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Abstract

We develop an algorithm that combines model-based and model-free methods for solving a nonlin-
ear optimal control problem with a quadratic cost in which the system model is given by a linear
state-space model with a small additive nonlinear perturbation. We decompose the cost into a sum
of two functions, one having an explicit form obtained from the approximate linear model, the other
being a black-box model representing the unknown modeling error. The decomposition allows us
to formulate the problem as a composite optimization problem. To solve the optimization prob-
lem, our algorithm performs gradient descent using the gradient obtained from the approximate
linear model until backtracking line search fails, upon which the model-based gradient is com-
pared with the exact gradient obtained from a model-free algorithm. The difference between the
model gradient and the exact gradient is then used for compensating future gradient-based updates.
Our algorithm is shown to decrease the number of function evaluations compared with traditional
model-free methods both in theory and in practice.

Keywords: Model-based control, model-free control, composite optimization, gradient methods

1. Introduction

Learning-based algorithms have flourished in the field of control (Recht, 2019) in recent years with
applications in robotic manipulation and locomotion (Kohl and Stone, 2004; Levine et al., 2016),
energy systems (Chen et al., 2021), and transportation (Wu et al., 2017). Learning-based control al-
gorithms can be classified into two categories: model-free algorithms and model-based algorithms.
Model-free algorithms do not utilize an explicit form of the dynamics and can handle dynamics that
are hard to model. In the meantime, model-free algorithms require a large amount of data to learn
an optimal policy. This may become impractical for physical systems, in which data collection is
often expensive since every collection involves physical interactions with the environment.

In contrast, model-based algorithms maintain an explicit form of the dynamics such as a state-
space model. With the aid of a model, model-based algorithms usually require less amount of
data (Tu and Recht, 2019) to learn an optimal policy. However, model-based algorithms tend to
have difficulties in modeling complex dynamics and may suffer from model bias (Deisenroth et al.,
2015; Atkeson and Santamaria, 1997; Abbeel et al., 2006) when the model class is not sufficiently
rich.

In this paper, we develop a method that combines model-free and model-based methods to learn
an optimal policy for controlling a nonlinear system under a quadratic cost. We formulate the
optimal control problem as a composite optimization problem, in which the cost is expressed as a
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composite function defined by the sum of a model-based part and a model-free part: the model-
based part has an analytical form, whereas the model-free part is viewed as a black box. We then
develop a hybrid gradient-based algorithm that searches for the optimal solution using the model
gradient, i.e., the gradient of the model-based part, plus a corrective compensation term, where the
compensation is intermittently updated by the gradient of the model-free part. The algorithm is
shown to require fewer function evaluations compared with purely model-free algorithms both in
theory and in practice. Due to space constraints, proofs in the paper are omitted can be found in the
extended version (Li and Han, 2022).

Related work There have been several attempts in combining model-based and model-free algo-
rithms. Qu et al. (2020) considered a modification of the linear quadratic regulator (LQR) problem,
where a small additive nonlinear perturbation is introduced to the original linear dynamics. They
first applied model-based control using the approximate model given by the linear part of the dy-
namics to obtain a near-optimal policy. Then, they showed that, using the near-optimal policy as
the initial policy, the model-free policy gradient method is able to produce an optimal policy for
the modified LQR problem. Chebotar et al. (2017) developed an algorithm to learn time-varying
linear-Gaussian controllers for reinforcement learning, in which the policy update is decomposed
into a model-based component and a model-free component. Shashua et al. (2021) used a descent
algorithm with a gradient mapping that is updated in each iteration based on the model and interac-
tions with the environment. Our algorithm is closest to the one introduced by Abbeel et al. (2006).
They used inaccurate dynamics to train a near-optimal policy, which was used to collect trajectories
from the real Markov decision process (MDP). For each state-action pair from the collected trajec-
tories, they compared the next state in the trajectories with the one predicted by the inaccurate MDP
dynamics and used the difference to update the inaccurate MDP dynamics by adding a bias term. In
comparison, our algorithm focuses on the control cost rather than the system dynamics.

Our work is also related to policy gradient for LQR, discussed in Fazel et al. (2018) and Bu
et al. (2019), in that we also use the same zeroth-order method to compute the gradient of the cost.
See Conn et al. (2009) for a comprehensive coverage of zeroth-order methods in optimization.

Finally, our work is closely related to composite optimization. A classical method for solving
composite optimization problems is the proximal gradient method (Rockafellar, 1976; Beck and
Teboulle, 2009; Parikh and Boyd, 2014; Nesterov, 2013). The method assumes that the objective
function can be expressed as the sum of a differentiable convex function and another possibly non-
differentiable convex function. Moreover, the non-differentiable convex function is assumed to be
associated with a proximal operator that can be efficiently evaluated. In contrast, our algorithm
deals with composite optimization problems in which both functions in the sum are differentiable
but does not assume the existence of an efficiently computable proximal operator.

2. Background: Nonlinear optimal control with quadratic cost

We consider a modified discrete-time LQR problem, which appeared in Qu et al. (2020). The
dynamical system is described by a nonlinear state-space model with state x; € R™ and control
input u; € RP,

Tyr1 = Axy + Buy + h(mt, ut), (D)

where A € R™", B € R"P and h: R" x RP — R" with h(0,0) = 0. The nonlinear function
h is not assumed to admit an explicit form but is considered “small,” where the precise meaning
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of “small” will be discussed in Section 4.3. The goal is to find a linear state feedback controller

u; = —Kx; (see footnote!) that minimizes the cost C': RP*"™ — R defined by
oo
C(K)=E;~p (me@mt + u;rRut) , 2)
t=0

where Q € R™*™ and R € RP*P are positive definite and xg is the initial state and is drawn from a
fixed distribution D. Multiple problems can be formulated as (1). For example, the dynamics of a
robotic manipulator can be described by a linear state-space model plus an error term h. Note that
if h is zero everywhere, i.e., h = 0, the problem is the same as the vanilla LQR problem, which has
a closed-form solution. We define C as the quadratic cost (2) when A = 0 in (1). We denote the
optimal point that minimizes C' by K* and the optimal point that minimizes C' by K*.

Throughout this paper, we propose to minimize C' using a policy gradient method that uses
gradient computed from a zeroth-order method (Fazel et al., 2018), which only requires access to
the values of the cost rather than an analytical expression of the gradient mapping. The method
is model-free since it does not rely on an explicit form of the system dynamics. Because each
evaluation of the cost function requires collecting trajectories generated from the dynamical system,
model-free policy gradient methods need to sample numerous trajectories in order to find a near-
optimal policy (Tu and Recht, 2019). This issue of high sample complexity has been recognized as
a major bottleneck in applying model-free policy gradient methods to physical systems, where the
collection of trajectories are often expensive.

3. Proposed framework

To reduce the sample complexity of model-free policy gradient methods, we propose a policy op-
timization framework that leverages an inexact model of the system, given by the linear part of the
dynamics. Our key idea is to reformulate the original problem as a composite optimization problem
that explicitly shows how model information enters policy optimization. The revelation of the role
of the model naturally leads to an optimization algorithm that solves the composite optimization
problem with fewer function evaluations than traditional model-free policy gradient methods.

3.1. A composite optimization perspective of policy optimization

We decompose the cost function C' into two components as

C(K) = C(K) +r(K), 3)
where 7 is the residual term defined by r = C' — C. The problem of minimizing the cost in (3) is an
unconstrained optimization problem of the following form:

e 4
minimize  f(z), “)
where f = f+r. We call V f(z) the exact gradient and V f () the model gradient at x. Denote the

optimal value of (4) by f* and an optimal solution of (4) by z*. Also, denote £* as a point where
V f(2*) = 0. We make the following assumptions throughout the paper.

1. The goal is not to find an optimal state feedback controller, which may be nonlinear for nonlinear systems even when
the cost is quadratic.
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Assumption 1 The function f satisfies the PL-condition, i.e., there exists some | > 0 such that

IV f ()12 > 2u(f(z) — f*) forall z.
Assumption 2 The residual mapping r is L,.-smooth, i.e., Vr is L.-Lipschitz continuous.

Assumption 3 The gradient value V f(x) can be computed with n function evaluations, where n
is the dimension of x. The model gradient V f has a closed-form expression.

For the modified LQR problem defined by (1) and (2), Assumption 1 is satisfied when K is
close to K*, since C' is locally strongly convex near K* (Qu et al., 2020), and strong convexity
implies the PL-condition (Karimi et al., 2016). Assumption 2 is also satisfied when K is close to
K™ due to the local smoothness of C' (Qu et al., 2020). Assumption 3 is satisfied since VC(K) can
be computed by zeroth-order methods, and VC' (K) has a closed-form solution (Fazel et al., 2018).

3.2. A model-exploiting composite optimization algorithm

Throughout this paper, we focus on descent methods for solving the problem in (4). At each itera-
tion, the iterate is updated from x to x4 by x4 = = — tA(z), where ¢ is the step size, and A(x) is
a descent direction satisfying f(x — tA(x)) < f(x) when ¢ is sufficiently small.

To solve the problem in (4), Qu et al. (2020) used the gradient methods with the exact gradient
starting from = = z*. The algorithm in Qu et al. (2020) can be viewed as applying the gradient meth-
ods with V£ until V f (x) = 0, i.e., x = 2*, after which the algorithm switches to using the exact
gradient V f. In our algorithm, shown in Algorithm 1, instead of switching to V f permanently, we
only evaluate V f intermittently at points (1), () ... and use the evaluations to form compensated
model gradient mappings gV, §®, ... with g £ Vf + 6@, where 6@ £ ViE®) - Vf(:i(i)).
By Assumption 3, §() can be computed with n function evaluations. The compensation §(*) remains
unchanged until the algorithm reaches a point £0+1) at which @ is no longer a descent direction
and makes line search fail (LSF), after which a new compensation (1) is computed by evaluating
Vf (i:(”l)). In the following, we say that the algorithm operates in the model-free regime when the
exact gradient is used and in the model-based regime when the g is used. The difference between
our algorithm and the algorithm in Qu et al. (2020) is shown below:

e Quetal. 2020): VF =% vy

* QOur algorithm: Vf zf—:—(]» Vf— g(l) LSF) Vf— §(2) LSF

Algorithm 1 Gradient compensation algorithm

1: Obtain 7 from backtracking line search (BLS) at « with the compensated model gradient ().
2: if BLS succeeds at x then > Model-based Regime
3: x <+ x —ng(x)

4: else > Model-free Regime
5: Apply BLS with the exact gradient V f () to obtain 7.

6: x <z —nVf(z)

7. G Vf+Vf(x)— V()

8: end if
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4. Main result

When V f is used for computing the update x, our algorithm is identical to the vanilla gradient
descent. Therefore, we only need to consider the case when x is computed using g for analyzing
the convergence of our algorithm. In other words, we only need to analyze the model-based regime.

4.1. Modified backtracking line search

In the model-based regime, g is used in place of the exact gradient. As a result, the standard
backtracking line search (BLS) may no longer terminate, as illustrated in the following example.

Example 1 Consider f(x) = (z — 2)? with a compensated model gradient j(x) = 2x. The com-
pensated model gradient satisfies g(x) > 0 when x € (0,2). Also, f is monotonically decreasing
when x < 2, i.e., f(x + Az) > f(x) forany Az < 0 and v < 2. So f(z —ng(x)) > f(x) >
f(x) —an||g(z)||? for any o > 0 and n > 0. In other words, the Armijo condition (Nocedal and
Wright, 2006, page 33), which is used for terminating the standard BLS, cannot be satisfied for any
positive n, implying that the standard BLS (Boyd and Vandenberghe, 2004) never terminates.

To ensure that the BLS subroutine eventually terminates, we set a lower bound 7,i,, for the step
size 7. The algorithm quits the BLS subroutine and reports that line search fails whenever 1 < npin.
The modified BLS algorithm is presented as Algorithm 2.

We denote the initial step size in the BLS as ny,a.x. Upon successful termination, the modified
BLS always returns a bounded step size 17 € (Mmin, 7max)- The modified BLS will only be used in
the model-based regime, whereas the standard BLS will be used in the model-free regime. In the
following sections, we will simply use the term BLS when the type of BLS is clear from the context.

Algorithm 2 BTLINESEARCH
Input: T, f7 A7 a, ,8, Thminy hmax
Output: 7
1: M < Nmax
2: while f(z — nA(z)) > f(x) — oz77HA(:c)H2 and 1 > Nyin do
33 n<PBn
4: end while

Another issue we need to deal with, which will be shown in the next example, is that the algo-
rithm may get stuck in the model-based regime and never converge to the optimal solution.

Example 2 Consider the case in Example 1. The update rule for this case is given by r;11 =
xj—ng(z;) = (1-2n;)z; forj = 1,..., N. When the update starts at x1 < 0 with nmax < 1/2, we
have x; = (1 — 2Mmax )’ 1 < 0 forall j. Fixan o € (0,1/2), and suppose min < 1 —a —2/z1. It
can be verified that BLS always succeeds since f(xj11) < f(x;)—an;||g(z;)|| forn; € (Nmin, 1/2).
Despite the success of line search, the algorithm never converges to the optimal solution x* = 2.

4.2. The sufficient decrease condition

Example 2 shows that the algorithm may not “make sufficient progress” even when line search suc-
ceeds. In the following, we formally define what “sufficient progress” means and give a verifiable
condition to test whether the algorithm makes sufficient progress when line search succeeds.
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Definition 1 A point x is said to satisfy the sufficient decrease condition for f at x if f(xy) <
f(z) —t|V f()||? for some t > 0.

In the vanilla gradient descent, when BLS succeeds, the Armijo condition, f(xz — nV f(z)) <
f(x) —an||V£(z)|? is satisfied for some step size n > 0 and « € (0,1/2), implying the sufficient
decrease condition. However, the following example shows that the success of BLS does not in
general imply the sufficient decrease condition when g is used.

Example 3 Consider again the case in Example 1. Set x = —2, o = 1/2, and n = 1/2. BLS
succeeds since f(x —ng(r)) = 4 < 12 = f(x) — an||g(z)||%. Nevertheless, the sufficient decrease
condition is not satisfied since f(x —ng(z)) > 0= f(z) — an||Vf(x)|>*

Suppose g is compensated at z. By Assumption 2, when Z is close to x, Vr(Z) will be close to
Vr(z), implying that §(z) = Vf(z) + Vr(Z) will be close to Vf(z) = Vf(z) + Vr(z). When
|V f(x) — g(x)]| is sufficiently small, the following proposition shows that the success of BLS at x
using g implies the sufficient decrease condition.

Proposition 2 Suppose BLS succeeds at x when using the compensated model gradient g, and
g satisfies |V f(x) — g(x)|| < (1 —)||g(z)||/~ for some v € (0,1). Then the updated point
x4 = x —ng(x), where 1 is given by BLS, satisfies the sufficient decrease condition for f at x.

Define e(x) £ ||Vf(z) — §(x)||. According to Proposition 2, BLS will ensure a sufficient
decrease for updates using g when e(x) is small. Conceivably, one can determine whether the
sufficient decrease condition is still met through monitoring the value of e(x). However, it is desir-
able to avoid evaluating e(x) directly since computing V f is expensive. Instead of evaluating e(z)
directly, we propose to construct an upper bounding sequence {€;} satisfying €; > e(x;) for all
j=1,..., N and monitor €; in place of e(z;). Specifically, we construct {€;} by choosing

e1=0, €1 = Lllvj — x4 + & )

The following theorem shows that {€;} constructed in (5) can be used to guarantee the sufficient
decrease condition when BLS succeeds.

Theorem 3 Consider a sequence {x; }é\le defined by xj11 = xj — n;g(x;), where n; is given by
BLS. Suppose BLS using §(x;) succeeds at xj for all j. Let {€;} be defined by (5). If for a fixed
~v € (0,1), we have

1=y
G 19(z;) (6)
for any j, then x ;1 satisfies the sufficient decrease condition for f at x; forall j =1,...,N.

We can augment Algorithm 1 by incorporating condition (6) and use g to update x only when
(6) is satisfied and BLS succeeds. The factor v can be viewed as a hyperparameter of the algorithm;
a smaller v will make (6) easier to satisfy, thus making our algorithm stay for more iterations in the
model-based regime. The augmented algorithm is presented as Algorithm 3. As long as +y is small
enough, condition (6) will always be satisfied when the algorithm stays in the model-based regime
at z; unless §(z;) = 0. When g(z;) = 0, it implies that x; is a stationary point as predicted by g,
at which point it becomes necessary to quit the model-based regime to verify whether x; is truly a
stationary point that satisfies V f(z;) = 0.
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Algorithm 3 Gradient Compensation Algorithm

1: Start from () = &*, &y = 0 and §; = Vr(i*).
2: fori=1:1iters do

3. 20+ « MODELBASEDDESCENT(z(®), 8;,~, V f, &)

4 i1 — Vr(z(tD)) = Vf(20tD)) — v f(20+D)

5 n < BTLINESEARCH(z, f, Vf(zD)) o, 8,0, Nmax) > Standard BLS
6: xSﬁH) — () — U F(20+D), g Ler(ﬁ_l) — ||, 20D xSﬁH)

7. end for

Algorithm MODELBASEDDESCENT

Input: z, 94, v, Vf, Tmins @, 3, €0
Output: x

: §<—Vf+5,é<—éo,x+<—x

2: while e < 1_77||§H and BTLINESEARCH(z, f, §, @, 3, min, Mmax) > Nmin dO

3 T4 Ty, g Vf+6

4; n <~ BTLINESEARCH(z, f, g, &, 3, Nmin, Tmax) > Modified BLS
5 Ty x—ng, €<+ Ly|lzg — x|+ €

6: end while

4.3. Progress in the model-based regime

Theorem 3 shows that under condition (6), the success of BLS implies a sufficient decrease in the
objective function. An immediate consequence of sufficient decrease is that the suboptimality gap
in the model-based regime decreases geometrically, as described in the following proposition.

Proposition 4 Suppose f satisfies Assumption 1, condition (6) holds, and the modified BLS using
G(;) succeeds at xj forall j = 1,2,... N. Then f(xn+1)— f* < (1—2uay?mmin) Y (f (21) — f*),
where Nmin is the lower bound on the step size, and N is the number of iterations in the model-based
regime between two model-free iterations.

The convergence ratio in the model-based regime, according to Proposition 4, is given by
1 — 2uay*Nmin. In the meantime, when f is assumed to be L s-smooth (Karimi et al., 2016),
the convergence ratio in the model-free regime is 1 — p/L;. When f is given, and the parameters
of the algorithm are fixed, the progress made by the algorithm in either regime is a constant.

For quantifying the progress made per unit computational cost, we characterize the compu-
tational cost by the number of function evaluations rather than the number of iterations to better
reflect the actual running time of the algorithm. In the model-based regime, because the model
gradient has a closed-form expression (Assumption 3), the number of function evaluations per
iteration is only determined by the number of line search attempts, which is upper bounded by
Mmax = | (10g(Nmin/Mmax))/1og B + 1] and hence does not depend on the problem dimension 7.
In comparison, for each iteration in the model-free regime, the computational cost grows with n due
to the need for computing V f. Therefore, as n grows, the progress made per function evaluation in
the model-based regime will eventually dominate that in the model-free regime, implying that using
g will decrease the function of evaluations needed for achieving the same level of suboptimality.
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In Theorem 6 that will soon follow, we will show that the algorithm can ensure sufficient de-
crease for at least a few model-based iterations when BLS succeeds. Before presenting the theorem,
we need to introduce the following definition.

Definition 5 (Bounded update direction) An update direction mapping A is called a bounded
update direction if there exist Kmyin and Kmax satisfying fmin € (0,1) and Kmax > Kmin Such that
for any x and any bounded step size 1) € (Nmin, Nmax), it holds that

Fmin[|A(2)[| < [|A@)]] < Fmax[[A(2)]],
where v+ = © — nA(x).

Intuitively, Algorithm 3 will stay in the model-based regime when §(z) is close to V f(z). To
lower bound the number of iterations in the model-based regime, we need to bound the change of g
at each iterate, which is captured by the notion of bounded update direction. Using this notion, we
present in the following theorem a lower bound on the number of model-based iterations.

Theorem 6 Let x1 be the initial point when Algorithm 3 enters the model-based regime with g.
Suppose § is a bounded updated direction mapping with constants Kyax and Kyin, and g(x1) # 0.
Then the success of BLS implies the sufficient decrease condition if N satisfies

-7

log \ﬁfx&x — 1]+ Nlog < log + log |Kmax — 1] @)
Rmin nmaer
when Kmax # 1 and
1_
log N + N log <log —— 1 (8)
Rmin 777maer

when Kmax = 1.

The left-hand side of (7) and that of (8) are monotonically increasing with respect to /NV. Let
Nmin be the largest N satisfying (7) or (8), depending on the value of kp,x. Theorem 6 ensures
that our algorithm makes sufficient progress in the model-based regime for at least Ny, iterations
as long as BLS succeeds. Because the right-hand side of (7) and (8) are monotonically decreasing
as L, grows, a smaller L, is desired for making the algorithm stay for more iterations in the model-
based regime when BLS succeeds. Recall in Section 2, we require A to be “small” without formally
defining how to quantify the magnitude of h. Theorem 6 indicates that the L, is a useful metric for
quantifying the magnitude of h. Indeed, when the dynamics in (1) are nearly linear, the constant L,
will be small, and the algorithm is guaranteed to make better use of model information by staying
in the model-based regime for more iterations. In the extreme case of i = 0, the residual cost r = 0
and hence L, = 0, implying that the algorithm always stays in the model-based regime.

5. Numerical experiments

In this section, we shall refer to Algorithm 3 as GC, which stands for “gradient compensation.” We
compare GC with the method in Qu et al. (2020) in two Adifferent settings: 1) Both f and r are
convex quadratic functions. 2) f is given by C in (3), and f is given by C' from Section 2.
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5.1. Quadratic functions

We consider quadratic functions f,7 : R — R defined as f(z) = c1z' Pz/2 and r(z) = co(a —
c3) " Q(x — c3)/2, where both P and (Q are positive definite and generated randomly. We chose
c1 =1, co = c3 = 0.1, and n = 4. Thus, the smoothness factor L, is given by L, = ¢ = 0.1. The
parameters of BLS were given by @ = 0.3, 8 = 0.5, max = 1, and nyin = 0.005.

50 100 150 200 250 300 0 100 200 300 400 500 600 0 20 400 60 800 1000 1200 1400
Number of Function Evaluations Number of Function Evaluations Number of Function Evaluations
(2) (b) ©

Figure 1: Comparison among the convergence of (a) the GC algorithm with v = 0.6, (b) the GC algorithm
with v = 0.9, and (c) the model-free method in Qu et al. (2020) for quadratic functions. For the GC algorithm,
the iterations in the model-free regime are indicated in blue, and the ones in the model-based regime are
indicated in red. When  was chosen appropriately, the GC algorithm used fewer function evaluations than
the model-free method because it used relatively inexpensive model-based iterations to make progress.

Results The results are shown in Fig. 1, where Fig. 1a and 1b are from the GC algorithm, and
Fig. 1c is from the method by Qu et al. (2020). The blue part of the curve in Fig. 1la and 1b
represents the model-free regime, and the red represents the model-based regime. The error ||z —z*||
was only updated upon the completion of BLS. Since each test of the Armijo condition (Line 2 in
Algorithm 2) in BLS requires one function evaluation, the error ||z — x*|| sometimes remained
unchanged over multiple consecutive function evaluations when BLS was in progress.

It can be seen that the GC algorithm required fewer function evaluations for achieving the same
level of suboptimality. The choice of v in (6) determines whether Algorithm 3 should continue to
stay in the model-based regime. When a larger v was used, the algorithm stayed for fewer iterations
in the model-based regime because condition (6) became more difficult to satisfy.

5.2. Modified LQR problem

Consider the modified LQR problem defined by (1) and (2) in Section 2. The problem instance is
similar to the one used in Qu et al. (2020), except that the dimension of the problem was set as
n = 4 and p = 3, and the parameter ¢ in the nonlinear error term h was set as £ = 0.01. The
parameters of BLS were given by a = 0.3, 8 = 0.5, max = 1, and npin = 0.05. Unlike the
quadratic functions studied in Section 5.1, in the setting of modified LQR, it is difficult to obtain
the value of L,. Instead, we treated L, as a hyperparameter. The model gradient was computed
analytically based on the result by Fazel et al. (2018). The optimal feedback gain K* was computed
approximately by running the model-free method in Qu et al. (2020) until |[VC(K*)| < 1072

Effect of v and L, The choices of v and L, affect condition (6), which is used to monitor whether
the sufficient decrease condition holds upon the success of BLS. When the minimum step size
Nmin = 0.05 was used, both v and L, were found to have little effect on the performance of the GC
algorithm. For instance, as -y varied between 0.0001 to 0.9999, the convergence of the GC algorithm
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remained the same, as represented in Fig. 2a. Most of the time, the GC algorithm was found to
leave the model-based regime almost immediately after entering. Moreover, the GC algorithm left
the model-regime mostly due to the failure of BLS rather than violating condition (6). Since neither
v nor L, affects BLS, this explains why changing v and L, did not help the GC algorithm stay in
the model-based regime longer so as to reduce the number of function evaluations.

K|
|K - K|
(- K|

I3
|K — K*||
K

1000 2000 3000 4000 5000 6000 7000 0 50 1000 1500 2000 2500 3000 500 4000 4500 0 1000 2000 3000 0 500 6000 7000 0 2000 4000 6000 8000 10000 12000
Number of Function Evaluations Number of Function Evaluations Number of Function Evaluations Number of Function Evaluations

(a) (b) © (d

Figure 2: Effect of 1,1, on the GC algorithm: (a) Nyin = 0.05. (b) Nmin = 5 x 1074, (€) Nmin = 5 x 1077,
(d) Mmin = 0.5. (Blue: model-free regime. Red: model-based regime.) Choosing 7,i, €ither too small or too
large increased the total number of function evaluations. When 7,,;,, = 0.5, the GC algorithm only stayed in
the model-free regime and behaved identically to the model-free method in Qu et al. (2020).

Effect of 7,,;,  Since BLS was what prevented the GC algorithm from staying in the model-based
regime, we changed the minimum step size 7y, from 0.05 to 5 x 10~*. The result is shown in
Fig. 2b, from which it can be seen that the algorithm stayed longer in the model-based regime, and
the total number of function evaluations was smaller compared with Fig. 2a. However, upon further
decreasing i, to 5 x 1077, the total number of function evaluations increased, as shown in Fig. 2c.
Recall that each attempt within BLS decreases the previous step size by a constant factor 5 and uses
one function evaluation. For a smaller nyiy, in order to declare the failure of line search, BLS
requires more attempts and hence more function evaluations before 7 reaches 7in. To reduce the
total number of iterations, one should choose 7, to balance between the number of iterations and
the number of function evaluations (per iteration) in the model-based regime. Choosing a smaller
Nmin Will make the algorithm stay in the model-based regime for more iterations and hence better
exploit model information at the expense of more function evaluations per iteration.

We also experimented with a larger value of 7,,i;, by choosing 7, = 0.5, the result of which
is shown in Fig. 2d. As expected, a larger nnin caused the algorithm to spend fewer iterations in
the model-based regime because the line search termination condition was tightened. In fact, for
Nmin = 0.5, the GC algorithm behaved identically to the model-free method in Qu et al. (2020).

6. Conclusion

We have proposed a framework that combines model-based and model-free methods for optimal
control. The framework formulates the optimal control problem as a composite optimization prob-
lem whose objective function is described by the sum of two terms: a model-based term obtained
from an approximate model of the system dynamics and a residual term that captures the unknown
modeling error. To solve the problem, we have developed a hybrid gradient-based algorithm that
uses gradient from the approximate model with compensation from intermittent model-free updates.
Both theoretical and numerical results show that our algorithm uses fewer function evaluations than
a model-free policy gradient algorithm for reaching the same level of suboptimality.
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