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Abstract

Gaussian Process state-space models capture complex temporal dependencies in a principled man-
ner by placing a Gaussian Process prior on the transition function. These models have a natural
interpretation as discretized stochastic differential equations, but inference for long sequences with
fast and slow transitions is difficult. Fast transitions need tight discretizations whereas slow transi-
tions require backpropagating the gradients over long subtrajectories. We propose a novel Gaussian
process state-space architecture composed of multiple components, each trained on a different res-
olution, to model effects on different timescales. The combined model allows traversing time on
adaptive scales, providing efficient inference for arbitrarily long sequences with complex dynam-
ics. We benchmark our novel method on semi-synthetic data and on an engine modeling task. Both
experiments show that our approach compares favorably against its state-of-the-art alternatives.
Keywords: State-Space Models, Gaussian Processes, System Identification

1. Introduction

System identification refers to learning dynamical systems from data and lies at the heart of many
control applications such as epidemic forecasting (Zimmer and Yaesoubi, 2020) for public health
policies, reinforcement learning for portfolio management (Heaton et al., 2017), or emission mod-
eling (Yu et al., 2020) for calibrating the car engine. In many cases, we do not know the underlying
physical model but instead need to learn the dynamics from data only, ideally in a non-parametric
manner to support arbitrary dynamics. Irrespective of the total amount of data, many interesting
phenomena manifest only in a small subset of the samples, which does not allow to uniquely iden-
tify the underlying dynamics and, instead, call for probabilistic methods.

Gaussian Process state-space models (GPSSMs) hold the promise to model non-linear, unknown
dynamics in a probabilistic manner by placing a Gaussian Process (GP) prior on the transition
function (Wang et al., 2005; Frigola, 2015). While inference has been proven to be challenging for
this model family, there has been a lot of progress in the past years and recent approaches vastly
improved the scalability (Eleftheriadis et al., 2017; Doerr et al., 2018).

For long trajectories, methods updating the parameters using the complete sequence converge
poorly due to the vanishing and exploding gradient problem (Pascanu et al., 2013). While special-
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Figure 1: Resolution Matters. A semi-synthetic dataset (blue) created as a sum of two functions,
one with fast varying dynamics corresponding to large updates (gray) and one with slowly
varying dynamics corresponding to small updates between adjacent states (green). Left:
Shown is the complete trajectory. Using all observations for each parameter update is
too time- and memory-consuming. Middle: Shown is a dilated mini-batch of size 50 for
which we have selected every 30th observation. It allows for fitting the slowly varying
function (green). The fast dynamics (gray) cannot be inferred as the observations are too
sparse. Right: Shown is a mini-batch of size 50 on the standard resolution. The mini-
batch only covers a short interval of the trajectory as can be noted by the different time
axis. It allows for fitting the fast varying function (gray). The slow dynamics (green)
cannot be inferred as the gradient information is too weak. Our algorithm allows learning
on multiple resolutions to capture effects on different timescales.

ized architectures help circumventing the problem in the case of recurrent neural networks (Hochre-
iter and Schmidhuber, 1997; Chung et al., 2014), it is not clear how one can apply these concepts to
GP models. Furthermore, the problem of large runtime and memory footprints for training persists,
as the gradients need to be backpropagated through the complete sequence. A natural solution is to
divide the trajectory into mini-batches which reduces training time significantly, but also lowers the
flexibility of the model: long-term effects that evolve slower than the size of one mini-batch can no
longer be inferred (Williams and Zipser, 1995).

To address the problem of modeling long-term dependencies while retaining the computational
advantage of mini-batching, we propose a novel GPSSM architecture with L additive components.
The resulting posterior is intractable, and we apply variational inference to find an efficient and
structured approximation (Blei et al., 2017). To capture effects on different time scales, our training
scheme cycles through the components, whereby each component is trained on a different resolu-
tion. For training the low-resolution components, we downsample the observations of the sequence,
allowing us to pack a longer history in a mini-batch of fixed size (see Figure 1). Our training algo-
rithm is grounded in a coherent statistical framework by interpreting the GP transition model as a
stochastic differential equation (SDE) similar to Hegde et al. (2019). This allows us to train each
component with a different resolution under a unifying framework.

We validate our new algorithm experimentally and show that it works well in practice on semi-
synthetic data and on a challenging engine modeling task. Furthermore, we demonstrate that our
algorithm outperforms its competitors by a large margin in cases where the dataset consists of fast
and slow dynamics. For the engine modeling task, we introduce a new dataset to the community that
contains the raw emissions of a gasoline car engine and has over 500,000 measurements. The dataset
is available at https://github.com/boschresearch/Bosch-Engine—Datasets.
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2. Background on GPSSMs and SDEs

Gaussian Processes in a Nutshell The GP prior, f(z) ~ GP(0, k(z,2")), defines a distribution
over functions, f : RP» — R, and is fully specified by the kernel k : RP= x RP» — R. Given a set
of arbitrary inputs, x3; = {x;, }M_,, their function values, fys = {f(xm)}M_,, follow a Gaussian
distribution p(fas) = N (far]0, Karar) where Kyrar = {k(2m, xm/)}%{:l,m’:l'

For a new set of input points, zy = {z,, }2_;, the predictive distribution over the corresponding
function values, fy = {f(x,)}N

n—1» can then be obtained by conditioning the joint distribution on
fu, leading to p(fn|fur) = N(fn|p(zn), Z(zy)) with

w(ry) = KnuKyfy far, S(xn) = Kny — KvarKy K )]

where the cross-covariances Ky are defined similarly as Kpspz, i.e. Ky = {k(xn, xm)}nN ’T]r\le.

For a more detailed introduction, we refer the interested reader to Rasmussen and Williams (2006).

Gaussian Process State-Space Models We are given a dataset y1.7 = {yt}f:1 over ' time points,
where y; € RPv denotes the output at time point ¢. State-space models (see e.g. Sirkki, 2013) offer
a general way to describe time-series data by introducing a latent state, 2; € RP=, that captures the
compressed history of the system, for each time point ¢ € {1,...,T}. Assuming the process and
observational noise to be 1.i.d. Gaussian distributed, the model can be written down as follows:

$t+1!$t ~ N($t+1|$t + f(l‘t), Q)a yt|$t ~ ./\/'(yt\g(:pt), Q)v

where f : RP= — RP= models the change of the latent state in time and g : RP”* — RPv maps the
latent state to the observational space. The covariance Q € RP=*P= describes the process noise,
and 2 € RPv*Py the observational noise. Following the literature (Wang et al., 2005; Deisenroth
and Rasmussen, 2011), we assume that the update in the latent state can be modeled under a GP
prior, i.e. f(z) ~ GP(0,k(x,2')).! The model generalizes easily to problems with exogenous
inputs that we left out in favor of an uncluttered notation.

Finally, we chose in our experiments a linear model g(x;) = Cx; with output matrix C' €
RPv*DPz a5 emission function. This is a widely adopted design choice, since the linear emission
model reduces non-identifiabilities of the solution (Frigola, 2015). Our approach is directly appli-
cable to non-linear parametric emission models as well, which might for instance be important in
cases in which prior knowledge supports the use of more expressive emission models.

Sparse Parametric Gaussian Process State-Space Models Sparse GPs augment the model by
a set of inducing points (x 7, fas) that can be exploited during inference to summarize the train-
ing data in an efficient way. Snelson and Ghahramani (2005) introduced the so-called FITC (fully
independent training conditional) approximation on the augmented joint density p(fas, fx) by as-
suming independence between the function values, fn, conditioned on the set of inducing points,
far- The FITC approximation has also been used previously for GPSSMs (Doerr et al., 2018), and
we follow this line of work by assuming the same conditional factorization,

far ~ N (fur]0,Karar), 2)

fllfar ~ N(felp(e), X)), ®)

Tep1|we, fi ~ N(zegalee + fi, Q), “)

1. To be more precise, each latent dimension d € {1,..., Dy} follows an independent GP prior. We suppressed the

dependency on the latent dimension d for the sake of better readability in our notation.
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where f; are the GP predictions at time index ¢ with mean p(z;) and covariance ¥(x;) [Eq. (1)].
We discuss the FITC approximation in more detail in the extended manuscript (Longi et al., 2021).

Gaussian Process Stochastic Differential Equations SDEs can be regarded as a stochastic ex-
tension to ordinary differential equations where randomness enters the system via Brownian motion.
Their connection to GPSSMs is obtained by considering the SDE

dxy = f(zy)dt + 1/ Q2dW, (5)

where the drift term is given by the GP predictions f(x;) ~ N (u®(z¢), 22 (2¢)) [Eq. (1)], the
diffusion term by \/QiA , and the Brownian motion by W, € RP=_ In order to clearly distinguish the
notation from the canonical GPSSM [Egs. (2) - (4)], we endow all potentially different quantities
with a A. Applying a GP prior over the drift function has been done previously, for example
in Ruttor et al. (2013), Yildiz et al. (2018), and Zhao et al. (2020). A related parameterization has
also been suggested by Hegde et al. (2019) to extend deep GPs to an infinite number of hidden
layers. Since the diffusion term is a random variable, the solution to Eq. (5) is non-deterministic
and results in a stochastic process over x;. Except for a few cases, such as linear time-invariant
systems, SDEs cannot be solved analytically and require numerical integration. Hence, we apply

the Euler-Maruyama scheme (see e.g. Sarkkd and Solin, 2019) to draw approximate samples, using
that Wj-‘rl — Wj ~ N(O, RAt)Z

Filfa ~ N (file2 (z5), 22 (z5)), (6)
zii1lzg, fj ~ N(zjilz; + RAf;, RAQS), (7

where f; corresponds to the GP prediction at index j. The stepsize is given by RA; where R
is the resolution and A is the time interval between two adjacent observations in the time series
y1.7. Note that we employ the index j to denote the time indices in the Euler-Maruyama scheme,
whereas we use the index ¢ in the canonical GPSSM formulation. Consequently, a time index ¢
indicates a time tA; after the starting time, whereas the index j signifies a time jRA,; after the
starting time. The Euler-Maruyama method converges to the true solution with shrinking step size
RA; with strong order of convergence of 1/2.

3. Multi-Resolution Gaussian Process State-Space Models

Standard training of GPSSM models is restricted to a single resolution which hampers inference
for long sequences with fast and slow transitions. In this work, we introduce a novel GPSSM
architecture that decomposes the latent space into multiple independent components. We first extend
doubly-stochastic variational inference for this model class. Then, we show that this inference
scheme can be generalized such that each component is learned with a dedicated resolution in order
to capture effects on different timescales.

3.1. Probabilistic Model

Our model splits the latent state into L components, x; = {xgl) }lel, that evolve independently over
time (see Figure 2):

! l ! l !
FOUE ~ NP O @), 5O ) )
e 12, 1~ N |2+ 0, Q). ©)
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OO
All terms are given by their equivalents in Egs. (3) and (4) with ' '
(l) € RP and > 1 Di = D,. Note that our proposed model can be @ @ @
cast into the standard formulation (Section 2) when allowing sep- @
arate kernel hyperparameters for each latent state: the kernel hy-
perparameters are shared for all latent states within one component,
and the latent component m( ) depends only on x§91 by the use of
automatic relevance determination. The structured latent space enables learning each component
with a different resolution (see Section 3.3) which would not be possible within the standard frame-
work.
It is also worth noting that the latent states $(1), . .$§L> are coupled over the emission model
only. Without this coupling, the proposed model would reduce to L independent state-space models
that could be trained in isolation, each on a different resolution.

Figure 2: Plate diagram.

Augmented model Collecting and simplifying all terms, we arrive at the augmented joint density

L L T T-1,L
p(xo.r, fars y1:1) ZHP Hp Hp wleo) [] p(x) 2, 1)), (10)
=1 =1 t=1 t=0,1=1

where xp = {x((]l)}lL: | are the initial latent states and zo.r = {z;}{_, denote the time-series of
latent states. We assume that their distribution decomposes between the components and p(x((]l)) =
N (azél)\ ,u(()l), Qél)) with mean ,u(l) € RP and covariance Qg) € RP*Di_ The transition probability
p(azﬂﬁxﬁ”, f](\?) = N(z gl () + 5D (x ()),Q(l) + Z(Z)(xgl))) is obtained by marginalizing out
the ft(l) [which we assume to be conditionally independent given the f (l), see Eq. (8)] from Eq. (9)
via standard Gaussian integrals. While it is hard to read out from the formulas directly, analytically
marginalizing out the inducing points f ](\14) from Eq. (10) leads to a coupling between all latent states

@

x as we show in the extended version (Longi et al., 2021).

3.2. Training over a Single Resolution

Multi-component GPSSMs can be trained over a single resolution by extending the work of Doerr
et al. (2018). We start by introducing the approximate posterior,

T-1,L

L
a(zor. for) = Hq N ITaAD 11 el 1), (11)
=1 =1

t=0,l=1

that decomposes across the components. Here, the conditional p(mgﬂzlmgl), f ](\f[)) corresponds to
the GP predictions based on the inducing outputs. Note that respecting the conditional dependence
between xg.7 and Fs is important for accurate inference but prevents us from analytically marginal-
izing out the inducing outputs (Ialongo et al., 2019) as is done in standard sparse GP regression. We

further chose as variational distribution over the inducing outputs g( f](\?) =N ( f ](\? ] mg\ld), SSQ)

with free parameters mg\l/} € RM Sg\l/[) € RMXM “and over the initial latent states q(a:(()l)) =

N (xél) | m(()l)7sél)>, with free parameters m(()l) € ]RDZ,Sg) € RP>XDi. More flexible recogni-

tion models can easily be incorporated (Doerr et al., 2018).
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Variational Inference We want to find the optimal values for the variational parameters that min-
imize the KL divergence between the approximate posterior ¢(-) and the true posterior p(-|yr).
Analogously, we can maximize the lower bound L to the log marginal likelihood (Blei et al., 2017):

p(:l:OZTa fMa yl:T)
L= EQ(wo:T,fM) [log a(zo:r, fr) (12)

S

Z oo 108 (it | 20)] — KL (q (o) ||p (20)) — KL (¢ (fm) [[p (far)),  (13)

where Eq. (13) results from plugging Eqs. (10) and (11) into Eq. (12). Here q( ) =
HlL 1 4( x(()l)) and analogously p(z¢), q(far) and p(far)- The marglnal q xt) Hl 1 q( ) de-

composes between the components w1th q( xt = [q( :ct ] ( )dfM and q(x l)\ fM) =
[ q( 370 P p(xt, Jrl|3:t, , ](\f[)) d:vl(tl) As a remark, the variational distribution g(z; (1 )) has

no closed-form solution and can be comblned with different Monte Carlo sampling strategies as pre-
sented in Longi et al. (2021). In our experiments, we adopt the scheme from Ialongo et al. (2019)
since it leads to unbiased samples and scales linearly with O(t). Finally, both KL-divergences can
be computed in closed-form since all involved distributions are Gaussians.

Backfitting Algorithm Since the variational posterior [Eq. (11)] decomposes between the com-
ponents, we can apply an iterative learning algorithm for parameter optimization. The backfitting
algorithm (Breiman and Friedman, 1985) cycles through all L components to find the optimal set of
parameters © = {#()}F | where 6() consists of the variational parameters {m((]l), S, (l), m(l), S](é[)}
and the hyperparameters belonging to the [-th component (e.g. GP kernel parameters, inducing in-
puts). In each step, we perform an inner optimization to update the parameters 0" of the I-th
component, while keeping all other parameters © \ 0" fixed. The emission output matrix C' is not
assigned to any component and updated in every optimization step. While the benefits of a sequen-
tial learning scheme might not be clear yet, we will exploit its assumptions in the subsequent section
to learn the parameters 0" of each component with a different resolution in order to capture effects
on multiple time scales.

Mini-Batching Since the lower bound £ decomposes between the time points, we
can obtain an unbiased estimate using only a subset of the sequence (Bottou, 2010),
ZtT:l Eq(z,) [logp (i | 24)] ~ % thﬁo Eq(z,) [logp (¢ | ¢)] where B is the batch size and o
denotes the first time index in the batch. To sample efficiently from the marginal ¢ (z;), we make
one rather common approximation (Aicher et al., 2019): We break the temporal dependency be-
tween x¢, and its predecessors o, ..., Ty,—B,, Where By is the buffer size, by sampling z,—_ g,
directly from the recognition model, ¢(z(). Together with the reparameterization trick (Kingma
and Welling, 2013), we can exploit this subsampling scheme for computing cheap gradients during
parameter optimization. However, breaking the temporal dependency also leads to biased gradients:
effects that evolve slower than the size of the mini-batch can no longer be inferred.

In principle, one could resolve this issue by downsampling the data in a preprocessing step.
However, this comes at the expense of fast varying dynamics that can then no longer be modeled
(see Figure 1). We compare to this approach in our experiments.
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3.3. Training over Multiple Resolutions

Prior work on GPSSMs takes only the dynamics of a single resolution into account which is not
sufficient if effects on multiple time scales are present. To circumvent this shortcoming, we proceed
by interpreting the GP transition model through the lens of SDEs.

Relationship to SDEs Consider multi-component state-space models in which the transition
model of the [-th component is given by

P2 eV ) = Ml 2P+ RAgA @), (RA)?EA ) + RAQ®),  (14)

where ;2 (z (-)) and X2 (z ()) are the equlvalents of the GP prediction in Eq. (1), and we again

marginalized the local latent variables fj out of the discretized SDE [Egs. (6) and (7)] using Gaus-
sian calculus. After restricting R > 1 to be integer, we define all remaining terms of the model and
the structured variational family analogously as in Eqgs. (10) and (11), leading to the lower bound

La —ZE o llogp® (y; | )] =KL (¢ (x0)|[p™ (z0)) — KL (¢* (far) |p™ (fmr)) ,  (15)

where J = T'/R. We next present the equivalence between the GP and discretized SDE formula-
tions for R = 1, i.e. for equal time steps.

Theorem 1 For R = 1, there exists a setting of the model and variational parameters of the SDE
Sformulation in terms of those of the GP formulation such that £ = L.

We give the exact parameterization and a constructive proof in an extended version (Longi et al.,
2021). We first provide the analytical formulae for the marginalization over the inducing outputs
fasr in the SDE and in the GPSSM formulation. After showing that these formulae are consistent,
we show that this consistency is passed on to the evidence lower bound.

Our findings allow us to reinterpret the GP transition model [Eq. (4)] as a discretized SDE with
R = 1. Choosing a resolution R > 1, we can approximate the GPSSM lower bound [Eq. (13)]
using the SDE formulation [Eq. (15)]. The novelty in contrast to other works using the connection
between GPSSMs and discretized SDEs (e.g. Ruttor et al. (2013), Zhao et al. (2020)) is that we draw
an additional connection to canonical GPSSMs and exploit it for training the latter with multiple
resolutions by applying different approximation levels R. In the following, we take this to our
advantage in order to come up with an efficient algorithm to learn effects on multiple time scales.

Multi-Resolution Learning Our algorithm decomposes the dynamics into L. components corre-
sponding to different time scales. The components are fit iteratively by using the backfitting algo-
rithm whereby each component is inferred with a different resolution. For training the components
of lower resolutions, we dilate the minibatch scheme by taking only every R-th observation into
account in order to load larger histories into a mini-batch of fixed size B. However, naively com-
puting the marginal q(xglo) + gr) Would be too expensive since it requires B R sampling steps. We can
overcome this issue by interpreting the component under the SDE perspective with resolution level
R using the lower bound [Eq. (15)] which allows us to draw instead B approximate samples from

¢>(-) [Eq. (14)]. Hence, we can approximate the lower bound at different resolution levels using
Z;‘FZI Eq,) logp (ye | 7)) = 5 thfjo Ega (2 [logpA (yj | ©;)]. This approximation keeps the
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runtime fixed over different resolutions, while the approximation level of the marginal is adjusted
to the resolution level of the component under consideration. Fast transitions are captured by high-
resolution components with tight discretization levels (R = 1), while slow transitions are captured
by low-resolution components with long histories (R > 1).

Since our variational family assumes that the latents are independent between components
[Eq. (11)], we can compute the simulated latents of all but the /-th component, m((f;{), outside of
the inner optimization scheme of the backfitting algorithm. The latter leads not only to a reduction
in runtime, but also enables the use of different resolution levels across components in order to
ensure that the discretization level is sufficiently tight for fast dynamics and the history length is
sufficiently long for slow dynamics. We detail out the algorithm and provide its runtime analysis in
an extended version of this paper (Longi et al., 2021).

Limitations We build on the variational family of Doerr et al. (2018), that uses the prior
p(xgl) ‘375217 far) as approximate smoothing distribution q(wy) |). While extensions to more com-
plex variational posteriors exist, they do not allow for mini-batching (Ialongo et al., 2019) or make
strong independence assumptions on g( f J(\f[) , :cgl)T) (e.g. Eleftheriadis et al., 2017). The methodolog-
ical novelty of our work is to a large extent agnostic to the choice of q(xgl) |) and we expect that

improvements on the inference scheme for general GPSSMs can be easily combined with our work.

4. Experiments

We validate the presented algorithm on semi-synthetic data and on an emission modeling task, con-
firming that using multiple resolutions compares favorably to state-of-the-art methods that operate
on a single resolution only. We compare our novel multi-resolution GPSSM (MR-GPSSM) against
the standard GPSSM applying a similar inference scheme (Doerr et al., 2018). This approach
uses a non-structured latent space which does not allow for learning on multiple resolutions. To
tease apart the effects of multiple components and multiple resolutions, we additionally introduced
the multi-component GPSSM (MC-GPSSM). The latter has the same architecture and employs
the same optimization algorithm as MR-GPSSM, but applies a single resolution over all compo-
nents. We refrained from benchmarking against other non state-space GP models since this has
already been done extensively in Doerr et al. (2018), demonstrating the benefits of their method
that we compare against. We measure the performance via the root mean squared error (RMSE)
and report the mean and the standard error over five runs. Many more experimental details and
results can be found in the extended version of this paper (Longi et al., 2021). Code is available at
https://version.helsinki.fi/MUPI/mr—-gpssm.

4.1. Semi-Synthetic Data

First, we benchmarked our method on 4 semi-synthetic datasets with varying properties: fast dy-
namics (F), mixed dynamics (M1, M2), and slow dynamics (S). Dataset M1 and M2 exhibit both fast
and slow dynamics, and are challenging for previous methods. Each dataset consists of 7' = 37, 961
time points, from which we used the first half for training and the second half for testing.

For MR-GPSSM, we applied L = 2 components with D, = 2 latent dimensions each, and
learned one component with RU) = 1 for fast dynamics and one with R®) = 30 for slow dynamics.
We trained each component for 600 iterations that were split evenly into 12 backfitting cycles. We
compared our model to MC-GPSSM using exactly the same settings. For standard GPSSM, we set


https://version.helsinki.fi/MUPI/mr-gpssm
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Table 1: Results on Semi-Synthetic Data. Predictive performance of GPSSM variants on four
semi-synthetic datasets with varying dynamics: slow (S), mixed (M1, M2) and fast (F).
The best performing method, and all methods whose mean statistic overlap within the
standard error, are marked in bold.

GPSSM MC-GPSSM MR-GPSSM (ours)
R=1 R =30 R=[1,1] R=[30,30] R =[30, 1]
F  0.05(0.00) 0.14(0.00)  0.06(0.01) 0.16(0.01) 0.07 (0.01)
rysg MU 016(0.02) 0.14(0.00)  0.15(0.01)  0.15(0.00) 0.08 (0.01)
M2 0.14(0.00) 029 (0.11)  0.14(0.00) 0.20 (0.01) 0.09 (0.01)
S  033(0.08) 0.16(0.01)  029(0.02) 0.20(0.03) 0.17 (0.02)

the number of latent states to D, = 4 and trained for 600 iterations such that the model complexity
and the number of parameter updates is comparable. We varied the resolution for both comparison
partners in R € {1,30}. The results are shown in Table 1. We observe that MC-GPSSM and
GPSSM perform well if the resolution is chosen appropriately: Fast dynamics (dataset F) can only
be accurately predicted using a small resolution (R = 1), whereas slow dynamics (dataset S) require
a large resolution (R = 30). Moreover, choosing the wrong resolution leads not only to a decrease
in performance, but also to convergence problems which lead to the removal of one run of GPSSM
(R = 1) on dataset S. Our proposed model, MR-GPSSM, achieves comparable results on both
tasks. On datasets with mixed dynamics (M1, M2), MR-GPSSM significantly improves over the
single resolution models, since it is the only method that captures effects on multiple timescales.

Next, we investigated if increasing the mini-batch size can provide an alternative solution for
capturing slow dynamics. Instead of learning the dynamics with resolution R = 30 and minibatch
size B = 50, as done previously, we increased the mini-batch size to B = 1500 and applied the
standard resolution R = 1. The results in Longi et al. (2021) confirm on dataset S that the latter
strategy does not yield competitive results even if we allow for prolonged training time.

4.2. Engine Modeling Task

This dataset consists of 22 independent measurements containing the raw emissions of an engine.
Each measurement is recorded with 10Hz and between 21 and 63 minutes long, resulting in over
500,000 data points. The system is described by 4 inputs and the following 4 outputs: particle
numbers (PN), hydrocarbon concentration (HC), nitrogen oxide concentration (NOx) and engine
temperature (Temp). In the following, we split the data into 16 train and 6 test measurements. For
each output, the experiment is carried out 5 times using stratified cross-validation. Our early results
indicated that the optimization can be sensitive to the initial conditions when the mini-batches are
not chosen small enough or the used resolution is not adquate. In order to avoid local optima, we
repeated each training 3 times using random restarts, and selected the model with the best training
objective for predicting on the test set.

First, we studied if the optimal resolution differs between outputs by performing a grid search
over R € {1,5,10,20,30,40,50,60,70} using standard GPSSM. We set the number of latent
dimensions to D, = 6 and use 3,000 training iterations. The results are shown in the extended
manuscript (Longi et al., 2021) and, for the found optimal resolutions R = {1,5,30} in Figure 3.
Next, we trained MR/MC-GPSSM using a comparable configuration (L = 3; D, = 2; 3,000
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Figure 3: Predictive Performance on Engine Modeling Task. RMSE on the four outputs PN, HC,
NOx, Temp and relative error with respect to our method, averaged over all outputs. From
top to bottom: We compare our method, MR-GPSSM (green, indicated with a gray line),
to MC-GPSSM (green) and GPSSM (purple) sorted according to decreasing resolution.
Our method is the only method that performs consistently well over all outputs.

Table 2: Sensitivity analysis. Predictive performance of MR-GPSSM on emission datasets when
varying the resolution set. The first column R = [30,5, 1] corresponds to the default
setting. We can observe that the performance is consistent when varying the size of the
resolution set. The outputs HC and NOx require at least one component with small reso-
lution, while the output Temp requires at least one component with large resolution.

R [30,5,1  [7,5,1] [40,20,10] [40, 20] [30,15,7,5,1] [40,20, 10,5, 1]
PN | 0.41(0.02) 0.40(0.03) 0.41(0.02) 0.45(0.02) 0.40 (0.02) 0.39 (0.02)
HC | 032(0.02) 029(0.01) 0.38(0.03) 0.40(0.02) 0.31(0.02) 0.32 (0.01)
NOx | 0.14(0.01) 0.15(0.01) 0.19(0.01) 0.33(0.01) 0.15 (0.01) 0.17 (0.02)
Temp | 0.11 (0.01) 0.22(0.03) 0.10(0.00) 0.11 (0.00) 0.10 (0.00) 0.10 (0.00)

iterations per component). We set the resolutions of MR-GPSSM to R = [1, 5, 30] such that the best
resolution for each output is included, and trained MC-GPSSM on each resolution independently.
The results are shown in Figure 3. Our method, MR-GPSSM, shows competitive performance
across all outputs, while (MC-)GPSSM works only well if the resolution is set adequately. In
addition, MR-GPSSM requires less fine-tuning, and also performs well if the resolution set is varied
as shown in Table 2.

5. Conclusion

We have presented a novel Gaussian Process state-space model architecture that allows to traverse
time with multiple resolutions. It is composed of multiple components that evolve independently
over time. By interpreting the transition functions as discretized stochastic differential equations,
we can learn each component with a different resolution to model effects on different time scales.

The benefits of our approach are demonstrated on semi-synthetic data and on a challenging en-
gine modeling task. However, our methodological contribution is general and can also be applied to
use cases from different domains ranging from neuroscience (Prince et al., 2021), medicine (Lipton
et al., 2016) to human motion prediction (Martinez et al., 2017).
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