
Proceedings of Machine Learning Research vol 168:1–13, 2022 4th Annual Conference on Learning for Dynamics and Control

Resiliency of Perception-Based Controllers Against Attacks

Amir Khazraei AMIR.KHAZRAEI@DUKE.EDU

Henry Pfister HENRY.PFISTER@DUKE.EDU

Miroslav Pajic MIROSLAV.PAJIC@DUKE.EDU

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27705

Editors: R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, M. Kochenderfer

Abstract
This work focuses on resiliency of learning-enabled perception-based controllers for nonlinear dy-
namical systems. We consider systems equipped with an end-to-end controller, mapping the per-
ception (e.g., camera images) and sensor measurements to control inputs, as well as a statistical or
learning-based anomaly detector (AD). We define a general notion of attack stealthiness and find
conditions for which there exists a sequence of stealthy attacks on perception and sensor measure-
ments that forces the system into unsafe operation without being detected, for any employed AD.
Specifically, we show that systems with unstable physical plants and exponentially stable closed-
loop dynamics are vulnerable to such stealthy attacks. Finally, we use our results on a case-study.
Keywords: resiliency of learning-enabled controlers, perception-based control, anomaly detection.

1. Introduction
Due to the recent advances in deep learning and perception, the next generation of control systems
is incorporating perception modules to extract information from the environment for control and de-
cision making. This includes end-to-end control systems that directly incorporate camera images,
LiDAR 3D point clouds, and other sensor information to compute control inputs at runtime (e.g., Pan
et al. (2017); Rausch et al. (2017); Jaritz et al. (2018); Polvara et al. (2018); Codevilla et al. (2018)),
as well as controllers that first extract state information from the images followed by classic feed-
back controllers (e.g., Dean and Recht (2020); Dean et al. (2020b,a)). Yet, despite the tremendous
promise, resiliency of perception-based controllers to well-documented adversarial threats has not
be well addressed, limiting the use of these learning-enabled controllers in real-world applications.

In particular, the main focus of adversarial machine learning has been on vulnerability of deep
neural networks (DNNs) to small input perturbation, effectively focusing on robustness analysis of
DNNs; e.g., targeting DNNs classification or control performance when bounded noise is added to
the images in camera-based control systems. On the other hand, an attacker capable of compromis-
ing system perception/sensing would not limit their actions to bounded measurement perturbation.
Moreover, little consideration has been given on potential impact of stealthy (i.e., undetectable)
attacks, which are especially dangerous in the control context.

Consequently, in this work, we focus on resiliency analysis of perception-based control systems
under attack. Specifically, we consider the impact stealthy false-data injection attacks can have on
these learning-enabled control systems. Our notion of attack stealthiness is closely related to the one
by Bai et al. (2017) for non-perception systems, where an attack is considered stealthy if and only
if it is undetected by an optimal detector. However, unlike Bai et al. (2017), we do not restrict our
analysis (and stealthiness requirement) only to steady-state behaviors. For different threat models
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(mainly the level of information the attacker has about the system), we derive conditions that there
exists a stealthy and effective attack sequence forcing the system far from the operating point. In
particular, we assume the attacker knows the open-loop plant dynamics, and differentiate the cases
where they have (or do not have) access to an estimation of the plant’s state during the attack.
We show that under these conditions, the probability of attack remaining stealthy can be chosen
arbitrarily close to one, if the attacker’s state estimation error can be arbitrarily close to zero. When
the attacker does not have access to an estimate of the state, the stealthiness level of the attack
depends on the system’s performance in attack-free operation. Specifically, we show that unlike
for linear time-invariant (LTI) systems where stealthy and effective attacks are independent of the
control design, for nonlinear systems the level of stealthiness is closely related to the level of closed-
loop system stability – i.e., if the closed-loop systems is more stable, the attack can have stronger
stealthiness guarantees. On the other hand, the attack impact (i.e., control degradation) fully depends
on the level of open-loop system instability (e.g., the size of unstable eigenvalues for LTI systems).

Related Work. The initial work by Szegedy et al. (2013) on adversarial example generation
showed that DNNs are vulnerable to small input perturbations. Afterward, the majority of works
have applied this idea to adversarial attacks on physical world such as malicious stickers on traffic
signs to fool the detectors and/or classifiers (e.g., Eykholt et al. (2018); Song et al. (2018); Papernot
et al. (2017); Sun et al. (2020)). However, all these methods only consider classification tasks in a
static manner; i.e., without consideration of the longitudinal (i.e., over time) system behaviours.

Recent works by Boloor et al. (2020, 2019); Sato et al. (2020); Jia et al. (2020); Yoon et al.
(2021); Hallyburton et al. (2022) have studied the vulnerability of perception-based autonomous
vehicles in a longitudinal way. For instance, Boloor et al. (2019, 2020) consider autonomous vehi-
cles with end-to-end DNN controllers that directly map perceptual inputs into the vehicle steering
angle, and target the systems by painting black lines on the road. However, all these works consider
specific applications and address attack impact in an ad-hoc manner, limiting the use of their results
in other systems/domains. Further, they lack any consideration of attack stealthiness, as injecting
e.g., adversarial patches that only maximize the disruptive impact on the control can be detected by
most ADs. For instance, Cai and Koutsoukos (2020) introduce an AD that easily detects the ad-
versarial attacks from Boloor et al. (2020). On the other hand, in this work, we focus on nonlinear
system dynamics, define general notions of attack stealthiness, and introduce sufficient conditions
for a perception-based control system to not be resilient against perception and sensing attacks.

Finally, for non-perception control systems, stealthy attacks have been well-defined in e.g., Mo
and Sinopoli (2009, 2010); Teixeira et al. (2012); Smith (2015); Pajic et al. (2017); Bai et al. (2017);
Jovanov and Pajic (2019); Sui et al. (2020); Khazraei and Pajic (2020, 2021); Khazraei et al. (2022).
However, all these work also only focus on LTI systems and linear controllers, as well as on specific
AD design (e.g., χ2 detector). Recently Khazraei et al. (2022) have introduced a learning-based
attack design for systems with nonlinear dynamics; yet, their work only considers stealthiness with
respect to the χ2-based AD, and does not consider perception-based controllers.

Notation. P denotes the probability for a random variable. For a square matrix A, λmax(A) is the
maximum eigenvalue. For a vector x ∈ Rn, ||x||p denotes the p-norm of x; when p is not specified,
the 2-norm is implied. For a vector sequence, x0 : xt denotes the set {x0, x1, ..., xt}. A function
f : Rn → Rp is Lipschitz with constant L if for any x, y ∈ Rn it holds that ||f(x) − f(y)|| ≤
L||x − y||. For a set X , ∂X and Xo define the boundary and the interior of the set, respectively.
Br denotes a closed ball with radius r; i.e., Br = {x ∈ Rn | ∥x∥ ≤ r}, whereas 1A is the indicator
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function on a set A. For a function f , we denote f ′ = ∂f
∂x as the partial derivative of f with respect

to x and ∇fi(x) is the gradient of the function fi (i-th element of the function f ). Finally, if P
and Q are probability distributions relative to the same Lebesgue measure with densities p and q,
respectively, then the total variation between them is defined as TV(P,Q) = 1

2

∫
|p(x)− q(x)|dx.

The Kullback–Leibler (KL) divergence between P and Q is KL(P,Q) =
∫
p(x) log p(x)

q(x)dx.

2. Problem Description: System and Attack Models
In this section, we introduce the system and attack model. Specifically, we consider the setup from
Fig. 1 where each of the components is modeled as follows.

2.1. Plant and Perception Model
We assume the plant can be modeled with a nonlinear dynamics in the standard state-space form

xt+1 = f(xt) +But + wt, yst = Csxt + vst , zt = G(xt). (1)

Here, xt ∈ Rn, ut ∈ Rm, wt ∈ Rn, zt ∈ Rl, yst ∈ Rs and vt ∈ Rs denote the state, input, system
disturbance, observations from perception-based sensors, (non-perception) sensor measurements,

Figure 1: The considered system architecture.

and sensor noise, at time t, respectively. We
assume f is globally Lipschitz with constant
L, and without loss of generality that f(0) =
01. The perception-based sensing is modeled
by an unknown generative model G, which is
nonlinear and potentially high-dimensional.
Finally, the process and measurement noise
vectors w and vs are independent and iden-
tically distributed (iid) Gaussian processes
with w ∼ N (0, Σw) and vs ∼ N (0, Σvs).

For example, consider a camera-based
lane keeping. Here, the observations zt are
the captured images; the map G generates the images based on the vehicle’s position.

2.2. Control Unit
The control unit, shown in Fig. 1, consists of perception, controller and anomaly detector units.

Perception. We assume that there exists a perception map P that imperfectly estimates the partial
state information; i.e.,

yPt = P (zt) = CPxt + vP (xt), (2)

where P is a deep neural network (DNN) trained using any supervised learning method on a data
set X = {(zi, xi)}Ni=1 collected densely around the operating point xo of the system, as in Dijk and
Croon (2019); Lambert et al. (2018). In addition, vP ∈ Rp is the perception map error that may
depend on the state of the system – e.g., smaller around points from the training data set. To capture
perception guarantees, we employ the model for robust perception-based control by Dean and Recht
(2020). Specifically, if the model is trained effectively, the perception error vP around the operating
point xo should be bounded, i.e., the following assumption from Dean et al. (2020a) holds.

1. Otherwise, we can define a new coordinate system (i.e., transform coordinates) to shift the equilibrium point to zero.
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Assumption 1 There exists a safe set S around the operating point such that for all x ∈ S, it holds
that ∥P (z) − CPx∥ ≤ γe, where z = G(x) – i.e., for all x ∈ S , ∥vP (x)∥ ≤ γe. Without loss of
generality, in this work we consider the origin as the operating point – i.e., xo = 0.

Controller. The system (1) is controlled by a (general) nonlinear controller ut = π(zt, y
s
t ) =

Π(xt, v
s
t ). Hence, for h(xt, vst ) = f(xt) + Bπ(zt, y

s
t ) = f(xt) + BΠ(xt, v

s
t ), the evolution of the

closed-loop system can be captured as
xt+1 = h(xt, v

s
t ) + wt. (3)

In the general form, the controller can employ any end-end control policy that uses the perception
and sensor measurements. When the system is noiseless, the the state dynamics can be captured as

xt+1 = h(xt, 0). (4)

We now introduce definitions that describe the property of the controlled system.

Definition 1 The origin of the system (4) is exponentially stable on a set D ⊆ Rn if for any x0 ∈ D,
there exist 0 < α < 1 and M > 0, such that ∥xt∥ ≤ Mαt∥x0∥, for all t ≥ 0.

Lemma 2 Kushner (2014) For the system of (4), if there exists a function V : Rn → R such that
for any xt ∈ D ⊆ Rn it holds

c1∥xt∥2 ≤ V (xt) ≤ c2∥xt∥2, V (xt+1)− V (xt) ≤ −c3∥xt∥2, ∥∂V (x)

∂x
∥ ≤ c4∥x∥, (5)

for some positive c1, c2, c3 and c4, then the origin is exponentially stable.

Assumption 2 We assume that for the closed-loop system (4) is exponentially stable on a set D =
Bd. Using the converse Lyapunov theorem (see Khalil (2002)), there exists a Lyapunov function
that satisfies the inequalities in (5) with constants c1, c2, c3 and c4 on a set D = Bd.

Remark 3 The assumptions made for closed-loop system are critical for system guarantees without
the attack; i.e., if the system does not satisfy the stability property in attack-free condition then a
possible strategy for the attacker would be to wait until the system fails by itself. We refer the reader
to the recent work e.g., by Dean and Recht (2020); Dean et al. (2020a) on design of such controllers.

Definition 4 The class of functions Uρ contains all functions f such that the dynamics xt+1 =
f(xt)+ dt, where dt satisfies ∥dt∥ ≤ ρ, becomes arbitrarily large for some nonzero initial state x0.
Also, for a function f from Uρ and initial condition x0, we define Tf (α, x0) = min{t | ∥xt∥ ≥ α}.

In other words, Tf (α, x0)
2 is the minimum time needed for an unstable dynamics f , subject to

the initial condition x0, to leave a bounded ball with radius α subject to the initial condition x0.

Anomaly Detector. The system is equipped with an anomaly detector (AD) designed to detect the

presence of any anomalous behaviours. We use yt =
[
yPt
yst

]
and yat =

[
yP,a
t

ys,at

]
to capture sensor and

perception-based (from (2)) values without and under attack, respectively (the full attack model is
introduced below). Then, the standard binary hypothesis testing problem is considered:

H0: normal condition (the AD receives y0 : yt);

2. To simplify our notation, and since we consider specific f from the plant dynamics (1), we drop the the subscript f .
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H1: abnormal behaviour (the AD receives ya0 : yat ).

Effectively, the AD uses both the extracted state information from the perception map (i.e., (2))
and sensor measurements. Given a random sequence Y = (y0 : yt), it either comes from the
distribution P (null hypothesis H0) or from a distribution Q (the alternative hypothesis H1). For a
given AD specified by function D : Y → {0, 1}, two types of error may occur. Error type (I), also
referred as false alarm, occurs if D(Y ) = 1 when Y ∼ P, whereas type (II) error (miss detection)
occurs if D(Y ) = 0 when Y ∼ Q. Hence, the sum of conditional error probabilities of AD D for a
given random sequence Y is

pet = P(D(Y ) = 0|Y ∼ Q) + P(D(Y ) = 1|Y ∼ P). (6)

We define the attack to be stealthy if there exists no detector that can do better than ignoring the
received measurements and making a random guess to decide between the two hypotheses. Since
in random guess the output of the detector is independent of whether Y ∼ P or Y ∼ Q, it holds
that pet = P(D(Y ) = 0) + P(D(Y ) = 1) = 1. This is also equivalent to the case when there exists
no detector that satisfies pet < 1 or P(D(Y ) = 1|Y ∼ Q) ≥ P(D(Y ) = 1|Y ∼ P) which means
the probability of true detection be greater than false alarm.

2.3. Attack Model

We assume that the attacker has the ability to compromise camera images as well as (potentially) the
sensor measurements yst (see Fig. 1); e.g., this can be achieved by directly compromising the sensors
or using a network-based attack. Moreover, the attack starts at t = 0, and we use the superscript a
to differentiate all signals of the attacked system, for all t ≥ 0; the attack sequence is {zat , y

s,a
t }t≥0,

where e.g., the value of the observation delivered to the perception unit at time t is denoted by zat .
Therefore, in the presence of an attack, the system dynamics can be captured as

xat+1 = f(xat ) +Buat + wa
t ,

uat = π(zat , y
s,a
t ).

(7)

In this work, we assume the attacker has full knowledge of the system, its dynamics and employed
architecture. Further, the attacker has the required computation power to calculate suitable attack
signals to inject, planning ahead as needed. We formally define the attack stealthiness as follows.

Remark 5 In our notation, xa0 : xat denotes a state trajectory of the system under attack (for an
attack starting at t = 0), while x0 : xt denotes the state trajectory of the attack-free system;
we refer to such state trajectory as the attack-free trajectory. Thus, when comparing the attack-free
trajectory and the system trajectory under attack (i.e., from (7)), we assume wa

t = wt and vs,at = vst .

Definition 6 Consider the system from (1). An attack sequence is strictly stealthy if there exists no
detector such that the sum of conditional error probabilities pet satisfies pet < 1, for any t ≥ 0. An
attack is ϵ-stealthy if for a given ϵ > 0, there exists no detector such that pet < 1− ϵ, for any t ≥ 0.

Theorem 7 An attack sequence is strictly stealthy if and only if KL
(
Q(ya0 : yat )||P(y0 : yt)

)
= 0

for all t ≥ 0, where KL represents the Kullback–Leibler divergence operator. An attack sequence
is ϵ-stealthy if the corresponding observation sequence y0 : yt satisfies

KL
(
Q(ya0 : yat )||P(y0 : yt)

)
≤ log(

1

1− ϵ2
). (8)
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Proof First, we prove the strictly stealthy case. Using Neyman-Pearson Lemma for any existing
detector D, it follows that

pet ≥
∫

min{P(y),Q(y)}dy, (9)

where the equality holds for the Likelihood Ratio function as D∗ = 1P≥Q (Lemma 3 in Krishna-
murthy (2017)). Since 1 −

∫
min{P(y),Q(y)}dy = 1

2

∫
|P(x) −Q(x)|dx, from Polyanskiy and

Wu (2014), from the definition of total variation distance between P and Q, it follows that

pet ≥ 1− TV(P,Q). (10)

Now, it holds that TV(P,Q) ≤
√
1− e−KL(Q||P) (Eq. (14.11) in Lattimore and Szepesvári

(2020)). Thus, if we have KL
(
P(ya0 : yat )||Q(y0 : yt)

)
= 0, then pet ≥ 1 for any detector D. On

the other hand, if for all detectors we have pet ≥ 1, then the equality holds for TV(P,Q) = 0, which
is equivalent to P = Q and therefore, KL

(
P(ya0 : yat )||Q(y0 : yt)

)
= 0.

For the ϵ-stealthy case, we combine (10) with the inequality TV(P,Q) ≤
√
1− e−KL(Q||P)

and the ϵ-stealthy condition (8), to show pet ≥ 1− TV(P,Q) ≥ 1−
√

1− e−KL(Q||P) ≥ 1− ϵ.

Attack Goal is to maximize the degradation of control performance. Specifically, as we con-
sider the origin as the operating point, the attack objective is to maximize the (norm of) states xt.
Moreover, the attacker wants to remain stealthy – i.e., undetected by the AD, as formalized below.

Definition 8 Attack sequence, denoted as {za0 , y
s,a
0 }, {za1 , y

s,a
1 }, ... is an (ϵ, α)-successful attack

if there exists t′ ≥ 0 such that ∥xt′∥ ≥ α and the attack is ϵ-stealthy for all t ≥ 0. When such
a sequence exists for a system, the system is called (ϵ, α)-attackable. Finally, when the system is
(ϵ, α)-attackable for arbitrarily large α, the system is referred to as perfectly attackable.

Our goal is the derive methods to capture the impact of stealthy attacks; specifically, in the
next section we derive conditions for existence of a stealthy yet effective attack sequence {za0 , y

s,a
0 },

{za1 , y
s,a
1 }, ... resulting in ∥xt∥ ≥ α for some t ≥ 0 – i.e., we find conditions for a system to be

(ϵ, α)-attackable. For an attack to be stealthy, we focus on the ϵ-stealthy notion; i.e., that the best AD
could only improve the probability detection by ϵ compared to a random-guess baseline detector.

3. Conditions for (ϵ, α)-Attackable Systems
To provide sufficient conditions for a system to be (ϵ, α)-attackable, in this section, we introduce
two methodologies for design of attack sequences on perception and (classical) sensing data. The
difference in these strategies is the level of knowledge the attacker has about the system; we show
that the stronger attack impact can be achieved with the attacker having full knowledge of the
system. Specifically, we start with the attack strategy where the attacker has access to the current
plant state; in such case, we show that the stealthiness condition is less restrictive, simplifying
design of ϵ-stealthy attacks. For the second attack strategy, we show that the attacker can launch the
attack sequence with only knowing the function f (i.e., plant model); however, achieving ϵ-stealthy
attack in this case is harder as more restrictive conditions are imposed on the attacker.

3.1. Attack Strategy I: Using Estimate of the Plant State
Consider the attack sequence where zat and ys,at injected at time t, for all t ≥ 0, satisfy

zat = G(xat − st), ys,at = Cs(x
a
t − st) + vs,at , (11)
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with st+1 = f(x̂at )− f(x̂at − st), and for a nonzero s0; here x̂at is a state estimation (in the presence
of attacks), and thus ζt = x̂at − xat is the corresponding state estimation error. Note that the attacker
can obtain x̂at by e.g., running a local estimator. We assume that the estimation error is bounded by
bζ – i.e., ∥ζt∥ ≤ bζ , for all t ≥ 0. On the other hand, the above attack design may not require access
to the true plant state xat , since only the ‘shifted’ (i.e., xat −st) outputs of the real sensing/perception
are injected. For instance, in the lane centring control (i.e., keeping the vehicle between the lanes),
G(xt− st) only shifts the actual image st to the right or left depending on the coordinate definition.

The idea behind the above attacks is to have the system believe that its (plant) state is equal to
the state et =

∆ xat − st; thus, referred to as the fake state. Note that effectively both zat and ys,at used
by an AD are directly function of the fake state et. Thus, if the distribution of e0 : et is close to
x0 : xt (i.e., attack-free trajectory), then the attacker will be successful in designing stealthy attacks.

Definition 9 For an attack-free state trajectory x0 : xt, and for any T ≥ 0 and bx > 0, δ(T, bx, bv)
is the probability that the system state and physical sensor noise vs remain in the ball with radius
bx and bv, respectively, during 0 ≤ t ≤ T – i.e.,

δ(T, bx, bv) =
∆ P

(
sup

0≤t≤T
∥xt∥ ≤ bx, sup

0≤t≤T
∥vst ∥ ≤ bv

)
.

The next result captures conditions under which a perception-based control system is not re-
silient to attacks, in the sense that it is (ϵ,α)-attackable.

Theorem 10 Consider the system (1) with closed-loop control as in Assumption 2. Assume that
the functions f , f ′ and Π′ (i.e., derivatives of f and Π) are Lipschitz, with constants Lf , L′

f and
L′
Π, respectively, and let us define L1 = L′

f (bx + 2bζ + d), L2 = min{2Lf , L
′
f (α+ bx + bζ)} and

L3 = L′
Π(bx+ d+ bv). Moreover, assume that bx has the maximum value such that the inequalities

L1 + L3∥B∥ < c3
c4

and L2bζ < c3−(L1+L3∥B∥)c4
c4

√
c1
c2
θr, for some 0 < θ < 1, are satisfied. Then,

the system (1) is (ϵ,α)-attackable with probability δ(T (α + b + bx, s0), bx, bv) for some ϵ > 0, if
f ∈ Uρ with ρ = 2Lf (bx + b+ bζ) and b = c4

c3−(L1+L3∥B∥)c4

√
c2
c1

L2bζ
θ .

Proof Due to space constraint the proof is provided in Khazraei et al. (2021).

From (5), c3 can be viewed as a measure of the closed-loop system stability (larger c3 means
the system is ‘more’ stable); on the other hand, from Theorem 10, closed-loop perception-based
systems with larger c3 are more vulnerable to stealthy attacks as the conditions of the theorem are
easier to satisfy. However, if the plant’s dynamics is very unstable, T (α+ bx + b, s0) is smaller for
a fixed α and s0. Thus, the probability of attack success δ(T (α + bx + b, s0), bx, bv) is larger for
a fixed bx. Moreover, in the extreme case when bζ = 0 (i.e., the attacker can exactly estimate the

plant state), the condition L2bζ < c3−(L1+L3∥B∥)c4
c4

√
c1
c2
θr will be relaxed and the other condition

L1 + L3∥B∥ < c3
c4

becomes less restrictive as L1 becomes smaller. Therefore, in this case, if the
attacker initiate the attack with arbitrarily small s0, then ϵ can be arbitrarily close to zero and the
attack will be very close to being strictly stealthy. Hence, the following result holds.

Corollary 11 Let bζ = 0, L1 + L3∥B∥ < c3
c4

with L1 = L′
f (bx + d), and L3 = L′

Π(bx + d).
Then, if f ∈ Uρ with ρ = 2Lf (bx + b), the system from (1) is (ϵ,α)-attackable with probability
δ(T (α+ bx + b, s0), bx, bv), where ϵ =

√
1− e−bϵ for

bϵ =
(
λmax(Σ

−1
w ) + λmax(C

T
s Σ

−1
v Cs +Σ−1

w )×min{T (α+ bx + b, s0),

√
c2
c1

e−β

1− e−β
, }
)
∥s0∥2.

7
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Finally, the above results depend on determining ρ such that f ∈ Uρ. Hence, the following
result provides a sufficient condition for f ∈ Uρ.

Proposition 12 Let V : Rn → R be a continuously differentiable function satisfying V (0) = 0, and
define Ur1 = {x ∈ Br1 | V (x) > 0}. Assume that ∥∂V (x)

∂x ∥ ≤ β(∥x∥), and for any x ∈ Ur1 it holds
that V (f(x))− V (x) ≥ α(∥x∥), where α(∥x∥) and β(∥x∥) are in class of K functions (see Khalil
(2002)). Further, assume that r1 can be chosen arbitrarily large. Now, if lim∥x∥→∞

α(∥x∥)
β(∥x∥) → ∞,

then f ∈ Uρ for any ρ > 0. However, if lim∥x∥→∞
α(∥x∥)
β(∥x∥) = γ, then f ∈ Uρ for any ρ < γ.

Proof Due to space constraint the proof is provided in Khazraei et al. (2021).

Note that our results only focus on the existence of perception measurements G(xt − st), ob-
tained by shifting the current perception scene by st, that results in (ϵ, α)-successful attack, and not
how to compute it. Further, to derive attack sequence using Attack Strategy I, the attacker needs
the estimation of the plant states. Thus, in the next subsection, we introduce Attack Strategy II
that relaxes this assumption, with the attacker only needing to have knowledge about the plant’s
(open-loop) dynamics f and the computation power to calculate st+1 = f(st) ahead of time.

3.2. Attack Strategy II: Using Plant Dynamics

Similarly to Attack Strategy I, consider the attack sequence where zat and ys,at , for all t ≥ 0, satisfy

zat = G(xat − st), ys,at = Cs(x
a
t − st) + vs,at , st+1 = f(st), (12)

for some nonzero s0. Here the attacker does not need an estimate of the plant’s state; they simply
follow the plant’s dynamics st+1 = f(st) to find the desired ‘perturbations’ of the compromised
measurements. Now, we define the state et =

∆ xat − st as the fake state, and the attacker’s goal is to
make the system believe that the plant state is equal to et.

Theorem 13 Consider the system (1) with closed-loop control as in Assumption 2. Assume that
both functions f ′ and Π′ are Lipschitz, with constants L′

f and L′
Π, respectively. Moreover, as-

sume that bx has the maximum value such that the inequalities L1 + L3∥B∥ < c3
c4

and L2bx <
c3−(L1+L3∥B∥)c4

c4

√
c1
c2
θr, with 0 < θ < 1 are satisfied, where L2 = L′

f (α + bx), L1 = L′
f (α + d)

and L3 = L′
Π(bx + d+ bv). Then, the system (1) is (ϵ,α)-attackable with probability δ(T (α+ bx +

b, s0), bx, bv) and b = c4
c3−(L1+L3∥B∥)c4

√
c2
c1

L2bx
θ , for some ϵ > 0, if f ∈ U0.

Unlike in Theorem 10, L1 and L2 in Theorem 13 increase as α increases. Therefore, unless
L′
f = 0, one cannot claim that the attack can be ϵ-stealthy for arbitrarily large α as the inequality

L1 + L3∥B∥ ≤ c3
c4

may not be satisfied. However, in an extreme case where the system is linear, it
holds that L′

f = 0 and L1 = L2 = 0. Also, for linear time-invariant (LTI) systems, Attack Strate-
gies I and II become identical as st+1 = A(x̂at )−A(x̂at − st) = Ast. Hence, the following holds.

Corollary 14 Consider an LTI perception-based control system with f(xt) = Axt. If L3∥B∥ < c3
c4

with L3 = L′
Π(bx + d+ bv), and the matrix A is unstable, then the system is (ϵ,α)-attackable with

probability δ(T (α+ bx, s0), bx, bv), for arbitrarily large α and ϵ =
√
1− e−bϵ , where

bϵ =
(
λmax(Σ

−1
w )+λmax(C

T
s Σ

−1
v Cs+Σ−1

w )×min
{
max{T (α+bx, s0), t1},

√
c2
c1

e−β

1− e−β

})
∥s0∥2.
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Both Theorems 10 and 13 assume an end-to-end controller that directly maps the perception and
sensor measurements to the control input. However, there are controllers that first extract the state
information using the perception module P and then use a feedback controller to find the control
input (e.g., Dean et al. (2020a,b); Dean and Recht (2020)). For instance, for a linear feedback
controller denoted by ut = Π(yt) = Kyt, we have that L′

Π = 0. Thus, we obtain the following.

Corollary 15 Consider an LTI perception-based control system with f(xt) = Axt and a linear
feedback controller. If the matrix A is unstable, the system is (ϵ,α)-attackable with probability one
for arbitrarily large α and ϵ =

√
1− e−bϵ , where bϵ =

(
λmax(Σ

−1
w ) + λmax(C

T
s Σ

−1
v Cs +Σ−1

w )×√
c2
c1

e−β

1−e−β

)
∥s0∥2 and e−β is the largest eigenvalue of the closed-loop system.

Finally, note that for an LTI system, the attacker will be impactful if and only if s0 is not
orthogonal to all unstable eigenvectors of the matrix A. Therefore, by choosing such s0 that is also
arbitrarily close to zero the attacker can be ϵ-stealthy with ϵ being near zero.

4. Simulation Results
We illustrate and evaluate our vulnerability analysis of perception-based controller systems on a
case-study. Specifically, we consider a fixed-base inverted pendulum equipped with an end-to-end
controller and a perception module that estimates the pendulum angle from camera images. By
using x1 = θ and x2 = θ̇, the inverted pendulum dynamics can be modeled in the state-space form

ẋ1 = x2

ẋ2 =
g

r
sinx1 −

b

mr2
x2 +

L

mr2
;

(13)

here, θ is the angle of pendulum rod from the vertical axis measured clockwise, b is the Viscous
friction coefficient, r is the radius of inertia of the pendulum about the fixed point, m is the mass
of the pendulum, g is the acceleration due to gravity, and L is the external torque that is applied at
the fixed base Formal’skii (2006). Finally, we assumed g = 9.8, m = .2Kg, b = .1, r = .3m and
discretized the model with Ts = 10ms.
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Figure 2: Perception map (P)-predicted value
vs true values of pendulum angle θ.

Using Lyapunov’s indirect method one can
show that the origin of the above system is unsta-
ble because the linearized model has an unstable
eigenvalue. However, the direct Lyapunov method
can help us to find the whole unstable region −π <
θ < π (see Khalil (2002)). We used a data set S
with 500 sample of pictures of the fixed-base in-
verted pendulum with different angles in (−π, π)
to train a DNN P (perception module) to estimate
the angle. Fig. 2 shows the predicted values of the
trained DNN with data set S versus the actual pen-
dulum pod angle. The angular velocity is also mea-
sured directly by the sensor. We trained a deep reinforcement learning-based controller directly
mapping the image pixels and angular velocity values to the input control. To detect the presence
of attack, we designed a standard χ2 Kalman filter anomaly detector that receives the data from the
perception module as well as the sensed angular velocity, and outputs the residue/anomaly alarm.
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Figure 3: (a) Evolution of the angle’s (θ) absolute value over time for different levels of bζ . (b) The
norm of the residue over time when the attack starts at time t = 0.
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Figure 4: (a) Angle’s (θ) absolute value over time for for Attack Strategy II (red) and normal condi-
tion (blue) (b) The residue norm over time for both under attack and attack-free systems.

We first choose s0 =
[
.001 .001

]T and used Attack Strategy I to design attacks. To derive the
current adversarial image at each time step the attacker receives the actual image and compromise
it by deviating the pendulum rod by st degrees. This compromised image is used by the perception
module to evaluate the system state. Again, the attacker does not need to have access to the per-
ception map P ; the knowledge about the dynamics f and estimate of the current plant state x̂at is
sufficient to craft the perturbed images. Fig. 3(a) shows the actual pendulum pod angle for different
estimation uncertainty level bζ (by the attacker) when the attack starts at t = 0. In both cases, the
attacker can drive the pendulum pod into an unsafe region. Fig. 3(b) shows the residue signal over
time; the attack stealthiness level decreases as bζ increases, consistent with our results in Sec. 3.

Fig. 4(b) presents the residue of the system in normal (i.e., attack-free) condition as well as
under Attack Strategy II. The residue level of both Attack Strategy I with bζ = .05 and Attack
Strategy II are the same as for the attack-free system. The red and blue line in Fig. 4(a) also show
the pendulum pod angle trajectory for Attack Strategy II and in the normal condition, respectively.

5. Conclusion
In this work, we considered the problem of resiliency under sensing and perception attacks for
perception-based control systems, focusing on nonlinear dynamical plants. We assumed that the
noiseless closed-loop system equipped with an end-to-end controller and anomaly detector, is ex-
ponentially stable on a set around the equilibrium point. We introduced the notion of ϵ-stealthiness
as a measure of difficulty in attack detection from the set of perception measurements and sensor
values. Further, we derived sufficient conditions for an effective yet ϵ-stealthy attack sequence to
exists. Here, control performance degradation was considered as moving the system state outside
of the safe region defined by a bounded ball with radius α, resulting in an (ϵ, α)-successful attack.
Finally, we illustrated our results on fixed-base inverted pendulum case-study.
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