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Abstract
Behavioral modeling of nonlinear dynamic systems for control design and system monitoring of
technical systems is a non-trivial task. One example is fault diagnosis where the objective is to
detect abnormal system behavior due to faults at an early stage and isolate the faulty component.
Developing sufficiently accurate models for fault diagnosis applications can be a time-consuming
process which has motivated the use of data-driven models and machine learning. However, data-
driven fault diagnosis is complicated by the facts that faults are rare events, and that it is not always
possible to collect data that is representative of all operating conditions and faulty behavior. One
solution to incomplete training data is to take into consideration physical insights when designing
the data-driven models. One such approach is grey-box recurrent neural networks where physical
insights about the monitored system are incorporated into the neural network structure. In this
work, an automated design methodology is developed for grey-box recurrent neural networks using
a structural representation of the system. Data from an internal combustion engine test bench is used
to illustrate the potentials of the proposed network design method to construct residual generators
for fault detection and isolation.
Keywords: Recurrent neural networks, physics-informed machine learning, fault diagnosis.

1. Introduction

This work is motivated by the problem of fault diagnosis of technical systems which considers
monitoring the system health, including detection of occurring faults and isolating their root cause.
One of the main principles of fault diagnosis is to detect inconsistencies between sensor data and
predictions based on a model of the nominal system behavior, e.g., using residual generators. Two
of the main fields are model-based diagnosis and data-driven diagnosis.

Model-based diagnosis uses a mathematical model of the system to be monitored derived from
physical insights to construct residual generators. Residuals have some attractive properties, with
respect to using the original sensor data as features, such as filtering out system dynamics while
still being sensitive to faults. Fault detection and isolation is done by matching the residual patterns
with different fault hypotheses. An advantage of model-based diagnosis, with respect to data-driven
methods, is that it is possible to isolate unknown faults by using model analysis and sets of residual
generators where the effects of different faults on the residual outputs are decoupled.

Developing sufficiently accurate models for residual generation is a time-consuming process,
especially for complex or large-scale systems, and requires expert knowledge about the system to
be modeled. This have motivated the use of data-driven modeling and machine learning to design
diagnosis systems (Qin, 2012; Xu and Saleh, 2021). However, collecting representative training data
for fault diagnosis applications is a difficult task. Many types of faults could occur in the system
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and each type of fault can have many different realizations due to varying operating conditions and
fault magnitudes (Jung et al., 2018). Therefore, training data is expected to be incomplete, e.g.,
due to unknown fault classes, which complicates the use of conventional multi-class classification
approaches (Dong et al., 2017; Sankavaram et al., 2015).

Recurrent Neural Networks (RNN) are powerful black-box models that can capture the behavior
of non-linear dynamic systems (Arsie et al., 2006). Neural networks have a flexible model struc-
ture making them useful in many different applications. However, a general drawback of general-
purpose models, such as neural networks, is to find a sufficiently flexible model structure to model
the behavior of a given system. This is often done based on the developer’s experience and trial and
error. In addition, if training data is only available from nominal operation, it is not trivial how to
use data-driven models to identify the root cause of abnormal system behavior. Designing grey-box
RNN models based on physical insights for residual generation has been proposed in, e.g., Pulido
et al. (2019) and Jung (2019). In Jung (2019), a simulation study showed that residuals computed
using grey-box RNN models, can isolate unknown fault classes. The solution is to select network
structures that make the residuals only sensitive to faults in certain parts of the system. However, to
make this useful for fault diagnosis in complex systems, tools are needed for systematic design of
grey-box RNN models with desired robustness properties (sensitivity to different fault classes) even
though training data from faults is limited.

The objective of this research is to develop data efficient machine learning models, with focus
on Recurrent Neural Networks (RNN), for dynamic systems when training data are limited and not
representative of all relevant data classes. Instead of trying to fit a general-purpose model structure
to data, the aim is to use physical insights to derive a neural network structure that models the
causal relations, which reduces the risk of overfitting, while at the same time is sufficiently flexible
to model the dynamic behavior of the system. With limited training data, the goal is not only to
maximize the model accuracy but also to make predictions robust to disturbances in the system,
improve generalizability, and to be able to classify data from unknown classes.

1.1. Problem Statement

The focus in this work, is to develop an automated design process of grey-box RNN models for mod-
eling the behavior of nonlinear dynamic systems based on a structural model representing causal
information and physical insights about the system. The purpose is to systematically find neural
network structures that model different parts of the system and capture the causal relationships be-
tween the input signals and the predicted output signal for residual generation. The motivation is to
design data-driven residuals that can be used to detect and isolate faults even though training data
from faults is not available.

Structural models are bi-partite graphs that represent the qualitative relationship between differ-
ent model variables and can be used even though the analytical relationship is not completely known
(Cassar and Staroswiecki, 1997). The usefulness of structural models in model-based diagnosis for
fault diagnosis analysis and diagnosis system design, such as residual generation and sensor place-
ment, has been proved in, e.g., Pulido and González (2004); Krysander et al. (2007); Frisk et al.
(2017).
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1.2. Related Research

The benefits of combining physical insights and machine learning to model dynamic systems have
been discussed in, e.g., Brunton et al. (2016); Choudhary et al. (2020) and Pulido et al. (2019).
The connections between different neural network structures and ordinary differential equations
have been analyzed in, e.g., Lu et al. (2018) and Chen et al. (2018). Including physical insights
about the system to design grey-box neural networks have been proposed in previous works, such
as Pulido et al. (2019); Wu et al. (2016) and Hofmann et al. (2019). In Choudhary et al. (2020),
Hamiltonian dynamics are incorporated in the neural network structure. The authors in Wang et al.
(2021) propose a training method for grey-box non-linear dynamic models used to forecast COVID-
19 dynamics. In Pizzuto and Mistry (2021), neural networks are trained using a physics-based loss
function to model robotic systems. With respect to previous work, an automated design of grey-box
RNN is developed which combines structural models and deep learning techniques.

Neural networks have been used for fault diagnosis in many different applications (Lei et al.,
2020). In Bidarvatan et al. (2014), neural networks are used to develop a grey-box simulation model
of an HCCI engine. A deep convolutional neural networks approach is proposed in Li et al. (2018)
for prognostics applied to an aero-engine dataset. In Rahimilarki and Gao (2018), neural networks
are used for fault diagnosis of a wind turbine. A hybrid system identification approach combin-
ing mathematical models and neural networks is proposed in Lu et al. (2019) where a weighted
prediction is computed from the model-based and data-driven models. Grey-box RNN, based on
state-space neural networks (Zamarreno et al., 2000), is proposed in Pulido et al. (2019) for resid-
ual generation to perform fault diagnosis of an evaporator in a sugar beet factory. With respect to
previous works, a data-driven method for residual generation is proposed for isolation of unknown
faults using grey-box RNN where the network structure is selected based on a structural model of
the system.

2. Structural Analysis of Dynamic Systems

Structural analysis can be used to analyze fault diagnosis properties of complex non-linear dynamic
systems and for systematic design of diagnosis systems (Frisk et al., 2017). A structural modelM =
(E ,X ) is a bipartite graph describing the relationship between model equations E = {e1, e2, ...} and
variables X = {x1, x2, ...}, i.e., which variables are included in each model equation. The bipartite
graph can be represented using a biadjacency matrix where an X in row (i, j) means that variable xj
is included in equation ei. Model variables are partitioned into unknown variables, known variables,
and fault signals that model how the different faults are affecting the system.

The rows and columns of the biadjacency matrix can be reorganized using the Dulmage-Mendelsohn
(DM) decomposition (Dulmage and Mendelsohn, 1958) to analyze the structural redundancy prop-
erties of the system (Frisk et al., 2017). The DM decomposition partitions the biadjacency matrix
into an under-determined part M−, an exactly determined part M0, and an over-determined part
M+ as illustrated in Figure 1. The over-determined part M+ = (E+,X+) has more equations
than unknown variables and describes the part of the system that can be monitored using residual
generators (Krysander et al., 2007). The degree of structural redundancy of a modelM is defined
as ϕ(M) = |E+| − |X+|where | · | denotes set cardinality (Krysander et al., 2007). In general, a
higher degree of redundancy means that there is more freedom to design residual generators.

Let efi denote the model equation modeling where the fault fi manifests in the system. A fault
that enters the system somewhere modeled in the over-determined part, i.e., efi ∈ M+, is said to
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Figure 1: Dulmage-Mendelsohn decomposition of a model’s biadjancency matrix.

be structurally detectable. Similarly, a fault fi is said to be structurally isolable from fault fj if
efi ∈

(
M\ efj

)+, i.e., fault fi is structurally isolable if efi is still in the over-determined part when
the equation efj is removed from the model. In principle, structural fault detectability and isolability
depend on if it is possible to design a residual generator modeling the part of the system where the
fault fi occurs or not. Over-determined sets that have a degree of redundancy equal to one, i.e., a set
of equations where no subset have redundancy, are called Minimally Structurally Over-determined
(MSO) sets (Krysander et al., 2007). An MSO set represents a minimal redundant equation set that
can be used for residual generation. The MSO sets are interesting from a fault isolation perspective
since they model a minimal part of the system that can be monitored using a residual.

2.1. Modeling Causal Relations Using Computational Graphs

If one equation is removed from an MSO set, the remaining set is exactly determined. This means
that there is an equal number of unknown variables and equations. A matching algorithm can
find a computational sequence that describes how to compute all unknown variables in the exactly
determined set (Frisk et al., 2012). When all unknown variables have been computed, the redundant
equation can be used as a residual equation.

The output from the matching algorithm can be represented by a computational graph. A com-
putational graph is a directed graph where nodes either denote a variable or a function and edges
show how the output of each node are fed as input to other nodes. The order of how the state
variables is computed in the computational graph will determine its causality. If all the state vari-
ables are computed by integrating their derivatives, the computational graph is said to have integral
causality. If the state variables are computed and then differentiated, the computational graph is said
to have derivative causality. If the computational graph contains both states that are integrated and
differentiated, it is said to have mixed causality (Frisk et al., 2012). Note that the one MSO set can
be used to derive computational graphs with different causality depending on the matching, which
is illustrated in the following example:

Example 1 Consider the following MSO set

e1 : ẋ1 = g1(u) e2 : ẋ2 = g2(x1) e3 : y = x2 e4 : ẋ1 =
dx1
dt

e5 : ẋ2 =
dx2
dt

(1)

where g1 and g2 are assumed invertible. When each of the equations e1, e2, and e3, are selected
as residual equation, respectively, the resulting computational graphs are given in Figure 2. The
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Figure 2: An illustration of three different computational graphs with different causalities using the
same MSO set (1) but different residual equations.

computational graph when e1 is used as residual equation has derivative causality, when graph e2
is used has mixed causality, and integral causality when e3 is used.

The computational graph gives the structural relationship between input and output variables and
state variables, even though the analytical relationships are unknown. This provides useful informa-
tion to incorporate physical insights and causal structure into the network structure of an RNN.

3. Residual Generation Using Grey-box Recurrent Neural Networks

Time-discrete non-linear state-space models can be modeled using RNNs. Here, computational
graphs are derived from MSO sets with integral causality. These MSO sets are Differential Alge-
braic Equations (DAE), with an index equal to zero or one which means that they can be used to
formulate residual generators in state-space form (Ascher and Petzold, 1998), i.e.,

ẋ = ḡ(x, u)

r = y − h(x, u)
(2)

where x are state variables, u are known inputs to the RNN, y is the signal to predict, and ḡ =
(g1, g2, . . .)

T . Note that u could include both actuator and sensor signals depending on the com-
putational graph. The arguments to each function gi(x, u) : R|x|+|u| → R are determined by
backtracking from each corresponding state derivative ẋi in the computational graph until a state
variable x or an input signal u is found which give the arguments to each function gi(x, u). Simi-
larly, the arguments to the function h(x, u) : R|x|+|u| → R are determined by back-tracking from
the residual equation in the computational graph until a state variable or and input signal is found.

When the arguments have been found, the time-continuous state-space model (2) can be formu-
lated in discrete-time, using Euler forward, as

xt+1 = xt + T ḡ(xt, ut)

rt = yt − h(xt, ut)
(3)

where T is the sampling time.
Once the structure (3) of the discrete-time state space model is determined, an RNN is generated

with the same structure (Jung, 2019). Here, the non-linear functions gi and h are modeled as three
fully connected layers where the last layer has a scalar output and the input vector to the first layer
corresponds to the arguments in (3) derived from the computational graph.
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Fig. 1. Overview of the engine. The model consists
of six receivers for each of which the pressure
variable is shown.

speed at its highest possible level, which provides
a fast transient response, or to lower the back
pressure, which ensures good fuel economy. This
leads to two different control strategies that will
be described in section 6.

Matching up a compressor, a turbine, and an
engine is a complex task that involves several
steps. The following procedure is a simplification,
but it illustrates the key steps: 1) Determine
engine displacement and maximum engine power,
which results in data on the boost level and on
the maximum air mass flow. 2) Determine the
compressors that fulfill those requirements and
that reach the desired boost pressure without
surging at the lowest flows possible. 3) Determine
the turbines that drive the compressors as closely
to the surge line as possible without generating
too high a back pressure. Based on this procedure,
simulations and experiments are done to find the
compressor and the turbine that best match a set
of given performance criteria.

Three-way catalytic converters are typically used
to reduce emissions by requiring the engine to
operate at stoichiometric conditions, i.e., λ =
1. We thus focus our investigation on engines
operating at λ = 1, thus ignoring the problem
that current turbine materials cannot withstand
temperatures above 1300 K. Current practice is to
protect the turbine at high air mass flows by fuel
enrichment, which significantly raises the levels of
pollutants and the fuel consumption.

3. OPTIMAL FUEL ECONOMY:
FORMULATION OF THE PROBLEM

The brake-specific fuel consumption BSFC is de-

fined as the fuel mass flow
∗
mf divided by the

generated power P

BSFC !
∗
mf

P
=

∗
mf

Tq 2π N

where N is the engine speed in revolutions per
second. One problem with the definition of BSFC
is that there is a singularity at zero torque.
Therefore it is advantageous to look at 1

BSFC =

Tq 2π N/
∗
mf which then has to be maximized

for best fuel efficiency. Optimizing the cruising
scenario with constant speed for the best fuel

economy is thus the same as maximizing Tq/
∗
mf .

For cruising we now also consider the maximiza-
tion under limited resources, that is a desired fuel

flow
∗
mf,des, which now becomes

max Tq(uth, uwg,
∗
mf )

subject to
∗
mf (uth, uwg) =

∗
mf,des

A constant fuel flow corresponds to a constant
air flow, since we are restricting engine operation
to stoichiometric conditions. This leads to the
following formulation of the problem

max Tq(uth, uwg,
∗
ma)

subject to
∗
ma(uth, uwg) =

∗
ma,des

(1)

4. MODELING OF A TURBOCHARGED
ENGINE

The structure incorporates a number of control
volumes which are separated by flow restrictions
(see Figure 1). As a detailed explanation of the
complete model would exceed the scope of this
paper, only the components necessary for study-
ing the problem of fuel optimality are described
in the following paragraphs.

The formulation of the fuel-optimal operation of
turbocharged SI engines shows that models for
engine torque and engine air-mass flow are nec-
essary. Since the control inputs affect the intake
and exhaust manifold pressures, the models must
describe how these pressures influence the torque
levels and the air flow.

4.1 Engine Air Mass Flow

The air mass flow to the engine is modeled using
the volumetric efficiency ηvol which provides the
data necessary to calculate the amount of fresh
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Figure 3: Left: A schematic of the model of the air flow through the engine (used with permission
from Eriksson et al. (2002)). Right: Structural representation of the engine model.

4. Experiments

As a case study, the air path through an internal combustion engine is considered which is illustrated
in Figure 3. The engine is an interesting case study because of its dynamic non-linear behavior and
wide operating range. Due to the coupling between the intake and exhaust flow through the turbine
and compressor, a fault somewhere in the system will not have an isolated impact in that component
but is likely to affect the behavior in other parts of the system as well.

4.1. Model and Data

The structural model is based on a mathematical mean value engine model that has been used in
previous works for model-based residual generation, see, e.g., Jung et al. (2018) and Ng et al.
(2020). The mathematical model is similar to the model described in Eriksson (2007), which is
based on six control volumes and mass and energy flows given by restrictions, see Figure 3.

A structural representation of the engine model is shown in the right plot in Figure 3 where a
mark in position (i, j) denotes that the variable xj is included in equation ei. The model variables are
organized in unknown variables X (including state variables), known variables Z , including known
actuators and sensor outputs, and fault signals F . To clarify the relation between state variables
and their derivatives in the structural model, state variables are marked as I and their derivatives as
D in the figure (Frisk et al., 2017). The structural model has 94 equations, 90 unknown variables,
including 14 state variables and their derivatives, 11 fault variables, and 10 known variables.

Operational data for training and validation has been collected from the engine test bench during
transient operation. To cover a large range of operating conditions, data are collected from the
engine when it follows the Worldwide Harmonized Light Vehicles Test Procedure (WLTP) cycle.

The set of available sensors in the engine corresponds to a standard setup used in a conventional
car (Jung et al., 2018) and the signals are sampled in 20Hz to capture the dynamics of the engine.
The known variables include sensors measuring pressures (ypic, ypim, ypamb), temperatures (yT ic,
yTamb), air mass flow (ywaf ), injected fuel (umf ), throttle position (yxpos), and engine speed (yω),
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Figure 4: Example of engine data from fault-free and faulty operation when there is a fault in sensor
ypim. Note that the sensor fault affects the system behavior and is visible in other signals
as well, e.g., ypic.

and also, the wastegate actuator signal (uwg), see Figure 3. An example of signal outputs from
nominal and faulty operation (fault in sensor ypim) is shown in Figure 4. Each signal is normalized
such that nominal signal output is in the range of about [0, 1].

Experimental data have been collected from three different sensor faults (fypic, fypim, fywaf )
and a leakage before the throttle (fiml). Multiplicative sensor faults of different magnitudes have
been injected by modifying the sensor signal directly in the engine control unit during operation.
Each fault scenario represents a constant fault magnitude, but the impact of each fault varies with
the operating conditions of the system.

4.2. Recurrent Neural Networks

An artificial neural network models the relationship between a set of inputs u ∈ Rnu and outputs
y ∈ Rny using a computational graph. Each node represents a non-linear operation on the weighted
sum of the node inputs, xin, usually in the form xout = g(aTxin + b). The non-linear function g(·)
is called an activation function, a is a vector of weights, and b is a bias term. Some examples of
common activation functions are the rectified linear unit (ReLU), g(ξ) = max (0, ξ), and different
sigmoid functions, such as the logistic function or arc tangent function (Aggarwal, 2018).

Recurrent neural networks are used to model dynamic systems and time-series data. Internal
states are modeled in the RNN by duplicating the network for each time instance and add connec-
tions in some nodes between different time steps, similar to state variables in a state-space model
(Aggarwal, 2018). The model structure of neural networks is commonly designed such that the
nodes are organized in different layers where the inputs to each node are the output of nodes in the
previous layer and the nodes in the same layers have the same activation function. The first layer is
referred to as the input layer, where data is fed into the neural network. The last layer is the output
layer, which returns the output from the neural network model. The in-between layers are referred
to as hidden layers.
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Figure 5: Left: The matching of MSO27 that is used to derive the computational graph. Starting
from the lowest row, each unknown variable on the diagonal can be computed based on
previously computed unknown variables and state variables. Right: Schematic of the
resulting grey-box RNN model that is used to estimate the sensor output ŷpic,t.

4.3. Residual Generation

Based on the structural model, a set of 144 MSO sets are identified (Frisk et al., 2017). A causality
analysis is performed on each of the 144 candidate MSO sets that identified 17 MSO sets that can
be used to generate computational graphs with integral causality. Out of these 17 MSO sets, 21
different computational graphs with integral causality are generated. The subset of computational
graphs where the sensor equations modeling ypim, ypic, or ywaf , are used as residual equation, is
used to generate grey-box RNN models. The other computational graphs have residual equations
based on sensors measuring slowly varying states, such as temperatures, that do not show sufficient
excitation in training data, see Figure 4, and are not considered in this case study.

The computational graph of MSO27, which is MSO set number 27, is derived from the matching
shown to the left in Figure 5 going down-to-up where each variable in the diagonal can be computed
based on the variables marked on the same row. Rows with I on the diagonal denotes computation
of state variables by integrating their derivatives. The resulting grey-box RNN model is shown
to the right in Figure 5. The substructures in the grey-box RNN model representing the non-linear
functions gi(·) and h(·) are modeled using a three fully connected layer structure and a scalar output.
The dimension of the input layer is determined from the computational graph. Different activation
functions and number of nodes in each layer have been evaluated where ReLU and 256 nodes in
each layer gave the overall best results and are therefore used in all grey-box RNN models in this
case study.
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Figure 6: Left: The upper plot shows the loss after each epoch when training neural networks
predicting ypic and the lower plot shows the loss when training neural networks predicting
ypim. Right: The prediction performance of three of the grey-box RNN models.

4.4. Training

Each neural network is trained using only fault-free data where the time series data is partitioned into
a set of 19 equally sized batches of 600 samples covering different operating conditions. Training
is done in Python, using PyTorch (Paszke et al., 2017), by minimizing the mean square prediction
error 1

N

∑N
t=1(yt − ŷt)2. The initial values of the state variables are unknown and are set to some

reasonable reference value that is used for all batches. The optimization algorithm ADAM (Diederik
and Kingma, 2015) is run for 2000 epochs for each model with an adaptive learning rate starting at
5 ∗ 10−4 which is reduced every 10th epoch by 3%. The loss after each epoch is shown in Figure 6
for grey-box RNN models predicting ŷpic and grey-box RNN models predicting ŷpim.

4.5. Evaluation

Predictions from three grey-box RNN models are shown in the right plot in Figure 6. It is visible
that the different grey-box RNN models capture the general dynamic behavior of the different sensor
signals. Similar prediction performance is achieved for the remaining grey-box RNN models. The
residual outputs have a small bias in the datasets that are likely to be caused by incorrect initial
conditions of the state variables. If it is assumed that there are no faults affecting the residual output
when a scenario begins, the residual bias is removed by subtracting the median of the residual output
computed from a short time interval in the beginning of each dataset.

Fault detection performance using the RNN models for residual generation is evaluated using
data from different fault realizations. The left plot in Figure 7 shows four of the residuals plotted
as histograms comparing different fault scenarios and nominal operation. The Receiver Operating
Characteristics (ROC) curve is computed for different residuals and fault magnitudes. The right plot
in Figure 7 shows detection performance by plotting the area under the curve (AUC) as a function of
fault size. Multiplicative sensor faults are evaluated for magnitudes in the range [-20%, 20%]. The
AUC values are normalized as 2 ·(AUC−0.5) where a value close to zero means that the fault is not
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Figure 7: Left: Histograms of residual outputs during different fault scenarios. The blue curve
represents the residual output during fault-free case and the red curve when a fault is
present. Right: Normalized AUC as a function of fault size. The highlighted subfigures
show scenarios when a sensor fault is affecting the sensor signal that is predicted by the
grey-box RNN.

affecting the residual output. Cases when the sensor fault is affecting the predicted sensor signal in
each corresponding residual are highlighted in gray. It is visible that these faults are easiest to detect
by each residual. Some faults have little or no impact on the residual outputs, e.g., the residuals
based on MSO21, MSO55, and MSO69 are not sensitive to fault fywaf since AUC is almost zero for
all fault magnitudes.

5. Concluding Remarks

This paper describes how techniques used in, e.g., model-based fault diagnosis, are useful for data-
driven modeling using physical insights. The proposed methodology can be used to automatically
construct grey-box RNN models from structural models to model nonlinear dynamic systems. An
advantage of the proposed method is that the neural network structure is derived based on physical
insights about the system and is able to capture the causal relations between signals when training
data from different faults is limited. The results from the engine case study show that the generated
grey-box RNN models can capture the dynamic behavior of the engine and diagnose unknown
faults. As future work, other relevant applications should be investigated are variable selection to
predict a certain sensor output, and design of predictive models that are robust to disturbances even
though the models are trained using only nominal training data.
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