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Abstract
In spacecraft formation flying, establishing inter-satellite communication links is critical for data
exchange and relative satellite navigation. In large formations, establishing links between the ref-
erence chief and all deputy satellites can weigh heavily on mission execution time and resources.
This study strives to find the optimal sequence of pointing decisions for a single chief spacecraft to
the entire formation, while respecting practical resource constraints such as power budgeting. The
sequential decision making problem is formulated as a Markov decision process (MDP) and solved
as a shortest path problem. Two-body astrodynamics and rigid body dynamics are assumed in the
simulation. We compared several policies: a random policy, two types of greedy policies, one-step
look-ahead, and forward tree search. Policies were tested on a single demonstration scenario, and
then tested on 1,000 Monte Carlo trials using randomized formation geometries. The total point-
ing mission execution times and the relative runtimes were assessed across these policies. Results
show effectiveness in finding the shortest sequential pointing sequence, demonstrating promise in
autonomous decision making for spacecraft attitude control in future missions.

1. Introduction

Spacecraft formation flying is a nascent and promising topic in astrodynamics, with well-studied
value propositions in literature. Formation flying enables novel mission concepts such as geoloca-
tion, gravimetry and interferometry, while also re-distributing mission risk across multiple agents
(Brown and Eremenko, 2006). Maintaining inter-satellite communications (ISC) is critical for en-
abling large spacecraft formations (Bristow, Folta, and Hartman, 2000). Most ISC links are uni-
directional, trading higher gain for lower size-weight-power (SWaP), with a modern interest lean-
ing towards laser links for future missions, with Starlink being a prime example (Chaudhry and
Yanikomeroglu, 2021). The directional nature of ISC necessitates finding the fastest sequence of
targets to communicate with the full formation in order to minimize mission execution time. In
fact, this scenario can be thought of as a moving-target Travelling Salesman Problem (TSP), where
the decision-making agent is the formation chief. Formation architectures where multiple deputies
take reference and instructions from a chief are commonly adopted (D’Amico, 2010; Goh, Low,
and Poh, 2019). In time-critical operations, enabling an efficient targeting sequence between a chief
and its deputies not only saves valuable mission execution time, but also enables greater operational
autonomy on the formation in the absence of ground segment control and intervention.
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Challenges: There are three challenges in implementing the shortest-path pointing problem in
spacecraft formations in practice. First, the targets (deputies) in the TSP are not static, but constantly
in orbital motion. This adds the complexity of time-varying dynamics in the sequential decision
making process. Second, resource constraints such as power budgeting and data handling must be
accounted for in the decision space. Third, the typically limited processing power of space-grade
computers, compounded by the NP-hardness of TSPs, imply that the policy space is realistically
confined to online planning techniques; offline techniques such as value iteration or a full search
are computationally infeasible in-orbit. These challenges partially explain why the adoption of
autonomy in spacecraft has been slow compared to other vehicles, as echoed by Frost (2011).

Related Work: As Frost (2011) highlights, the lack of flight heritage in autonomous features
creates a causality dilemma where autonomy is often forsaken for simpler criteria-based (if-else)
decisions using a threshold or reference, as proposed by Low and Chia (2018); Low et al. (2022).
In formation flying, a novel reformulation of relative states (D’Amico, 2010) have resulted in inno-
vative criteria-based control to ensure passive collision-free safety in large formations (Koenig and
D’Amico, 2018). Beyond criteria-based tasking and from an algorithmic standpoint, the moving-
target TSP for orbital motion has not been extensively studied in literature. While Helvig et al.
(2003) did formulate an algorithm to solve the linear constant velocity moving-target TSP, the kine-
matics were over-simplified for an astrodynamics context. Rather than an exact optimal solution
to the TSP, online planning methods (Kochenderfer, 2015) have garnered recent interest to pursue
an approximation to the optimal solution instead. Harris et al. (2019) formulated both attitude and
orbit control planning as a partially observable Markov decision process (POMDP), applying Deep
Q-Learning (DQL) to plan Martian orbit insertion and pointing decision sequences. Harris and
Schaub (2020) then included stochastic policies in prior work, bounding the agent behaviour with
a ‘shield’ against unsafe actions. Herrmann and Schaub (2021) planned a more thorough sequence
of station keeping tasks using Monte Carlo tree search (MCTS) for spacecraft charging, ground
station downlink, target imaging, and reaction wheel de-saturation. A similar shortest path pointing
problem was studied by Eddy and Kochenderfer (2020) for Earth-fixed targets, constrained also by
on-board resources, and solved using forward search and Monte Carlo tree search. However, for in-
orbit targets such as spacecraft in formations, autonomous and sequential pointing in-orbit remains
an open problem in literature, to the best of our knowledge.

Key Contribution: This paper proposes and investigates the performance of online planning
for sequential pointing in spacecraft formations. The higher research direction it builds towards is
to study the enabling of autonomy in sequential decision making in distributed space systems.

Implementation: In section 2, the astrodynamics simulation environment is defined, using
only two-body motion for orbits and rigid body dynamics for spacecraft bodies. In section 3, the
problem is formulated as a Markov decision process (MDP). States, actions, transitions and rewards
are defined. In section 4, the implementation details of the policies are outlined. In section 5,
a single demonstration scenario comprising 1 chief and 8 deputies is illustrated for clarity, with
results from subsequent Monte Carlo trials. The policies implemented are: a random policy, two
greedy policy types, single-step value iteration or look-ahead, and forward tree search. Throughout
this paper, the only resource constraint considered is the battery power; so as not to obfuscate the
key objective of finding the shortest path with too many resource constraints. Finally, in section 6,
this paper concludes with remarks on future research directions.
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2. Astrodynamics Environment

The physics environment is based on the QUADRANT astrodynamics and attitude control library,
while the formation geometries were designed using the QLUSTER formation flying design library.
The ‘true’ inertial frame is defined such that n̂2 is sun-pointing, n̂3 points out of the ecliptic, and
n̂1 completes the right handed triad as shown in fig. 1. Axes n̂1 and n̂2 lie on the ecliptic plane.
The chief orbit has a mean geocentric altitude of 600 km, an inclination of i = 60◦ about the Earth
equatorial plane, argument of perigee ω = 90◦, and right ascension Ω = 90◦. The chief serves as a
relative origin about which deputies are initialized.

Figure 1: Inertial and body coordinate frames.

Each spacecraft is modelled as a rigid cube with a 3×3 principal inertia tensor [I] having di-
agonal elements of 10 kgm2. Quaternions are the attitude coordinates used for target tracking.
The angular acceleration ω̇B/N and angular velocity ωB/N is between the body and inertial frame,
expressed in body-fixed coordinates. The external torque τ applied about the spacecraft center of
mass is also expressed in body-fixed coordinates. The chief spacecraft is initialized with the body
frame aligned with the inertial, without tumbling, ωB/N = 0, and without external torques, τ = 0.
Thus, the dynamics simply follow Euler’s rigid body equations of motion:

[I]ω̇B/N = −ωB/N × [I]ωB/N + τ (1)

The chief’s communications boresight and plane normal vector of the solar cells are assumed
to point in the +X direction as shown in fig. 1. For some deputy i, this information allows the
construction of the direction cosine matrix [RN ]i describing the rotation between the inertial frame
and the chief-to-deputy communications pointing frame. For some deputy i chosen as the pointing
target, the dynamics loop tracks how [RN ]i evolves. Let ρi be the relative position of the chief to
deputy i. This matrix [RN ]i is then

ĉx =
ρi

∥ρi∥
, ĉy =

ρi × n̂3

∥ρi × n̂3∥
, ĉz = ĉx × ĉy, [RN ]i =

ĉx1 ĉy1 ĉz1
ĉx2 ĉy2 ĉz2
ĉx3 ĉy3 ĉz3

 (2)
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If the chief decides to transit into sun-pointing, then the sun to inertial rotation matrix [SN ] will
be used as the reference matrix:

[SN ] =

−1 0 0
0 0 1
0 1 0

 (3)

Unlike [RN ], [SN ] is not time varying because the sun is assumed inertially fixed and does not vary
with the spacecraft motion.

With knowledge of the rotation between the inertial to communications frame [RN ], and body
to inertial frame [BN ] (the latter is assumed to be measurable with attitude determination sensors
in practice), the attitude error can be described using a composite rotation matrix

[BR] = [BN ][RN ]T (4)

This matrix translates directly into the quaternion QB/R = [q0, q1, q2, q3]
T describing the attitude

error between the chief’s current and target attitude. This quaternion can be fed into a commonly
employed Lyapunov-based attitude control law that guarantees convergence (Schaub and Junkins,
1996; Tsiotras, 1996):

τ = −Dgain ωB/R − Pgain [q1, q2, q3]
T (5)

where constants Dgain and Pgain are user-defined derivative and proportional control gains (see
section 5), This control law is used for all pointing maneuvers. The information provided in this
section is sufficient to help the reader replicate this environment.

3. Decision Making Process Formulation

We formulate the problem as a Markov decision process (MDP) because of the uncertainty inherent
in this application. The chief must decide how to balance its choices between resource conservation
(sun-pointing) and establishing links (deputy pointing). In addition, the chief needs to decide the
optimal sequence of targets that establishes the shortest path, taking careful consideration of the
dynamics. In an MDP, the state evolves probabilistically.

Actions are chosen at each epoch based on an observed state with a subsequent reward. The ac-
tion spaceA = {as, a1, . . . , aN}. The state of the chief is a tuple (θ, S), where θ ∈ [0, 1] represents
a power level of the chief, and S ∈ S is the discrete choice of target, where S = {ss, s1, . . . , sN}. In
A and S, the subscript s refers to the sun-pointing mode, and numerical subscripts i ∈ {1, . . . , N}
represent deputy-pointing mode.

The chief’s state S will not re-visit a deputy si more than once. Transition between discrete
states is dependent on the current power level θ and on the estimated control maneuver duration
between current target i and next target j, denoted as ∆ij . It also depends on a hyper-parameter
λ, which balances power charging priority. Given an action aj to point to deputy j, the transition
probability from si into the sun-pointing mode ss is

α = (1− θ)λ, where θ ∈ [0, 1], λ ∈ [0,∞) (6)

The intuition behind α is to inform the chief about the urgency of transiting into the charging
state when power levels are low. Note that since θ ≤ 1, α ≤ 1. If λ decreases, then the chance of
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transiting into sun-pointing increases. The transition probabilities between states is given by

T (s′ = ss | si, as) = 1

T (s′ = sj | si, as) = 0

T (s′ = ss | si, aj) = α

T (s′ = sj | si, aj) = 1− α

(7)

A matrix representation of the transition used in Bellman updates is

T =


1 0 0 . . . 0
α (1− α) 0 . . . 0
...

...
...

. . .
...

α 0 0 . . . (1− α)

 (8)

For the pointing state S, the chief only makes a decision and hence a state transition when
the body-to-reference attitude error QB/R converges to ≤ 0.1% error. This is assumed as the
moment where pointing is successfully established. The power state θ can be generalized to other
spacecraft resources, such as the amount of on-board data, the reaction wheel saturation levels, or
as a timing parameter for periodic ground station contact, as was similarly formulated by Eddy and
Kochenderfer (2020). Assuming a linear charging (sun-pointing) or discharging rate θ̇, the transition
for power is a simple linear update

θ ← θ + θ̇ · δt (9)

The distribution of immediate rewards is segmented into the sun-pointing state ss and non-sun-
pointing state si. In both cases, the rewards are a function of the power level θ prior to entering the
state, and the expected maneuver duration needed to arrive at the state. The duration to transit the
pointing from deputy i to j is ∆ij , and from deputy i to the sun is ∆is. Durations are estimated
using a hallucinated propagation of the dynamics with larger time steps. These hallucinations only
estimate ∆ij and ∆is. They are not actually executed in the dynamics. The reward functions are

Rs =
α

exp( µ ∆is )
and Rj =

{
1−α

exp( µ ∆ij ) , if j /∈ V, j ̸= i

0, otherwise
(10)

where V is the set of already visited states.
The reward for sun-pointing is Rs, and the reward for pointing to an unvisited jth deputy is Rj

for j /∈ V or j ̸= i. The rewards include a soft-max hyper-parameter µ that controls the “hardness”
of the rewards. These hyper-parameters λ and µ are important to tune to prevent reward hacking
during the learning process. For example, if sun-pointing was rewarded more than proportionately
over deputy-pointing, a possible reward hack could be to take the slowest battery-draining path and
accumulate rewards from sun-pointing recharges, without finding the shortest path.

4. Online Planning Policies and Implementation

This section outlines the four policies we evaluated. A policy is executed only at a decision epoch.
The decision epoch is triggered once the pointing error converges to ≤ 0.1%. In the time between
decision epochs, both the attitude and orbits of all spacecraft are in constant propagation. The
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random and greedy policies were performed purely as performance benchmarks. One-step look-
ahead and forward search are closed-loop planning techniques that account for information about
future states, and hence can incorporate the astrodynamics in its planning.

4.1. Random Policy

The random policy instructs the chief at the decision epoch to select one out of all unvisited deputies
with uniform probability and enters sun-pointing mode when θ ≤ 0.2.

4.2. Greedy Policy

The greedy policy instructs the chief at the decision epoch to select a deputy that is most “reachable”
using a distance-like heuristic if θ > 0.2; otherwise, the chief goes into sun-pointing mode. Two
such heuristics are implemented: the principal rotation angle ΦB/R and the angular velocity ωB/R

between the chief’s body frame B and the target frame R.

4.3. One-Step Look-Ahead

The one-step look-ahead policy initializes the utility U(s) = 0 for all states s. Then, at every kth
decision epoch, the value function of the chief is updated using the Bellman equation once. The
best pointing action maximizes the value at that epoch,

Uk+1(s) = max
a

(
R(s, a) + γ

∑
s′

T (s′|s, a) Uk(s
′)

)
(11)

An important point for the look-ahead equation is that iterating the Bellman update more than
once at the same kth decision epoch is not guaranteed to converge to the optimal value function due
to the inherent time-varying dynamics (Lecarpentier and Rachelson, 2019). The number of ways
in which the attitude dynamics can evolve for different permutations of paths taken are too large,
making it computationally intractable to perform value iteration until convergence for all decision
epochs. However, a single step look-ahead can still approximate the value function reasonably well,
using a snapshot of the current orbital states and attitudes. Thus, eq. (11) is updated only once per
decision epoch as the chief progresses through its pointing mission.

4.4. Forward Search

Forward search is a commonly used depth-first recursive search algorithm (Kochenderfer, 2015)
that determines the best action from an initial state by expanding all possible transitions in the tree
search to a specified depth, from a specific decision epoch. It returns the best action-value pair for
each recursive call. Because of the dynamics, the rewards in eq. (10) and transition probabilities in
eq. (7) are time-varying. Thus, every state transition moving forward in time (down the tree search
in successive recursion) must also propagate both the orbit and attitude dynamics forward in time,
so that the correct rewards and transitions can be computed. Dynamic programming can be used to
store the chief orbit and attitude states before each recursive call, so that during the back-propagation
of forward search (going back up the search tree), these states do not need to be re-computed. Also,
to prevent revisiting deputies a second time, visited deputies are pruned out of the state space S
when propagating down the tree, and re-populated back into S when returning up the search tree.
Full implementation details are in the source code.
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5. Simulation Results and Discussion

5.1. Simulation Results for a Single Scenario

This section illustrates the simulation results in two parts. First, an individual demonstration sce-
nario was conducted using a formation geometry designed as two projected circular orbit (PCO)
planes in fig. 2. The chief is at the origin of the Euler-Hill frame in fig. 2 flanked by eight deputies.
The deputies are distributed evenly across the relative orbit plane, with relative phasing of ±90◦
between the argument of relative pericenter and the argument of latitude crossing.
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Figure 2: Initial formation geometry in the Euler-Hill frame, before geometric randomization.

In the demonstration scenario, the chief begins the mission with full power θ = 1, and with its
body frame aligned with the inertial frame. The time step of the dynamics is 0.1 s, and the control
feedback step is 1 s (or 1Hz). Table 1 summarizes the simulation parameters. Figure 3 shows the
results of having the chief attempt to find the shortest pointing path in the demonstration scenario.
The discrete changes in the color map correspond to state transitions, or equivalently a new pointing
target. The annotations represent the states that are being transitioned into, with the red-marked S
representing the state transition into sun-pointing mode.
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Figure 3: Results of pointing execution times for each policy with next-states annotated.
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Table 1: Parameters for online planning and control.

γ λ µ θ̇drain θ̇charge Pgain Igain Dgain

0.75 2.0 1.7783× 10−4 −5.0× 10−4 2.5× 10−3 0.016 0.0 0.4

As expected, the random policy fared the worst. Surprisingly, a greedy policy with respect to the
shortest angular distance fared almost as poorly as a random policy, but a greedy policy with respect
to angular rates performed much better. A possible reason could be that the control convergence
is more dependent on matching the relative orbit mean motion than simply the angular distance
itself. Interestingly, forward search of depth 2 and 3 chose the same path. The one-step look-ahead
performed best (for this scenario), completing its pointing mission to its 8 deputies within 4,848
seconds. While a single scenario provides clarity and validation on individual pointing sequences,
we reran the same pointing mission through 1,000 Monte Carlo trials using randomized geometries.
For each Monte Carlo trial, the geometry is initialized as pers fig. 2. Next, each deputy is given an
additional and random radial and cross-track offset between 1 to 5 km. Finally, both the relative
argument of latitude and pericenter, which describes the orientation of the relative orbit plane, will
be randomly re-oriented with an angle ∈ [−180◦,+180◦].

5.2. Simulation Results for Monte Carlo Trials

Figure 4 shows the histogram of mission execution times for all Monte Carlo trials. The statistics
of the trials are shown in table 2 and runtimes relative to the random policy are shown in table 3.
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Figure 4: Histogram showing the distribution of total mission execution times for each policy, over
1000 randomized formation flying pointing missions, with bin resolution of 250 s.
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Table 2: Mean and standard deviation of mission execution duration for each policy (in seconds).

Policy Random Greedy (Angle) Greedy (Rate) Look-Ahead Fwd (d = 2) Fwd (d = 3)

Mean 7613.683 7437.557 6327.291 3641.701 3207.360 3123.620
STD 2496.909 2592.223 2588.786 1006.586 608.178 572.167

Table 3: Normalized run-times of each policy relative to the random policy.

Random Greedy (Angle) Greedy (Rate) Look-Ahead Fwd (d = 2) Fwd (d = 3)

1 ∼1 ∼1 2.857 11.548 103.571

5.3. Discussion of Results

The histogram in fig. 4 shows that the online planning policies appear to have a multi-modal distribu-
tion over mission execution duration. Each mode corresponds to the number of times sun-pointing
had to be engaged. For the online planning policies, the dominant mode was the case where the
chief could fully execute the pointing mission with only a single power charge. The secondary
peaks corresponded to additional occurrences where the chief entered sun-pointing mode due to
poor path planning resulting in the frequent need to recharge power. Interestingly, the greedy policy
with respect the the angular distance fared just as unremarkably as a random policy. The greedy
policy with respect to the angular rates fared slightly better, but averaged a mission execution time
that was double that of the online planning policies. A likely reason is that the greedy policy priori-
tizes immediate rewards at the expense of leaving much longer paths in the future, which disregards
future rewards succeeding the current horizon.

In terms of runtime, forward search with a depth of 3 provided marginal improvements in mis-
sion execution time, over forward search with a depth of 2, at the expense of increasing the relative
runtime by an order of magnitude. The one-step look-ahead was computationally more efficient than
forward search. This is because the utility does not have to be re-computed at the root node for every
decision epoch in the same way forward search does. Only a single Bellman update is needed for a
one-step look-ahead, and the utility from previous decision epochs is also carried over, discounted
by γ. Although the motion of the dynamical system discounts the accuracy of the utility over time,
it is still a useful approximation of the value function. Thus, the one-step look-ahead seems to be a
promising compromise between mission execution duration and computational efficiency.

6. Conclusion

This study presented a framework for solving an astrodynamics pointing problem using online plan-
ning techniques. The proposed one-step look-ahead offers a computationally light-weight solution
for planning the sequence of pointing to targets in-orbit. The proposed modified forward search
algorithm offers slightly better performance at the expense of computational cost, largely due to the
inclusion of the dynamics. The broader research goals of this study is driven to further the imple-
mentation of autonomous capabilities in decision making for spacecraft orbit and attitude control,
which would make for an exciting future in unmanned space flight.
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