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Abstract

Safety is the major consideration in controlling complex dynamical systems using reinforcement
learning (RL), where the safety certificates can provide provable safety guarantees. A valid safety
certificate is an energy function indicating that safe states are with low energy, and there exists a
corresponding safe control policy that allows the energy function to always dissipate. The safety
certificates and the safe control policies are closely related to each other and both challenging to
synthesize. Therefore, existing learning-based studies treat either of them as prior knowledge to
learn the other, limiting their applicability to general systems with unknown dynamics. This paper
proposes a novel approach that simultaneously synthesizes the energy-function-based safety cer-
tificates and learns the safe control policies with constrained reinforcement learning (CRL). We
do not rely on prior knowledge about either a prior control law or a perfect safety certificate. In
particular, we formulate a loss function to optimize the safety certificate parameters by minimizing
the occurrence of energy increases. By adding this optimization procedure as an outer loop to the
Lagrangian-based CRL, we jointly update the policy and safety certificate parameters, and prove
that they will converge to their respective local optima, the optimal safe policies and valid safety
certificates. Finally, we evaluate our algorithms on multiple safety-critical benchmark environ-
ments. The results show that the proposed algorithm learns solidly safe policies with no constraint
violation. The validity or feasibility of synthesized safety certificates is also verified numerically.
Keywords: Safety Certificates, Safe Control, Energy functions, Safety Index Synthesis, Con-
strained Reinforcement Learning, Multi-Objective Learning

1. Introduction

Safety is critical when applying state-of-the-art artificial intelligence studies to real-world applica-
tions, like autonomous driving (Sallab et al., 2017; Chen et al., 2021), robotic control (Richter et al.,
2019; Ray et al., 2019). Safe control is one of the most common tasks among these real-world ap-
plications, requiring that the hard safety constraints must be obeyed persistently. However, learning
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a safe control policy is hard for the naive trial-and-error mechanism of RL since it penalizes the
dangerous actions after experiencing them.

Meanwhile, in the control theory, there exist studies about energy-function-based provable
safety guarantee of dynamic systems called the safety certificate, or safety index (Wieland and
Allgower, 2007; Ames et al., 2014; Liu and Tomizuka, 2014). These methods first synthesize en-
ergy functions such that the safe states have low energy, then design control laws satisfying the safe
action constraints to make the systems dissipate energy (Wei and Liu, 2019). If there exists a feasi-
ble policy for all states in a safe set to satisfy the safe action constraints dissipating the energy, the
system will never leave the safe set (i.e., forward invariance). Despite its soundness, the safety index
synthesis (SIS) by hand is extremely hard for complex systems, which stimulates a rapidly growing
interest in learning-based SIS (Chang et al., 2020; Saveriano and Lee, 2019; Srinivasan et al., 2020;
Ma et al., 2021a; Qin et al., 2021). Nevertheless, These studies usually require known dynamical
models (white-box, black-box or learning-calibrated) to design control laws. Furthermore, obtain-
ing the policy satisfying safe action constraints is also challenging. Adding safety shields or layers
to obtain supervised RL policies is a common approach (Wang et al., 2017; Agrawal and Sreenath,
2017; Cheng et al., 2019; Taylor et al., 2020), but these studies usually assume to know the valid
safety certificates.

In general safe control tasks with unknown dynamics, one usually has access to neither the
control laws nor perfect safety certificates, which makes the previous two kinds of studies fall into
a paradox—they rely on each other as the prior knowledge. Therefore, this paper proposes a novel
algorithm without prior knowledge about model-based control laws or valid safety certificates. We
define a loss function for SIS by minimizing the occurrence of energy increases. Then we formulate
a CRL problem (rather than the commonly used shield methods) to unify the loss functions of SIS
and CRL. By adding SIS as an outer loop to the Lagrangian-based solution to CRL, we jointly
update the policies and safety certificates, and prove that they will converge to their respective local
optima, the optimal safe policies and the valid safety certificates.

Contributions. Our main contributions are: 1. We propose an algorithm of joint CRL and SIS
that learns the safe policies and synthesizes the safety certificates simultaneously. This is the first
algorithm requiring no prior knowledge of control laws or valid safety certificates. 2. We unify the
loss function formulations of SIS and CRL. We therefore can form the multi-timescale adversarial
RL training and prove its convergence. 3. We evaluate the proposed algorithm on multiple safety-
critical benchmark environments Results demonstrate that we can simultaneously synthesize valid
safety certificates and learn safe policies with zero constraint violation.

1.1. Related works

Representative energy-function-based safety certificates include barrier certificates (Prajna et al.,
2007), control barrier functions (CBF) (Wieland and Allgower, 2007), safety set algorithm (SSA)
(Liu and Tomizuka, 2014) and sliding mode methods (Gracia et al., 2013). Recent learning-based
studies can be mainly divided into learning-based SIS and learning safe control policies supervised
by certificates. Chang et al. (2020); Luo and Ma (2021) use explicit models to rollout or project
actions to satisfy safe action constraints. Jin et al. (2020); Qin et al. (2021) guide certificate learning
with LQR controllers, Zhao et al. (2021) requires a black-box model to query online, and Saveriano
and Lee (2019); Srinivasan et al. (2020) use labeled data to fit certificates with supervised learning.
The latter one, learning safe policy with supervisory usually assumed a valid safety certificate (Wang
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Figure 1: Safety index synthesis (SIS). Inevitably unsafe states should be excluded during the SIS.

et al., 2017; Cheng et al., 2019; Taylor et al., 2020). It’s a natural thought that one could learn the
dynamic models to handle these issues (like Cheng et al., 2019; Luo and Ma, 2021), but learning
models is much more complex than only learning policies, especially in RL tasks.

2. Problem Formulations

We consider the safety specification that the system state s should be constrained in a connected
and closed set S; which is called the safe set. Ss should be a zero-sublevel set of a safety index
function ¢g(-) denoted by Ss = {s|po(s) < 0}. We study the Markov decision process (MDP)
with deterministic dynamics (a reasonable assumption when dealing with safe control problems),
defined by the tuple (S, A, F,r, ¢, 7, ¢), where S, A is the state and action space, F : S x A — S
is the unknown system dynamics, 7,¢ : S X A X § — R is the reward and cost function, =y is the
discounted factor, and ¢ : S — R is the energy-function-based safety certificate, or called the safety
index. A safe control law with respect to safety index ¢ should keep the system energy low, (¢ < 0)
and dissipate the energy when the system is at high energy (¢ > 0). We use s’ to represent the next
state for simplicity. Then we can get the safe action constraint:

Definition 1 (Safe action constraint) For a given safety index ¢, the safe action constraint is

¢(s") < max{¢(s) —np, 0} M
where np is a slack variable controlling the descent rate of safety index.

Definition 2 (Valid safety certificate) If there always exists an action a € A satisfying (1) at s, or
the safe action set Us(s) = {al¢p(s’) < max{d(s) —np,0}} is always nonempty, we say the safety
index ¢ is a valid, or feasible safety certificate.

A straightforward approach is to use the ¢q as the safety certificate. However, these safe action
constraints are possibly not satisfied with all the states in S5 as shown in Figure 1. This problem
is common in real-world tasks with actuator saturation and high relative-degree from safety spec-
ifications to control inputs (i.e., % | = 0). For example, if ¢y measures the distance between
two autonomous vehicles, the collision may be inevitable because the relative speed is too high and
brake force is limited. In this case, Ss includes inevitably unsafe states. We need to assign high
energy values to these inevitably-unsafe states, for example, by linearly combining the ¢q and its
high-order derivatives (Liu and Tomizuka, 2014). The valid safety certificate will guarantee safety
by ensuring the forward invariance of a subset of S;.




JOINT SYNTHESIS OF SAFETY CERTIFICATES AND SAFE CONTROL POLICIES

Lemma 3 (Forward invariance (Liu and Tomizuka, 2014)) Define the zero-sublevel set of a valid
safety index ¢ as 8¢ = {s|é(s) < 0}. If ¢ is a valid safety certificate, then there exist policies to
guarantee the forward invariance of S¢n Ss.

We therefore can formulate the CRL problem by adding the safe action constraints to RL optimiza-
tion objective:

max IETNW{ ZZO fytrt} =E{v"(s)} s.t.¢(s") —max{¢(s) —np,0} <0,Vs €D (2)

where v™ (s) is the state-value function of s, D = {s|f(s) > 0} is the set of all possible states (f is
the state distribution density).

Remark 4 (2) has state-dependent constraints; it can not be solved by previous model-free CRL
since their constraint objectives are defined on the expectation over D (Uchibe and Doya, 2007;
Achiam et al., 2017; Chow et al., 2017; Tessler et al., 2018; Ray et al., 2019; Stooke et al., 2020).

We solve (2) based on our previous framework to solve state-dependent safety constraints in (Ma
et al., 2021b) using the Lagrange multiplier networks A(s) in a Lagrangian-based approach. The
Lagrange function is (Ma et al., 2021b)

L(m,A) = Eo{ =v7(s) + M) (6(s") — max{(s) — np,0}) } G)

We can solve (2) by locating the saddle point of £'(7, \), maxy min, £' (7, \).

3. Joint Synthesis of Safety Certificate and Safe Control Policy

The key idea of this section is to unify the loss functions of CRL and SIS; we provide theoretical
analyses of their equivalence.

3.1. Loss Function for Safety Index Synthesis

We construct the loss for optimizing a parameterized safety index by a measurement of the violation
of constraint (1)

J(@) = Eof [6(s) — max{o(s) =, 0}] " } @

where []T means projecting the values to the positive half-space [0, +00), 7* is the optimal safe
policy (also a feasible policy when ¢ is a valid safety index) of (2), and |,—,~ represents the agent
takes 77*(s) to reach s'. Ideally, if ¢ is a valid safety index, there always exists control to satisfy (1),
and J(¢) = 0. For those imperfect ¢, the inequality constraint in (2) may not hold for all states in
D, so we can optimize the loss to get better ¢.

The joint synthesis algorithm is tricky since we need to handle two different optimization prob-
lems, (3) and (4). Recent similar studies integrate two optimizations by weighted sum (Qin et al.,
2021) or alternative update (Luo and Ma, 2021), but their methods are more like intuitive approaches
and lack a solid theoretical basis.

T=T*
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3.2. Unified Loss Function for Joint Synthesis

Lemma 5 (Statewise complementary slackness condition (Ma et al., 2021b)) For the problem
(2), if the safe action set is not empty at state s, the optimal multiplier and optimal policy \*, *
satisfies

A (s){¢(s) — max{d(s) — np, 0|z} =0 ®)

If the safe action set is empty at state s, then \*(s) — oo.

The lemma comes from the Karush-Kuhn-Tucker (KKT) necessary conditions for the problem (2).
Consider the Lagrange function (3) with the additional variable ¢ to optimize,

L(m, N\, ¢) = Eg {—v”(s) + )\(s)(gb(s/) — max{¢(s) — np, 0})} 6)

we have the following lemma for the relationship between the loss function of policy and certificate
synthesis

Lemma 6 If \ is clipped into a compact set [0, Amax|, where Amax > MaXge (514, (s)20) A" (8). Then
[',(77*’ A", ¢) = >\max=](¢) +A (N
where A is a constant irrelevant with ¢.

Proof See Appendix A.1'. [ |

Theorem 7 (Unified loss for joint synthesis) The optimal safety certificate parameters with opti-
mal policy-multiplier tuple in (0) is also the optimal safety certificate parameters under loss in (4)

argmin J(¢) = arg min £’ (7%, \*, ¢) (8)

Proof See the envelope theorem on parameterized constraints in Milgrom and Segal (2002); Rock-
afellar (2015). |

Finally, we unify the loss function of updating three elements: policy 7, multiplier A, and safety
index function ¢. The optimization problem is formulated by a multi-timescale adversarial training:

Ingn max min £' (7, \, ¢) &)

4. Practical Algorithm using Constrained Reinforcement Learning

In this section, we explain the practical algorithm and convergence analysis.

1. The full paper with Appendix can be found on https://arxiv.org/abs/2111.07695.
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4.1. Algorithm Details

The Lagrangian-based solution to CRL with statewise safety constraint is compatible with any ex-
isting unconstrained RL baselines, and we select the off-policy maximum entropy RL framework
like soft actor-critic (SAC, Haarnoja et al., 2018). According to (3), we need to add two neural
networks to learn a state-action value function for safety index model Q4(s,a) (to approximate
&(s") —max{¢(s) —np,0}) and the multipliers A(s). Because the soft policy evaluation, or the soft
Q-learning part, is the same as Haarnoja et al. (2018), we only demonstrate the soft policy iteration
part of the algorithm in Algorithm 1. We name the proposed algorithm as FAC-SIS?. We denote
the parameters of the policy network, multiplier network, safety index as 4, £, (, respectively. We
use G4, # € {60,§,(} to denote the gradients to update policy, multiplier and certificate. De-
tailed computations of the gradients can be found in Appendix B.1. In addition, we assign multiple
delayed updates (similar to Fujimoto et al., 2018), m, < my < my, to stabilize the adversarial
optimizations.

Remark 8 A general parameterization rule of safety index is to linearly combine ¢g and its high-
order derivatives (Liu and Tomizuka, 2014), ¢ = ¢g + k1 (;50 + -+ knqbén); the parameters &
is [k1,ka, ..., ky]. How many high-order derivatives are needed depends on the system relative-
degree. For example, the relative-degree of position constraints with force inputs is 2. This informa-
tion should be included in observations of MDP. Otherwise, the observation can not fully describe
how dangerous the agent is with respect to the safety constraint.

Algorithm 1 Soft Policy Improvement in FAC-SIS
Input: Buffer D with sampled data, policy parameters 6, multiplier parameters &, safety index
parameters (.
1: if gradient steps mod m, = 0 then 0 < 0 — 3,Gy
2: if gradient steps mod my = 0 then & + & + B\G¢
3: if gradient steps mod my = O then ¢ < ¢ — FCGC
Output: wi, wo, 0, €.

4.2. Convergence Analysis

The convergence proof of a three timescale adversarial training of (9) mainly follows the multi-
timescale convergence according to Theorem 2 in Chapter 6 in Borkar (2009) about multiple timescale
convergence of multi-variable optimization. Some studies also adopted this procedure to explain
the convergence of RL algorithms from the perspective of stochastic optimization (Bhatnagar et al.,
2009; Bhatnagar and Lakshmanan, 2012), especially those with Lagrangian-based methods (Chow
et al., 2017). We incorporate the recent study on clipped stochastic gradient descent to further
improve the generalization of this convergence proof (Zhang et al., 2019). We first give some as-
sumptions:

Assumption 1 (learning rates) The learning rate schedules, {By(k), B¢(k), Bc(k)}, satisfy

Zk Bo(k) = Zk Be(k) = Zk Be(k) = oo.
Zk Bo(k)?, Zk Be(k)?, Zk Be(k)? < oo, Be(k) =0 (Bo(k)), Be(k) =o(Be(k)).

2. FAC refers to the FAC algorithm in our prior work(Ma et al., 2021b).
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This assumption also implies that the policy converges in the fastest timescale, then the multipliers,
and finally the safety index parameters.

Proposition 9 (Clipped gradient descent) The actual learning rate used in Algorithm 1 is

By = min{By, By /||G4ll} (10

where # € {w1, w2, 0,§,C} is the parameters, and G4 is the corresponding gradients.

Assumption 2 The state and action are sampled from compact sets, and all neural networks are
Lo — Ly smooth.

As we are to finish a safe control problem that the agent should be confined in safe sets, and the actu-
ator has physical limits, the bounded assumption is reasonable. We use multi-layer perceptron with
continuous differentiable activation functions in practical implementations (details can be found in
Appendix D).

Theorem 10 Under all the aforementioned assumptions, the sequence of policy, multiplier, and
safety index parameters tuple (0, &, (i) converge almost surely to a locally optimal safety index
parameters and its corresponding locally optimal policy and multiplier (0*,&*,(*) as k goes to

infinity.
Proof See Appendix B.2. |

5. Experiments
In our experiments, we focus on the following questions:

1. How does the proposed algorithm compare with other constraint RL algorithms? Can it
achieve a safe policy with zero constraint violation?

2. How does the learning-based safety index synthesis outperform the handcrafted safety index
or the original safety index in the safety performance?

3. Does the synthesized safety index allow safe control in all states the agent experienced?

To demonstrate the effectiveness of the proposed online synthesis rules, we select the safe reinforce-
ment learning benchmark environments Safety Gym (Ray et al., 2019) with different tasks and ob-
stacles. We name a specific environment by {Obstacle type}-{Obstacle size}-{Task}.
We select six environments with different tasks and constraint objectives, where four of them are
demonstrated in Figure 2, and others are provided in Appendix E.1.

Remark 11 Some previous studies use controllers specially designed for goal-reaching tasks (Jin
etal., 2020; Qin et al., 2021), while our algorithm can handle arbitrary complex tasks like the Push
tasks.
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In this section, we use a fine-tuned form of safety index in Zhao et al. (2021)

o(s) =0 +dt,, —d" — kd (11)
where d is the distance between the agent and obstacle, di, is the minimum safe distance, and
d is the derivative of distance with respect to time, £ = [o,n, k] are the tunable parameters we
desire to optimize in the online synthesis algorithm. The observations in Safety Gym include Lidar,
speedometer, and magnetometer, which can be used to compute d and d from observations. We
compare the proposed algorithm against two types of baseline algorithms:

* CRL baselines, including TRPO-Lagrangian, PPO-Lagrangian and CPO Achiam et al. (2017);
Ray et al. (2019). The cost threshold is set at zero to learn solid safe policies.

* FAC with original safety indqx ¢o and handcrafted safety index ¢y, where ¢g = d;;, — d and
¢n = 0.3+ d?%,, — d* — kd, named as FAC with ¢ and FAC with ¢;,. The choice of ¢, is
based on empirical knowledge. Details about baseline algorithms can be found in Appendix
C.1.

5.1. Evaluating FAC-SIS and Comparison Analysis

Results of the performance comparison are shown in Figure 3. The results suggest that FAC with ¢g
performs poorest in the safety performance, which indicates that there are indeed many inevitably
unsafe states, and SIS is necessary for these tasks. Only FAC-SIS learns the policy with zero viola-
tion and takes the lowest cost rate in all environments, answering the first question of zero constraint
violation. FAC with ¢y, fails to learn a solid safe policy in those environments with 0 . 30 constraint
size (See the zoomed window in the second row), indicating that the handcrafted safety index can not
cover all the environments. As for the baseline CRL algorithms, they can not learn a zero-violation
policy in any environment because of the posterior penalty in the trial-and-error mechanism stated
above. As for the reward performance, FAC-SIS has comparable reward performance in the Push
task. For the Goal task, FAC with ¢;, and FAC-SIS sacrifice the reward performance to guarantee
safety, explained in Ray et al. (2019).

5.2. Validity Verification of Synthesized Safety Index

We conduct new metrics and experiments to show the validity of our synthesized safety index. Re-
call that the validity means that there always exists a feasible control policy to satisfy the constraint

@
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Figure 2: Obstacles and tasks in Safety Gym.
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Figure 3: Average performance of FAC-SIS and baseline methods on 4 different Safety Gym envi-
ronments over five seeds.
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Figure 4: Average episodic number of violations of safe action constraint (1). A valid safety index and its
corresponding safe control policy should have zero violation performance.

in (1). To effectively demonstrate the feasibility of SIS, we add a new baseline, FAC with ¢, where
¢ is a valid safety index verified by Zhao et al. (2021). Figure 4 demonstrates the episodic number
of constraint violations of (1) in the Safety Gym environments. The results show that FAC-SIS
and FAC with ¢ can reach a nearly stable zero violation, which means that FAC can satisfy safe
action constraint for a given valid safety index, and FAC-SIS also synthesizes a valid safety index.
However, with ¢g and ¢y, there are consistent violations even with the converged policy, caused by
different reasons. For ¢y, the reason is simply the inability to make the energy dissipate. For ¢, no
high-order derivative in the safety index, so ¢y cannot handle the high relative-degree between the
constraint function and control input.

Furthermore, we want to give some scalable analyses about SIS. Firstly, we want to visualize
that we can always find actions to dissipate the energy in the sampled distributions after SIS. We
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Figure 5: The color indicates the value of the synthesized safety index. The zero-sublevel set of learned
safety index is a subset of the numerically max forward invariant set, the HJ avoidable set. We
exclude all inevitably unsafe states through SIS like Figure 1. HJ-based solution is only capable
for goal-reaching tasks with the reach-avoid problem formulation, while proposed algorithm can
handle arbitrary task.

conduct experiments on a simple collision-avoidance environment shown in Figure ?23. We select
three different initialization rules of the agent and hazard. We use a sample-based exhaustive method
to identify infeasible states and see if they overlap the sampled state distributions. We project the
state distribution to the 2D space of d and d, and the results are listed in Figure ??. As we expect
all the sampled states to be feasible, these two distributions should not overlap. The results show
that the overlap of these two distributions is very small, which indicates that nearly all the sampling
states are feasible.

Secondly, we want to visualize the shape of the safe set concerning the learned safety index.
We slice the state space into three 2D planes with different agent heading angles, as shown in
Figure 5. We use Hamilton-Jacobi reachability analysis to compute the avoidable sets numerically.
The avoidable set considers the safe set under the most conservative control inputs, which is the
maximum controlled invariant set (Mitchell, 2007; Choi et al., 2021). We use ¢;, as the initial
safety index of SIS. Figure 5 demonstrates that inevitable unsafe states exist in the zero-sublevel
set of the empirical safety index. It also shows that we successfully exclude the inevitably unsafe
sets through SIS. Notably, the zero-sublevel sets of the synthesized safety index are the subsets of
the HJ-avoidable sets. The reasons why SIS can not learn the perfect shapes include limits of the
representation capabilities of the safety index parameterization. Additionally, we still consider the
optimal criteria, resulting in less conservative policies and possibly smaller safe sets.

6. Conclusion

This paper focuses on the joint synthesis of the safety certificate and the safe control policy for
unknown dynamical systems and general tasks using a CRL approach. We are the first study to
start with unknown dynamics and imperfect safety certificates, which significantly improves the
applicability of the energy-function-based safe control. We add the optimization of safety index
parameters as an outer loop of Lagrangian-based CRL with a unified loss. The convergence is
analyzed theoretically. Experimental results demonstrate that the proposed FAC-SIS synthesizes a
valid safe index while learning a safe control policy. In future work, we will consider more complex
safety index parameterization rules, for example, neural networks. Meanwhile, we will consider
other factors in SIS, such as the reward performance of the safe control policies.

3. See Appendix E.2 for more details.

10
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