ Rq×m, the training optimization problem learns
weights and biases which minimizes L(Y,CX + c) subject to X = Φ(AX + BU), where L :
Rq×m×Rq×m → R is a suitable cost function. Thus, the training optimization problem is given by

min
A,B,C,b,c,X

L(Y,CX + c)

X = Φ(AX +BU + b).
(2)

In order to ensure that the implicit neural network is well-posed, an extra constraint is usually added
to this training optimization problem. For instance, in (Winston and Kolter, 2020) the constraint
µ2(A) ≤ γ, in (El Ghaoui et al., 2021) the constraint ∥A∥∞ ≤ γ, and in (Jafarpour et al., 2021b)
the constraint µ∞,[η]−1(A) ≤ γ is proposed, for some γ < 1 and some η ∈ Rn

>0.

4. Robustness certificates via a mixed monotone contracting approach

In this section, we use mixed monotone systems theory and contraction theory to study the input-
to-output robustness of implicit neural networks.

Robustness of implicit neural networks. We first introduce the embedded implicit neural net-
work associated with (1). Given u ≤ u in Rr, we define embedded implicit neural network by

[
x
x

]
=

[
Φ(⌈A⌉Mzlx+ ⌊A⌋Mzlx+ [B]+u+ [B]−u+ b)
Φ(⌈A⌉Mzlx+ ⌊A⌋Mzlx+ [B]+u+ [B]−u+ b)

]
:=

[
NE(x, x, u, u)
NE(x, x, u, u)

]
,

[
y

y

]
=

[
[C]+ [C]−

[C]− [C]+

] [
x
x

]
+

[
c
c

]
. (3)

The embedded implicit neural network (3) can be considered as a neural network with the box input
[u, u] and the box output [y, y] (see Figure 1). Next, we study well-posedness of the embedded
implicit neural network (3) and its connection with robustness of the implicit neural network (1).
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Theorem 1 (Robustness of implicit neural networks) Consider the implicit neural network (1).
The following statement holds:

(i) the map N(x, u) is mixed monotone with respect to the decomposition function NE;

Moreover, let η ∈ Rn
>0 be such that µ∞,[η]−1(A) < 1. For every u ≤ u, every u ∈ [u, u], and every

α ∈ [0, α∗ := (1−mini∈{1,...,n}(Aii)
−)−1],

(ii) the α-average map (x, x) 7→
[
NE
α(x, x, u, u)

NE
α(x, x, u, u)

]
is a contraction mapping with respect to the

norm ∥·∥∞,I2⊗[η]−1 with minimum contraction factor Lip(
[
NE
α∗

NE
α∗

]
) = 1− 1−µ∞,[η]−1 (A)+

1−mini∈{1,...,n}(Aii)−
;

(iii) the α-average map Nα is a contraction mapping with respect to the norm ∥·∥∞,[η]−1 minimum

contraction factor Lip(Nα∗) = 1− 1−µ∞,[η]−1 (A)+

1−mini∈{1,...,n}(Aii)−
;

(iv) the embedded network (3) has a unique fixed point
[
x∗

x∗

]
such that x∗ ≤ x∗ and we have

limk→∞

[
xk

xk

]
=

[
x∗

x∗

]
, where the sequence

{[
xk

xk

]}∞

k=1

is defined iteratively by

[
xk+1

xk+1

]
=

[
NE
α∗(xk, xk, u, u)

NE
α∗(xk, xk, u, u)

]
, for every k ∈ Z≥0,

[
x0

x0

]
∈ R2n; (4)

(v) the implicit neural network (1) has a unique fixed-point x∗u such that x∗u ∈ [x∗, x∗] and we
have limk→∞ xku = x∗u where the sequence {xku}∞k=1 is defined iteratively by

xk+1
u = Nα∗(xku, u), for every k ∈ Z≥0, x0 ∈ Rn. (5)

Remark 2
(i) Theorem 1 can be interpreted as a dynamical system approach to study robustness of implicit

neural networks. Indeed, it is easy to see that the α-average iteration (4) (resp. (5)) are the

forward Euler discretization of the dynamical system d
dt

[
x
x

]
= −

[
x
x

]
+

[
NE(x, x, u, u)
NE(x, x, u, u)

]

(resp. dx
dt = −x+ N(x, u)). We refer to (Jafarpour et al., 2021a) for a proof of Theorem 1.

(ii) Theorem 1(iv) and (v) show that µ∞,[η]−1(A) < 1 is a sufficient condition for existence and
uniqueness of the fixed-point of both the original neural network and embedded neural net-
work. In (Jafarpour et al., 2021b), to ensure well-posedness, the NEMON model is trained
by adding the sufficient condition µ∞,[η]−1(A) < 1 to the training problem (2). Therefore,
for the NEMON model, the embedded implicit network provides a margin of robustness with
respect to any ℓ∞-norm box uncertainty on the input.

(iii) In terms of evaluation time, computing the ℓ∞-box bounds on the output is equivalent to two
forward passes of the original implicit network (see Figure 1).

(iv) Implicit neural networks contain feedforward neural networks as a special case (El Ghaoui
et al., 2021). Indeed, for a feedforward neural network with k layers and n neurons in each
layer, there exists an implicit network representation with block upper diagonal weight matrix
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Figure 1: The original implicit neural network and its associated embedding network. The input-output
behavior of the embedding system provides a box estimate for robustness of the original network.

A ∈ Rkn×kn. Since A is block upper diagonal, one can choose η = [δ, δ2, · · · , δk]T ∈ Rk
>0

with sufficiently small δ > 0 to obtain µ∞,[η]−1⊗In(A) < 1. In this case, the fixed-point of the
embedded implicit network (3) is unique, can be computed explicitly using back-substitution,
and corresponds exactly to the approach taken in (Gowal et al., 2018).

Robustness verification via relative classifiers. The embedded network output [y, y] provides
bounds on the elements of the initial implicit network’s output, thus allowing for efficient reach-
ability analysis. However, for classification problems, where the goal is to identify the maximum
element of y, these boxes can lead to overly-conservative estimates of robustness. In this section,
we propose an alternative approach for certified robustness in classification problem by studying a
suitable classifier variable using mixed monotone systems theory. Suppose the input u ∈ Rr leads
to the output y(u) ∈ Rq and the correct label of u is i ∈ {1, . . . , q}. We are interested to study the
robustness of our classifier with respect to a perturbed set of inputs [u, u] ∋ u. For every v ∈ [u, u],
the relative classifier variable zu(v) ∈ Rq−1 is defined by

zu(v) := y(v)i1q−1 − y(v)−i, (6)

where y(v)−i = (y(v)1, . . . , y(v)i−1, y(v)i+1, . . . , y(v)q) ∈ Rq−1 (see (Zhang et al., 2020) for a
similar construction). Note that zu(v) ≥ 0 only when the perturbed input v retains the correct label
i, i.e., the perturbation does not have any effect on the classification. Using (1), we write (6) as

zu(v) = T uy(v) = T uCx∗ + Tc, (7)

where x∗ is the fixed-point of the implicit neural network (1) with input v and T u ∈
{−1, 0, 1}(q−1)×q is the linear transformation defined by (6). Now, we construct

zu = [T uC]+x∗ + [T uC]−x∗ + T uc, (8)

where x∗, x∗ solves (3) with u, u being the above perturbation bounds on the input.

Lemma 3 (Properties of the relative classifier variable) Let u ∈ [u, u] be an input with the cor-

rect label i ∈ {1, . . . , q} and
[
y

y

]
be the output of the embedded network (3) with input

[
u
u

]
. Then,

(i) zu ≥ 0 implies that the every perturbed input v ∈ [u, u] is given the same label as u, that is,
yi(v) > yj(v) for all j ̸= i and every v ∈ [u, u];

(ii) y
i
−maxj ̸=i yj ≥ 0 implies that zu ≥ 0.

Note that the converse of Lemma 3(ii) need not hold in general. Indeed, Lemma 3 shows that
using zu ≥ 0 for classification leads to less conservative robustness certificates compared to using
y
i
−maxj ̸=i yj ≥ 0. We refer to (Jafarpour et al., 2021a) for the proof of Lemma 3.
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5. Theoretical and numerical comparisons

In this section, we compare our robustness bounds with the existing bounds in the literature. Be-
fore we proceed with the comparison, following (Gowal et al., 2018; Pabbaraju et al., 2021), we
introduce the notion of certified adversarial robustness which plays a crucial role in our numerical
comparison for classification problems. To this end, we consider a set of labeled test data U ⊂ Rr

and we define the deviation function δ : R≥0 × U → R by

δ(ϵ, u) = max
v∈Rr

{y(v)i −max
j ̸=i

y(v)j | ∥u− v∥∞ ≤ ϵ, i is the correct label of u}, (9)

where y(u) and y(v) are the implicit neural network outputs generated by inputs u and v respec-
tively. We say that the network is certified adversarially robust for radius ϵ at input u if δ(ϵ, u) > 0.
Certifying adversarial robustness can be complicated due to the non-convexity of the optimization
problem on v for the deviation function. We briefly review the existing methods for robustness
verification of implicit neural networks and show how these methods cen be used to provide lower
bound on the certified adversarial robustness.

Method 1: Lipschitz constants. For implicit neural network, the estimates on the input-output
Lipschitz constants are studied for deep equilibrium networks in (Winston and Kolter, 2020; Pab-
baraju et al., 2021; Revay et al., 2020), for implicit deep learning models in (El Ghaoui et al., 2021),
and for non-Euclidean monotone operator networks in (Jafarpour et al., 2021b). For an implicit neu-
ral network (1) with ℓ∞ input-output Lipschitz constant Lipu→y

∞ ∈ R≥0, the output can be bounded
as ∥y(u) − y(v)∥∞ ≤ Lipu→y

∞ ∥u − v∥∞. We define δLip(ϵ, u) := (y(u)i − maxj ̸=i y(u)j) −
2(Lip∞u→y)ϵ. One can see that δLip(ϵ, u) > 0 is a sufficient condition for certified adversarial ro-
bustness.

Method 2: Interval bound propagation. In (Gowal et al., 2018) a framework based on interval
bound propagation has been proposed for training robust feedforward neural networks. This method
has recently been extended for training deep equilibrium networks in (Wei and Kolter, 2022). Given
an implicit neural network (1) with input perturbation ∥u − v∥∞ ≤ ϵ, we can adopt the approach
in (Gowal et al., 2018) to the implicit framework and propose the following fixed-point equation for
estimating the output of the network:

[
x
x

]
=

[
Φ([A]+x+ [A]−x+ [B]+u+ [B]−u+ b)
Φ([A]+x+ [A]−x+ [B]+u+ [B]−u+ b)

]
, (10)

[
y

y

]
=

[
[C]+ [C]−

[C]− [C]+

] [
x
x

]
+

[
c
c

]
, (11)

where u = u − ϵ1m, u = u + ϵ1m, and (x, x) are the solutions of the fixed-point equation (10).
It is worth mentioning that the condition µ∞,[η]−1(A) < 1 proposed in Theorem 1 does not, in
general, ensure well-posedness of the fixed-point equation (10). The output of the neural network
then can be bounded by the box [y, y]. We define δIBP(ϵ, u) = y

i
− maxj ̸=i yi. One can see that

δIBP(ϵ, u) > 0 is a sufficient condition for certified adversarial robustness.

Method 3: Mixed monotone contractive approach. Given an implicit neural network (1) with
input perturbation ∥u − v∥∞ ≤ ϵ, we first use Theorem 1 to obtain bounds on the output of the
network. Indeed, by Theorem 1(ii), the α-average iteration (4) with u = u − ϵ1m, u = u + ϵ1m
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converges to (x, x) and therefore, we have y(v) ∈ [y, y]. Moreover, we can define δMM(ϵ, u) =

y
i
− maxj ̸=i yi. One can see that δMM(ϵ, u) > 0 is a sufficient condition for certified adversarial

robustness. Alternatively, we can use Theorem 1 with the output transformation (8) to provide
less conservative lower bounds on for certified adversarial robustness of the network. We define
δMM−C(ϵ, u) = mini∈{1,...,q−1} z

u
i , where zu is as defined in equation (8). Then, by Lemma 3, one

can obtain the tighter sufficient condition δMM−C(ϵ, u) > 0 for certified adversarial robustness.

5.1. A simple example

In this section, we consider a simple 2-dimensional implicit neural network to compare different ap-

proaches for robustness verification. Consider an implicit neural network (1) with A =

[
−1

4 −1
4

3
4 −1

4

]
,

B =

[
1
2 1
1 1

2

]
, C = I2, b = c = 02, and Φ(·) = ReLU(·). Suppose that the nominal input is

u =

[
1
4
3
2

]
and due to uncertainty, the input is in the box v ∈ [u, u], where u =

[
0
1

]
and u =

[
1
3
2

]
.

We compare the robustness bounds obtained using the Lipschitz bound approach, the interval bound
propagation method, and our mixed monotone contractive approach. Regarding the Lipschitz bound
approach, we use the framework in (Jafarpour et al., 2021b, Corollary 5) to estimate the input-output
Lipschitz constant of the networks and thus we get ∥y(u) − y(v)∥∞ ≤ ∥B∥∞∥C∥∞

1−µ∞(A)+
∥u − v∥∞ =

3∥u− v∥∞. Regarding the interval bound propagation method, using the iterations in (10), we ob-

tain y(v) ∈
[(

0.0342
0

)
,

(
1.7265
2.1026

)]
. Finally, regarding the mixed monotone contractive approach,

using the α-average iteration (4) in Theorem 1(iv), we get y(v) ∈
[(

0.3939
0.6364

)
,

(
1.6061
2.0303

)]
. Fig-

ure 2 compares the robustness certificates obtained using these different approaches.

−2 −1 0 1 2 3 4

−2

0

2

4

y1

y2

Figure 2: Problem Setting of Section 5.1: Com-
paring the application of Theorem 1 to existing
verification methods for implicit neural networks.
The yellow parallelogram shows different value of
y(v) for 1000 iid uniformly randomly selected v =
(v1, v2)

T satisfying 0 ≤ v1 ≤ 1
3 and 1 ≤ v2 ≤ 2.

Robustness certificates attained from the Lipschitz
bound approach, the interval bound propagation ap-
proach, and the application of Theorem 1 are shown
as red, green, and blue boxes, respectively.

5.2. MNIST experiment

In this section, we compare the certified adversarial robustness of different approaches on the
MNIST handwritten digit dataset2. We trained a fully-connected NEMON model with n = 100
neurons as in the training problem (2). For well-posedness, we imposed µ∞,[η]−1(A) ≤ 0, where
we directly parametrize the set of such A as A = [η]−1T [η]−diag(|T |1n) for unconstrained T (Ja-
farpour et al., 2021b, Lemma 9). Training data was broken up into batches of 100 and the model

2. Code is available at https://github.com/davydovalexander/l4dc-inn-verification
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Figure 3: On the left is a plot of the certified adversarial robustness of the trained NEMON model using a
Lipschitz method and two mixed monotonicity methods. For fixed ϵ, the fraction of test inputs which are
certified robust are plotted. On the right is a plot of the empirical robustness of the same NEMON model
subject to PGD and FGSM attacks. Note the difference in scale on the horizontal axis.

was trained for 15 epochs with a learning rate of 10−3. After training, the model was validated on
test data using the sufficient conditions for certified adversarial robustness in the previous section.
For fixed ϵ and the 10000 test images, over 10 trials, it took, on average, 2.250 seconds to com-
pute δLip(ϵ, u), 218.099 seconds to compute δIBP(ϵ, u), 9.087 seconds to compute δMM(ϵ, u), and
11.291 seconds to compute δMM-C(ϵ, u). To provide a conservative upper-bound on the certified
adversarial robustness and to observe empirical robustness, the model was additionally attacked us-
ing projected gradient descent (PGD) and fast-gradient sign method (FGSM) attacks. Results from
these experiments are shown in Figure 3.

Summary evaluation. We draw several conclusions from the experiments. First, the bounds on
the certified adversarial robustness provided from the interval-bound propagation are not plotted
since they provided a trivial lower bound of zero adversarial robustness for every ϵ tested. Second,
we see that the bounds on the certified adversarial robustness provided by the mixed monotonicity
approaches are tighter than the bounds provided by the Lipschitz constant. Third, we note the addi-
tional tightness in the bounds provided by computing the relative classifier variable zu. Finally, we
observe that although mixed monotonicity approaches provide better bounds than the better-known
Lipschitz and interval-bound propagation approaches, the gap between the certified robustness and
the empirical robustness remains sizable, especially for larger ℓ∞-perturbations.

6. Conclusions

Using mixed monotone systems theory and contraction theory, we developed a framework for study-
ing robustness of implicit neural networks. A key tool in this approach is an embedded network that
provides ℓ∞-norm box estimates for input-output behavior of the given implicit neural network. Em-
pirical evidence shows that our approach outperforms existing methods. Future work will include
(i) applying the mixed monotone contractive approach to train robust implicit neural networks, (ii)
designing appropriate state transformations (Abate and Coogan, 2021) to improve the input-output
bounds in Theorem 1, and (iii) comparing our approach with the existing formal verification tech-
niques such as Reluplex (Katz et al., 2017) and Neurify (Wang et al., 2018).
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