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Abstract
This paper introduces V-SysId, a novel method that enables simultaneous keypoint discovery, 3D
system identification, and extrinsic camera calibration from an unlabeled video taken from a static
camera, using only the family of equations of motion of the object of interest as weak supervision.
V-SysId takes keypoint trajectory proposals and alternates between maximum likelihood parameter
estimation and extrinsic camera calibration, before applying a suitable selection criterion to identify
the track of interest. This is then used to train a keypoint tracking model using supervised learning.
Results on a range of settings (robotics, physics, physiology) highlight the utility of this approach.

1. Introduction
Unlabeled video 

with moving objects

Eq. of motion 
of object of interest

Find trajectory, 
physical parameters   , 
and 3D camera pose

V-SysId

Figure 1: Given an unlabeled video contain-
ing moving objects and an equation of motion,
our V-SysId identifies the trajectory of the ob-
ject of interest, along with its physical parame-
ters (e.g. restitution coefficient, initial height),
and 3D pose relative to the camera.

An understanding of the motion and physics of
objects in the real world is a hallmark of the
human visual system. Humans have the abil-
ity to identify objects and their properties (eg.
mass, friction, elasticity) as they move and inter-
act in the world, due to our intuitive understand-
ing of common trajectories, object interactions,
and outcomes. This ability is typically studied
under the umbrella of intuitive physics (Battaglia
et al., 2013; Ullman et al., 2014; Hamrick et al.,
2016; Baker et al., 2017), and often considered
a critical component for machines to be able to
think more like humans. In the context of ma-
chine learning systems, this ability can be dis-
tilled to a requirement for unsupervised 3D ob-
ject localization and physical parameter estimation (also known as system identification) from a
sensory stream, subject to some inductive bias or intuitive physics prior.
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Figure 2: V-SysId comprises 3 stages. Stage 1 extracts keypoint tracks from a video using a grid
keypoint detector + KLT tracking. Each of these 2D tracks is passed to Stage 2, where the physical
parameters θ = {η,p0,v0} of the 3D equation of motion f , and the camera pose parameters R, t
are optimized in order to minimize the difference between the projected 3D trajectory (black, Stage
2) and the 2D keypoint track observed (red, Stage 2). Stage 3 chooses the best trajectory and
corresponding parameters as those which maximize the sum of projected likelihood and a trajectory
entropy criterion. Here, a bouncing ball scene with 2 moving distractors is shown, where the ball is
correctly identified as the object that corresponds to the highest entropy motion under dynamics f .

Taking inspiration from this view, this paper introduces V-SysId, a novel method that enables
simultaneous keypoint discovery, 3D system identification, and extrinsic camera calibration from
a single unlabeled video taken from a static camera, using only the family of equations of motion
of the object of interest as weak supervision. Crucially, our approach is able to identify the correct
object(s) in a scene even in the presence of other moving objects or distractors. This property is key,
as it greatly increases applicability to real world scenarios, enabling the system to solve queries like
“find the 3D location of the bouncing ball, and determine its restitution coefficient”.

V-SysId follows a 3-stage process of keypoint track proposal, optimization, and selection, shown
in Fig. 2. The optimisation process alternates between maximum likelihood extrinsic camera cali-
bration and maximum likelihood physical parameter estimation for motion tracks detected in video.
This joint optimisation can be unstable, which we address through the inclusion of a curriculum-
based optimisation strategy, alongside a maximum entropy criterion for keypoint identification. A
key benefit of V-SysId is that a neural network is not needed for discovery or system identification in
our pipeline. This means that V-SysId enables keypoint discovery with high-resolution images; and
can also perform system identification in single videos, without the need to obtain large datasets,
which is particularly useful in robotics applications, where data collection for neural network train-
ing can be laborious and time-consuming. The keypoints discovered by V-SysId can be used as
pseudo-labels to train a supervised keypoint detector, for downstream tracking or control.

These properties provide significant flexibility to V-SysId, enabling its use in real world en-
vironments with important applications for control, physics understanding, and health monitoring.
Specifically, we show that the V-SysId can be applied to end-effector localization and extrinsic cam-
era calibration, bouncing ball discovery and physical property estimation, and breathing frequency
estimation from chest videos - all unlabeled and without regions of interest provided a priori. This
is made possible by the fact that V-SysId identifies keypoints belonging to objects of interest present
in scenes, while ignoring any other moving objects or artifacts that do not follow the expected dy-

2



VISUAL SYSTEM IDENTIFICATION VIA DYNAMIC CONSTRAINTS

namical constraints. This alleviates the need for hand-crafted object segmentation methods or tricks
to selectively remove parts of the image that may contain moving distractors; and allows keypoint
discovery at a fraction of the computational expense of unsupervised neural methods that learn to
identify and model every moving object in an image.

2. Related Work

System identification and physics understanding are key to allow machine learning agents to inter-
act with the real world. System identification is typically performed using proprioceptive trajectory
data directly, and there has been extensive research across a range of fields (Juang and Pappa, 1985;
Brincker et al., 2001; Brunton et al., 2016; Wu et al., 2015, 2017; Li et al., 2020b) in support of this.
Recent contributions include developments in physical parameter estimation (Belbute-Peres et al.,
2018; Cranmer et al., 2020), simulator learning (Qiao et al., 2020; Sanchez-Gonzalez et al., 2020),
simulation alignment for robot interaction (Asenov et al., 2019), trajectory generation (Jegorova
et al., 2020) and compositionality (Abraham et al., 2017; Li et al., 2020a).

Unsupervised system identification from vision is a recent area of research that removes the re-
quirements for trajectory data, with approaches including unsupervised physical parameter estima-
tion (Jaques et al., 2020; Kandukuri et al., 2020; Murthy et al., 2020), structured latent space learn-
ing (Karl et al., 2017; Guen and Thome, 2020; Jaques et al., 2021), and Hamiltonian/Lagrangian
learning (Greydanus et al., 2019; Toth et al., 2020; Zhong and Leonard, 2020). Unfortunately, these
approaches are still relatively limited in the complexity of scene they can model, and typically re-
stricted to toy problems and simulated environments. In this work we aim to improve upon Jaques
et al. (2020); Kandukuri et al. (2020); Murthy et al. (2020)’s limitation to simulated environments
by performing physical parameter estimation on real dynamical scenes with distractors.

The seminal GALILEO model (Wu et al., 2015) demonstrated physical system identification
and simulation alignment using the Physics101 dataset (Wu et al., 2016). A key shortcoming of
Galileo is that it assumes that the camera is parallel to the plane of motion, and relies on manually
identified object tracks to lift the visual scenes onto object positions. In contrast V-SysId is able to
simultaneously estimate 3D trajectories and camera pose relative to the scene from arbitrary camera
angles, greatly increasing its applicability to real world scenes. Furthermore, V-SysId automatically
identifies object tracks from keypoint proposals without needing human intervention, allowing the
discovery of objects of interest in video that are governed by the relevant equations of motion.
Keypoint discovery: Keypoints are a natural representation for object parts, with keypoint detec-
tion and tracking one of the earliest and most studied areas of computer vision. Approaches like
SIFT (Lowe, 2004), FAST (Rosten and Drummond, 2006) and ORB (Rublee et al., 2011) are still
widely used to perform SLAM, SFM, VO1 and other tracking tasks (using, e.g. a KLT tracker
(Tomasi and Kanade, 1991)). Given keypoint trajectories, the problem of inferring the 3D structure
of a 2D trajectory using assumptions about the dynamics has been coined ”trajectory triangulation”
by (Avidan and Shashua, 2000; Kaminski and Teicher, 2002), who assume that objects follow a
straight-line or conic-section trajectory in 3D space, and that physical parameters can be uniquely
identified using multiple cameras. In contrast, our method assumes only a single static monocular
view. Other approaches to infer moving object structure using motion constraints include (Fitzgib-
bon and Zisserman, 2000; Han and Kanade, 2003; David et al., 2004; Scaramuzza et al., 2009).

1. Simultaneous Localisation and Mapping, Structure-from-Motion, Visual Odometry.

3



VISUAL SYSTEM IDENTIFICATION VIA DYNAMIC CONSTRAINTS

When it comes to 2D keypoint discovery, several recent works have proposed neural network
based methods that use a regularized reconstruction objective to discover objects of interest in an
image (Jakab et al., 2018, 2019; Kulkarni et al., 2019; Minderer et al., 2019; Gopalakrishnan et al.,
2020; Das et al., 2020), which can be used for downstream control tasks. However, these approaches
lack the ability to estimate keypoint depth, limiting their application in realistic control scenarios.
Even though these approaches obtain semantically meaningful keypoints (and in some instances are
able to ignore scene objects with unpredictable motion (Gopalakrishnan et al., 2020)), they require
visual inspection in order to obtain interpretability. In contrast, V-SysId provides equation-driven
keypoint discovery, ensuring a known semantic meaning for learned keypoints. A parallel stream of
research tackles this from a geometric perspective, where 3D keypoints are inferred using camera
motion cues or geometric constraints (Suwajanakorn et al., 2018; Jau et al., 2020; Vijayanarasimhan
et al., 2017; Wei et al., 2020). Even though this approach has been used in complex real world
settings, these keypoints lack semantic meaning, making these unsuitable for semantic discovery
queries (eg. “find the bouncing ball following these dynamics”).

The use of dynamics as a learning constraint has not been explored in keypoint discovery litera-
ture to date. This work proposes a method to integrate dynamical inductive biases into the keypoint
discovery process, enabling extrinsic camera calibration and physics-guided discovery of objects of
interest alongside the corresponding physical parameter estimation.

3. Method

Our goal is to discover the 3D trajectory of an object of interest in a video with possibly many
moving objects, given only its family of motion dynamics, f . To this end, we must estimate: a) 2D
keypoint locations kt of the object of interest in each frame It; b) physical parameters and initial
conditions θ, of the equation of motion f(θ); and c) camera rotation and translation relative to the
scene [R, t]. Joint estimation of these quantities would be intractable, so we split the objective into
tractable components. Our method, V-SysId, has 3 stages (Fig. 2). We first describe the physical
parameter+camera pose estimation stage.

3.1. Physical parameter and camera pose estimation

Setup: Let us assume we have a set of N 2D keypoint tracks K = {k̃n
1:T }Nn=1 across the video I1:T ,

and a family of 3D equations of motion f with unknown physical parameters η and initial position
and velocity p0 and v0, respectively. The equation f can be rolled out over T time steps using a
standard integration method in order to obtain a 3D trajectory p1:T = f(θ), where θ = {η,p0,v0}.
Objective: Our goal is to maximize the likelihood of the observed keypoint trajectory k̃1:T w.r.t.
the physical parameters and initial conditions, θ, and the camera rotation and translation, [R t]:

θ∗, R∗, t∗ = argmax
θ,R,t

p(k̃1:T |θ, R, t), (1)

where we factorize the trajectory likelihood as:

p(k̃1:T |θ, R, t) =
∏
t

p(k̃t|θ, R, t) =
∏
t

N (k̃t|kt(θ, R, t), σ2), (2)

and kt(θ, R, t) are the 2D projection of the simulated 3D trajectory (given by f(θ)),
with kt(θ, R, t) = [p̃x,t/p̃z,t, p̃y,t/p̃z,t], p̃t = M [R t]pt, and M is the intrinsic camera ma-
trix. In this work we assume known camera intrinsics.
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In order to reduce the space of possible solutions (and therefore local minima) of Step 1 above,
we restrict the camera rotation matrix R to have roll = 0. This means the camera cannot rotate
about its projection axis, which is the case in the vast majority of settings. Using the projection
plane in camera coordinates as xy and the projection axis as z, we parametrize R as R(α, β) =
EulerRotationMatrix(α, β, 0), where α, β and γ = 0 correspond to the pitch, yaw and roll, respec-
tively. We found that this parametrization greatly improves results and optimization stability.
Optimization: To maximize (2) we apply an iterative optimization procedure. Given an initial
estimate for θ, R and t, we alternate the following steps until convergence:

1. Keeping θ fixed, maximize (2) w.r.t. R and t using gradient descent;
2. Keeping R and t fixed, maximize (2) wrt θ using gradient descent (with numerical or analyt-

ical (Belbute-Peres et al., 2018) differentiation) or global optimizer (e.g. CEM (Rubinstein,
1997); BO (Mockus, 1989)).

Estimation of the physical parameters over the full sequence (possibly hundreds of timesteps) is
prone to local minima, as parameter dependency can be highly non-linear2. This is further affected
by the use of a non-optimized camera pose at the first iteration. In order to address this, we start by
performing a step of physical parameter and pose estimation on a small initial trajectory interval,
T0, adding m points to the trajectory at each iteration, as described in Algorithm 1 of Appendix B
for all appendices.

3.2. Trajectory proposal and Selection

Proposal: In an unlabeled video, ground-truth 2D keypoints are not available, but keypoint tra-
jectories are required to maximize the likelihood in (2). Joint estimation of physical parameters
with a neural network-based keypoint detector would be hard to optimize due to the difficulty of
backpropagating through physics rollouts and camera projection into a CNN in a stable manner (As
mentioned in the code repository of (Jaques et al., 2020), this is quite challenging, and sometimes
seed dependent). Therefore, we propose a simpler, more robust approach: We extract keypoints
from the first frame of the video using a keypoint detector, and track them using an optical-flow-
based tracker. This produces a set of 2D keypoint tracks k̃1:T , and allows physical parameter+pose
estimation to be performed for each track independently.
Selection: Once the physical parameters and pose are estimated for each keypoint track, the best
tracklet can be identified by isolating the highest projection likelihood (2). However, in order to
prevent trivial keypoint tracklets from being chosen (since a static keypoint will easily attain max-
imal likelihood), we add a temporal entropy term to the likelihood, such as the temporal standard
deviation of the observed trajectory, resulting in the following selection criterion:

nbest = argmax
n∈1..N

p(k̃n
1:T |θ, R, t) + Stddevt(k̃n

1:T ) (3)

This finds the highest entropy trajectory that satisfies the physical motion constraints. The full
V-SysId procedure is depicted in Fig. 2 and pseudocode is shown in Algorithm 1 in Appendix B.
Inference at run-time: Once the V-SysId procedure is complete, keypoints are available for the
objects of interest in each frame in the video. These can be treated as pseudo-ground truth keypoints,
and used to train a neural network (or another visual object detector) by supervised learning, in order
to perform fast keypoint detection at run-time.

2. Global optimizers have a slight advantage in this case, although they require very many iterations to find a good
minimum. Adjoint state methods could also be valuable here.
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Bouncing ball with unknown velocity, initial height, and restitution coefficient.

Archimedes spiral with unknown radius, radius increase rate, and angular velocity.

Figure 3: Discovered object and 3D perspective given the only the family of equations above as
weak supervision. Top: Example bouncing ball scene. More scenes can be found in the Appendix.
Bottom: Spiral robot arm end-effector in a real lab setting.

4. Experiments

Keypoint detection and tracking: We detect keypoints in the first frame by taking a 10x10 grid
across the frame, and use the KLT algorithm to track these across the video. We show comparisons
between grid, ORB, SuperPoint and LF-Net keypoint detectors in the Appendix.
Track filtering: Since the grid keypoint detector extracts hundreds of keypoints, we remove tracks
whose length is less than 60% of the full video, and whose temporal stddev (3) is less than 10
pixel, prior to optimization. This reduces computation, as physical parameter + pose estimation is
performed on only the most feasible tracks.
Physical parameter estimation: The gradient-based BFGS (Fletcher, 2000) is used with numeri-
cal derivatives for physical parameter optimization. Although (Belbute-Peres et al., 2018) provides
an elegant method for analytical differentiation through contacts, we found it much harder to imple-
ment, and ultimately slower, than simple BFGS. Since the equations of motion considered here are
planar, the z component of v0 is constrained to 0. The remaining parameters are learnable.

On the first iteration, the initial position p0 is set to be the reprojection of the first 2D keypoint
k̃0 onto the z = 5 plane in world coordinates. This results in an initial position whose camera
projection is the first keypoint. The initial velocity is v0 = [0, 0, 0]. We found these settings
essential to avoid local minima in the incremental optimization.
Camera pose estimation: BFGS is also used with finite differencing for the camera pose optimiza-
tion step. The parametrization of R on pitch and yaw provides a smooth objective that is easy to
optimize, whereas we found the PnP algorithm to result in large and not necessarily optimal jumps
between steps. We initialize the camera pose parameters as α = 0, β = 0, and t = [0, 0, 0].
Curriculum-based optimization: We use 25 input frames to start the optimization, adding 10
frames per iteration until reaching the full length of the sequence.
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Bouncing ball 18.3, 44.2, 26.0 21.3, 45.9, 24.6 21.6, 26.8, 5.1 40.9, 25.7, 15.2

51.9, 24.9, 27.0 84.0, 27.3, 56.7 323.0, 8.6, 314.4 348.2, 6.8, 341.4

Robot arm end-effector 3.2, 78.6, 75.4 6.0, 73.9, 67.8 8.4, 75.0, 66.5 7.0, 71.6, 64.6

14.8, 76.2, 61.4 19.8, 75.4, 55.6 8.9, 22.1, 13.3 22.5, 13.6, 8.9

Best

Distractor
Distractor

Best Distractor
Distractor

Distractor

Distractor
Distractor

Figure 4: Left: Keypoint tracks propsed by a grid keypoint detector + KLT tracker (short or static
tracks not shown here for improved visualization). Right: Subset of the extracted keypoint tracks
(red) and projected fitted trajectories (blue), with the corresponding projection loglikelihood, en-
tropy, and their sum, over each plot.

4.1. Environments

Franka Emika Panda Robot: This sequence consists of a multi-joint robot arm in a laboratory
setting, where the goal is to find the end-effector’s 3D location and the camera pose relative to this.
The end-effector was programmed to follow an archimedes spiral in an unknown 2D plane. The
spiral is described by: r = a+ b · t; θ = θ0 + ω · t where r, a, b, θ0, ω are unknown parameters, to
be learned by V-SysId, and t is the time in seconds. A sequence of frames for this environment can
be seen on Fig. 3, bottom. The video is 250 frames long, with a resolution of 640× 480.
Simulated bouncing ball: This environment consists of a simulated bouncing ball with moving
distractor objects. The bouncing ball follows the equation of motion: ay = −g , if y > 0, and
vx = vx0 ; vz = 0; vy = −ϵ vy , if y = 0, where a is the acceleration, v is the velocity, y is the
ball height, ϵ ∈ [0, 1] is the restitution coefficient, and g = 9.8 is the gravity. The ball moves in
the z = z0 plane with constant horizontal velocity, with the pose parameters R, t being responsible
for correctly inferring the location of this plane relative to the camera. Photorealistic scenes are
rendered in Blender following the Clevr protocol (Johnson et al., 2017), and trajectories are rolled
out using Euler integration.

There are two distractor objects on the floor scene, one moving in a circle, and another in a
straight line. This environment is used to obtain thorough quantitative results regarding the physical
parameter and camera pose estimation abilities of V-SysId. To this end we generate 108 sequences
along the following factors of variation: initial height; initial horizontal velocity; restitution coeffi-
cient; camera location; moving/static distractor objects. The physical parameters y0, vy0 , vx0 , η, and
floor height are unknown, and discovered by the optimization process of V-SysId. The sequences
are 120 frames long, with a resolution of 320× 240.
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Figure 5: Visualization of the curriculum-based optimization iterations for the spiral robot (top) and
bouncing ball (bottom) scenes. The red line corresponds to the extracted keypoint track and the
solid blue line corresponds to the trajectory with parameters estimated so far. The dashed blue line
corresponds to the predicted trajectory over the full length of the sequence, under the parameters
estimated so far. We can see that the curriculum-based optimization progressively improves the
physical parameter and pose estimates.

4.2. Visualizing keypoint proposal and optimization

We start by visually exploring the results obtained by V-SysId on the spiral robot and bouncing ball
datasets. Fig. 3 shows the keypoints discovered for two of the scenes. These show that V-SysId
correctly identifies objects of interest according to the given equation of motion.

The keypoint proposal and selection process is visualized further in Fig. 4. Fig. 4 (left) shows
the proposed keypoint tracks extracted at the proposal stage (Sec 3.2), and Fig. 4 (right) shows
the results obtained by the optimization process (Sec 3.1) on a subset of these, ordered by their
selection criterion score (the third number above each plot). The trajectory chosen by V-SysId
according to the maximum entropy criterion is labeled as “Best”. These figures highlight several
important points: Firstly, V-SysId is successful despite the large number of distractor keypoints
from the various moving parts of the scene (most notable in the robot arm sequence). Secondly and
crucially, the optimization process and the maximum entropy criterion are able to fit and identify
the best trajectory, correctly discovering the object corresponding to the motion of interest.

In order to further understand the curriculum-based optimization process, we visualize the op-
timization iterations of two keypoint tracks selected by V-SysId in Fig. 5. We can see that upon
completion (2nd column), the orientation of the trajectory in 3D space is correctly identified by the
model, and that each iteration progressively adjusts both the trajectory’s shape (parametrized by the
physical parameters) and the camera pose. This leads to a stable optimization procedure where both
physical parameters and camera pose are identified.

4.3. Evaluating parameter estimation

Even though the scale is generally unidentifiable (this and other limitations are discussed in the
Appendix), in the case of a bouncing ball both the initial height and the restitution coefficient are
exactly identifiable. This allows us to compare their learned values to the ground truth values used
for the simulations. In addition, we can compare the camera angles identified to those used in
simulation in order to evaluate the quality of the extrinsic camera calibration.

The percentage error in restitution coefficient, initial height (distance to floor), and camera angle
relative to the simulation ground-truth can be seen in Table 1. All parameters are found with decent
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Distractors
Restitution

coefficient (%)
Initial height

in 3D (%)
Camera
angle (◦)

With 3.8± 1.5 9.7± 4.0 8.0± 1.8
Without 2.7± 0.8 6.7± 3.0 9.9± 2.6

Table 1: Relative error (percentage) between the ground-truth simulation physical parameters and
camera pose, and those estimated by V-SysId, for the bouncing ball scene. Error bounds correspond
to a 95% confidence interval.

Environment RMSE (pixel distance)
Simulated bouncing ball (240× 320) 8.41± 1.50
Spiral robot (480× 640) 3.89± 0.45

Table 2: Detection error on the held-out test set of the keypoints extracted by the inference neural
network, after training using the keypoints discovered by V-SysId as supervision. Bounds corre-
spond to 95% confidence interval.

accuracy, with physical parameters being slightly more accurate than the camera pose. Notably, the
errors are similar with and without moving distractors (within 95% confidence intervals), showing
that V-SysId is able to correctly identify the object of interest even in the presence of distractor
objects. In order to highlight the importance of the curriculum-based optimization strategy, we
compare the projection likelihood using our incremental alternate optimization with alternate opti-
mization using the full sequence at every step. Averaging over the bouncing ball scenes, we obtain
projection RMSE (pixels) of −9.31 and −109.35, respectively. A similar decrease in performance
was observed when using CEM and BO optimizers. This shows that gradually increasing sequence
length and using a gradient-based optimizer is key to convergence.

4.4. Tracking by supervised keypoint detection

Once detected, the keypoints discovered by V-SysId can be used as pseudo-ground-truth to train
a supervised keypoint detector. For the bouncing ball dataset, the training set consists of 2838
pseudo-labeled frames, and the test set consists of 948 hand-labeled frames from unseen scene
configurations. For the robot dataset, the training set consists of 250 pseudo-labeled frames, and the
test set consists of 150 hand-labeled frames from unseen end-effector positions. For the supervised
keypoint detector, we use a fully convolutional neural network with 6 ReLU layers with 32 channels,
with stride 2 on the 3rd layer, and 2 output channels with 2D softmax activation. These maps are
converted to [x, y] coordinates by taking the softmax-weighted mean over the output coordinate
grid, as per (Jakab et al., 2018). The input images have a downsampling factor of 4 relative to the
original frame resolutions, but we report the keypoint error in the original image space. We train the
networks for 20 epochs with batch size 16, and Adam (Kingma and Ba, 2014) (lr = 3× 10−4).

Results are shown in Table 2. The supervised keypoint detector produces highly accurate de-
tections, confirming the quality and usability of the keypoints discovered by V-SysId even on small
datasets of high-resolution scenes.

4.5. ROI discovery in breathing videos using RANSAC

To further demonstrate the applicability of V-SysId to real world scenarios, we collected 8 videos
of people breathing under different pose, lightning, clothing and distractor settings, with the goal
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Figure 6: Top: Green dots correspond to keypoints identified by V-SysId as relevant for determining
the breathing rate. The red dots are discarded keypoints. Note that some the videos contain distrac-
tors that move in the scene (rollouts of scenes are shown in the Appendix). V-SysId with RANSAC
is able to automatically discover regions of interest. Bottom: Timeseries (blue) and sinusoidal fit
(orange) of one keypoint in the ROI for each of the scenes.

of discovering the relevant region region of the image and using it for breathing rate identifica-
tion. The true breathing rate was obtained by manual annotation. Videos contain between 150 and
300 frames, at 30 fps and 480x640 resolution. Unlike seminal work in video-based physiology
and plethysmography (de Boer et al., 2010), V-SysId does not require careful hand selection of the
regions of interest and is robust to the existence of distractor motions in the scene. V-SysId simulta-
neously identifies the region of interest (here, the set of relevant keypoints, rather than a single one)
corresponding to sinusoidal motion, and the underlying breathing rate.
Results V-SysId can be easily modified to allow discovery of sets of keypoints constituting a region-
of-interest. We use the chest video dataset as a prototypical application. The goal is to discover the
keypoints in the video corresponding to sinusoidal motion. We start by extracting keypoint tracks as
in Stage 1 of V-SysId (filtering out any tracks with a temporal stddev less than 0.7), and transform
these 2D tracks into 1D timeseries by taking the projection onto the 1st spatial PCA component,
standardising, and fitting to a sinusoid as per Stage 2 of V-SysId (without the 3D component). To
identify the best set of tracks, we use a RANSAC inlier count, by measuring the error between a
track’s fitted sinusoid and all the other extracted tracks, and considering a track an inlier if the MSE
< 0.75.The inlier count replaces the likelihood term in the selection criterion. The ROI is the set
of inlier tracks of the best track. Fig. 6 (top) shows the keypoints discovered for the 8 videos, with
Fig. 6 (bottom) showing the timeseries and its sinusoidal fit for one of the keypoints in the ROI. The
model correctly identifies keypoints corresponding to the chest area, while ignoring distractor and
lower-body keypoints. Comparing the respiratory periods identified with V-SysId with the annotated
values results in an MSE of 0.016 (in seconds/breath). In contrast, a baseline that uses the mean
of the true rates for all videos obtains an MSE of 0.085. These results demonstrate the accuracy
of V-SysId for physical parameter estimation from an unknown region of interest, using only the
knowledge that the motion of interest is sinusoidal as supervision.

5. Conclusion and future work

This paper introduced V-SysId, a 3-stage method for dynamics-constrained keypoint discovery and
system identification, which alternates between maximum likelihood extrinsic camera calibration
and maximum likelihood physical parameter estimation for motion tracks detected in video. We
enhance the stability of this optimization through the inclusion of a curriculum-based optimisation
strategy, alongside a maximum entropy selection criterion for keypoint identification. Future av-
enues of work include extensions to multiple interacting objects, rigid or fluid body dynamics from
video, and incorporation with a neural network for material and volume inference from vision.
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