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Abstract
In this work, we propose a data-driven approach to synthesize safety controllers for continuous-time
nonlinear polynomial-type systems with unknown dynamics. The proposed framework is based on
notions of so-called control barrier certificates, constructed from data while providing a guaranteed
confidence of 1 on the safety of unknown systems. Under a certain rank condition, we synthesize
polynomial state-feedback controllers to ensure the safety of the unknown system only via a single
trajectory collected from it. We demonstrate the effectiveness of our proposed results by applying
them to a nonlinear polynomial-type system with unknown dynamics.
Keywords: Data-driven controller synthesis, Nonlinear polynomial-type systems, Control barrier
certificates, Safety property

1. Introduction

In the past two decades, formal methods have become a promising approach to synthesize con-
trollers for complex dynamical systems enforcing high-level logic properties, e.g., those expressed
as linear temporal logic (LTL) formulae (Pnueli, 1977), in a reliable and cost-effective way. Never-
theless, the closed-form characterization of these controllers over continuous-time continuous-space
systems is not available in general. Hence, formal controller synthesis for those complex systems
against complex properties is inherently very challenging due to their continuous state and input
sets.

In order to mitigate the encountered difficulty, notions of barrier certificates were introduced
in (Prajna and Jadbabaie, 2004; Prajna et al., 2007) as a discretization-free approach for formal
analysis of complex dynamical systems. Concretely, barrier certificates are Lyapunov-like functions
defined over the state set of the system enforcing a set of inequalities on both the function itself and
its Lie derivative alongside the flow of the system. As a key insight, an appropriate level set of a
barrier certificate separates an unsafe region from all system trajectories starting from a given set
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of initial states. Consequently, such a function provides a formal (probabilistic) certificate for the
safety of the system. Barrier certificates have been so far widely employed for the formal verification
and controller synthesis of non-stochastic (Borrmann et al., 2015; Wang et al., 2017; Ames et al.,
2019) and stochastic dynamical systems (Zhang et al., 2010; Ahmadi et al., 2018; Clark, 2019;
Jagtap et al., 2020b; Nejati et al., 2020), to name a few.

Note that all the above-mentioned results require some models of the systems to provide the
corresponding analyses. Nevertheless, closed-form mathematical models for many physical sys-
tems are either not available or equally complex to be of any practical use. Accordingly, one cannot
employ these model-based techniques to analyze and design controllers for complex systems with
unknown models. Although there have been some techniques to provide analysis frameworks by
approximating underlying dynamics, acquiring an accurate model for complex dynamical systems
is complicated, time-consuming, and expensive, in general (see e.g. (Hou and Wang, 2013, and
references herein)). Due to these difficulties, data-driven techniques have received significant atten-
tions in the past decade to bypass the modeling phase and directly employ system measurements for
the verification or controller synthesis.

There have been several results on formal analysis and controller synthesis for unknown systems
via indirect data-driven approaches, i.e., those which leverage system identification techniques fol-
lowed by model-based controller synthesis approaches. In this regard, a data-driven approach based
on Gaussian processes to learn models of quadrotors operating in partially unknown environments
is proposed in (Wang et al., 2018). A safe reinforcement learning framework for safety-critical
control tasks is presented in (Cheng et al., 2019), in which Gaussian processes are employed to
model the system dynamics and its uncertainties. A data-driven approach to synthesize controllers
enforcing signal temporal logic specifications is studied in (Sadraddini and Belta, 2018), where
a set-valued piece-wise affine model is learned to contain all possible behaviors of an unknown
system. A learning-based approach for the construction of symbolic models for nonlinear control
systems to enforce safety specifications is proposed in (Hashimoto et al., 2020). A data-driven ap-
proach utilizing Gaussian processes to learn unknown control affine nonlinear systems together with
a probabilistic bound on the accuracy of the learned model is presented in (Jagtap et al., 2020a). An
optimization-based framework for learning control laws from data to enforce safety properties is
studied in (Lindemann et al., 2020).

There have also been some results in recent years on the formal analysis of unknown systems
via direct data-driven approaches, i.e., those that bypass the system identification phase and directly
employ system measurements for the verification and control analysis. A data-driven approach for
stability analysis of black-box linear switched systems is proposed in (Kenanian et al., 2019), in
which a stability-like guarantee is provided based on both the number of observations and the re-
quired level of confidence. As an extension of (Kenanian et al., 2019), a data-driven computation
of invariant sets for discrete time-invariant black-box systems is proposed in (Wang and Jungers,
2019). A data-enabled predictive control algorithm for unknown stochastic linear systems is pre-
sented in (Coulson et al., 2019b). A data-driven verification approach for partially-known dynamics
with non-deterministic inputs and noisy observations is proposed in (Haesaert et al., 2015). Re-
inforcement learning schemes to synthesize correct policies for continuous-space Markov decision
processes with unknown models are studied in (Lavaei et al., 2020; Kazemi and Soudjani, 2020).

Recently, other direct data-driven approaches which are developed on top of behavioral ap-
proaches (Willems and Polderman, 1997) have been proposed to solve linear quadratic regulation
(LQR) problems (De Persis and Tesi, 2019), to design model-reference controllers for linear sys-
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tems (Breschi et al., 2021), and to stabilize polynomial-type systems (Guo et al., 2021), switched
linear systems (Rotulo et al., 2021), and linear time-varying systems (Nortmann and Mylvaganam,
2020). Recently, data-driven approaches for solving LQR problems and synthesizing robust con-
trollers are proposed in (De Persis and Tesi, 2021; Berberich et al., 2020a,b), in which underlying
unknown dynamics are affected by exogenous disturbances. A data-driven technique to learn con-
trol laws for nonlinear polynomial-type systems directly from data is proposed in (Guo et al., 2020),
in which input-output measurements are collected in an experiment over a finite-time period. Never-
theless, none of these approaches consider state and input constraints. Given both input and output
constraints, a data-enabled predictive control algorithm is proposed in (Coulson et al., 2019a) for
synthesizing controllers for linear systems tracking desired trajectories. However, there is no for-
mal safety guarantee when disturbances are involved in the system dynamics. Recently, data-driven
approaches to synthesize state-feedback controllers making a compact polyhedral set containing the
origin robustly invariant are proposed in (Bisoffi et al., 2020b,a). These results are conservative in
the sense that when there is no controller for the given compact polyhedral set, one might be able
to find controllers making subsets of this polytope robustly invariant. In addition, these techniques
require an individual constraint for each vertex of the polytope (cf. (Bisoffi et al., 2020b, Section 4)
and (Bisoffi et al., 2020a, Theorems 1, 2)). Unfortunately, given any arbitrary polytope, the num-
ber of vertices grows exponentially with respect to its dimension and the number of hyperplanes
in the worst case scenario (Dyer, 1983). There are also some recent results (e.g., (Noroozi et al.,
2022; Lavaei et al., 2021; Salamati et al., 2021)), in which data-driven approaches are proposed for
synthesizing barrier certificates by leveraging performance bounds for scenario programs (Moha-
jerin Esfahani et al., 2014). However, they only focus on safety verification. Additionally, the safety
guarantees in these results require a large number of independent and identically distributed data
sampled from the state sets (instead of a single trajectory collected from the system, which is the
case in our work).

The main contribution of our work is to propose a data-driven approach to synthesize safety
controllers for continuous-time nonlinear polynomial-type systems with unknown models. In our
proposed framework, we leverage notions of control barrier certificates constructed from data and
provide guaranteed confidence of 1 on the safety of unknown systems. Under a certain rank condi-
tion, which is closely related to the condition of persistency of excitation (Willems et al., 2005), we
synthesize polynomial-type state-feedback controllers to ensure the safety of unknown systems only
by using a single trajectory collected from systems. To illustrate the effectiveness of our proposed
approaches, we apply them to a nonlinear polynomial system with unknown dynamics.

The rest of the paper is structured as follows. Section 2 is dedicated to describe nonlinear poly-
nomial systems, including mathematical notations, problem description, and the formal definition of
control barrier certificates. In Section 3, we propose our data-driven approach to synthesize safety
controllers for unknown nonlinear polynomial systems. We verify our proposed results via a non-
linear polynomial system with an unknown model in Section 4. Finally, we conclude the paper in
Section 5.

2. Continuous-Time Nonlinear Polynomial Systems

2.1. Notations

Sets of non-negative and positive integers are denoted by N := {0, 1, 2, . . .} and N≥1 := {1, 2, 3, . . .},
respectively. Moreover, symbols R, R>0, and R≥0 denote, respectively, sets of real, positive, and
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nonnegative real numbers. We use Rn to denote an n-dimensional Euclidean space and Rn×m to de-
note the space of real matrices with n rows and m columns. Given N vectors xi ∈ Rni , ni ∈ N≥1,
and i ∈ {1, . . . , N}, we use x = [x1; . . . ;xN ] to denote the corresponding column vector of the
dimension

∑
i ni. A symmetric matrix P ∈ Rn×n is said to be positive definite, denoted by P ≻ 0,

if its all eigenvalues are positive. We denote by In an identity matrix in Rn×n.

2.2. Continuous-Time Nonlinear Polynomial Systems

In this work, we consider continuous-time nonlinear polynomial systems (ct-NPS) as formalized in
the following definition.

Definition 1 A continuous-time nonlinear polynomial system (ct-NPS) is described by

Σ: ẋ = AM(x) +Bu, (1)

where A ∈ Rn×N , B ∈ Rn×m, M(x) ∈ RN is a vector of monomials in state x ∈ X , and u ∈ U
is the control input, with X ⊂ Rn and U ⊂ Rm being the state and input sets, respectively.

We assume that matrices A,B are both unknown and we employ the term unknown model to refer
to this type of systems in (1). With this definition in hand, we now state the main problem that we
aim to solve in this paper.

Problem 2 Consider a ct-NPS in (1) with unknown matrices A,B, and an initial and unsafe
sets X0, X1 ⊂ X , respectively. Synthesize a matrix polynomial F (x) such that controller u =
F (x)M(x) makes the unknown ct-NPS (1) safe in the sense that its trajectories starting from
X0 never reach X1.

In order to address Problem 2, we present a formal definition of control barrier certificates for
ct-NPS, which is adapted from (Prajna and Jadbabaie, 2004).

2.3. Control Barrier Certificates (CBC)

Definition 3 Consider a ct-NPS Σ, and X0, X1 ⊆ X as its initial and unsafe sets, respectively. A
function B : X → R is called a control barrier certificate (CBC) for Σ if there exist γ1, γ2 ∈ R>0,
with γ2 > γ1, such that

B(x) ≤ γ1, ∀x ∈ X0, (2)

B(x) ≥ γ2, ∀x ∈ X1, (3)

and ∀x ∈ X,∃u ∈ U , such that

LB(x) ≤ 0, (4)

where LB is the Lie derivative of B : X → R with respect to dynamics as in (1), which is defined as

LB(x) = ∂xB(x)(AM(x) +Bu), (5)

with ∂xB(x) =
[∂B(x)

∂xi

]
i

.
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We denote by xx0u(t) the state of Σ reached at time t ∈ R≥0 under an input u and from an initial
condition x0 = x(0). Inspired by (Prajna and Jadbabaie, 2004), we present the next theorem
showing how to use CBC to ensure that the state evolution of Σ starting from any initial state in X0

will never reach the unsafe region X1 for an infinite time horizon.

Theorem 4 Consider a ct-NPS Σ. Suppose B is a CBC for Σ as in Definition 3. Then, one gets
xx0u(t) /∈ X1 for any x0 ∈ X0 and any t ∈ R≥0, where the control input u is chosen in a way
that (4) holds.

3. Data-Driven Synthesis of Safety Controller

In this section, we propose our data-driven approach to synthesize safety controllers for unknown
ct-NPS in (1). To do so, we first fix the structure of our CBC to be quadratic in the form of B(x) =
M(x)⊤PM(x), with P ≻ 0. We then collect input-output data from unknown ct-NPS over the
time interval [t0, t0 + (T − 1)τ ], where T ∈ N>0 is the number of collected samples, and τ ∈ R>0

is the sampling time:

U0,T = [u(t0) u(t0 + τ) . . . u(t0 + (T − 1)τ)], (6)

X0,T = [x(t0) x(t0 + τ) . . . x(t0 + (T − 1)τ)], (7)

X1,T = [ẋ(t0) ẋ(t0 + τ) . . . ẋ(t0 + (T − 1)τ)]. (8)

Remark 5 Note that X1,T contains derivatives of the state at sampling times, which are in general
not available as measurements. In order to tackle this issue, one can use appropriate filters for
the approximation of derivatives via the available approaches proposed in the relevant literature
(e.g., Larsson et al. (2008); Padoan and Astolfi (2015)). Although there exists an error involved in
approximating the derivatives of the state at sampling times, we do not provide any analysis for this
error for the sake of better readability of the paper.

Inspired by (Guo et al., 2020), we present the following lemma to obtain data-based representa-
tion of closed-loop ct-NPS (1) with polynomial controllers u = F (x)M(x), where F (x) is a matrix
polynomial, which will be synthesized.

Lemma 6 Let matrix Q(x) be a (T ×N) matrix polynomial such that

IN = N0,TQ(x),

with

N0,T = [M(x(t0)) M(x(t0 + τ)) . . . M(x(t0 + (T − 1)τ))]

being an (N × T ) full row-rank matrix, constructed from the vector M(x) and samples X0,T . If
one sets u = F (x)M(x) = U0,TQ(x)M(x), then the closed-loop system ẋ = AM(x) + Bu has
the following data-based representation:

ẋ = X1,TQ(x)M(x), equivalently, A+BF (x) = X1,TQ(x).
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Proof: Since F (x) = U0,TQ(x), the closed-loop ct-NPS can be written as

(A+BF (x))M(x) = [B A]

[
F (x)
IN

]
M(x) = [B A]

[
U0,T

N0,T

]
Q(x)M(x) = X1,TQ(x)M(x),

with X1,T = [B A]

[
U0,T

N0,T

]
and U0,T as in (6). Hence, ẋ = X1,TQ(x)M(x), equivalently, A +

BF (x) = X1,TQ(x) is the data-based representation of the closed-loop ct-NPS, which completes
the proof. ■

Remark 7 Note that in order to enforce N0,T to be full row rank, the number of samples T should
be at least N . Since the matrix N0,T is constructed from sampled data, this assumption is readily
verifiable.

By employing the data-based representation in Lemma 6, we propose the following theorem,
as the main result of the work, to construct a CBC from data and synthesize the control gain F (x)
making the unknown ct-NPS in (1) safe.

Theorem 8 Consider an unknown ct-NPS Σ as in (1), i.e., ẋ = AM(x)+Bu, with its data-based
representation ẋ = X1,TQ(x)M(x). Suppose there exists a matrix polynomial H(x) ∈ RT×N such
that

N0,TH(x) = P−1, with P ≻ 0. (9)

If the following conditions are satisfied

∀x ∈ X0, M(x)⊤
[
N0,TH(x)

]−1M(x) ≤ γ1, (10)

∀x ∈ X1,M(x)⊤
[
N0,TH(x)

]−1M(x) ≥ γ2, (11)

∀x ∈ X, J(x) := −
[∂M
∂x

X1,TH(x) +H(x)⊤X⊤
1,T (

∂M
∂x

)⊤
]
⪰ 0, (12)

then B(x) = M(x)⊤[N0,TH(x)]−1M(x) is a CBC and u = U0,TH(x)(N0,TH(x))−1M(x) is its
corresponding safety controller for the unknown ct-NPS.

Proof Since B(x) = M(x)⊤PM(x) and P−1 = N0,TH(x), it is straightforward that condi-
tions (10)-(11) imply (2)-(3). We now proceed with showing condition (4), as well. Considering (4)
and (5), one has

LB(x) = M(x)⊤P
∂M
∂x

(A+BF (x))M(x) +M(x)⊤(A+BF (x))⊤(
∂M
∂x

)⊤PM(x)

= M(x)⊤P
[∂M
∂x

(A+BF (x))P−1 + P−1(A+BF (x))⊤(
∂M
∂x

)⊤
]
PM(x).

Since P−1 = N0,TH(x), then P−1P = IN = N0,TH(x)P . Since IN = N0,TQ(x), then Q(x) =
H(x)P and, accordingly, Q(x)P−1 = H(x). Since A+BF (x) = X1,TQ(x), then

(A+BF (x))P−1 = X1,TQ(x)P−1 = X1,TH(x).
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Therefore,

LB(x) = M(x)⊤P
[∂M
∂x

X1,TH(x) +H(x)⊤X⊤
1,T (

∂M
∂x

)⊤
]
PM(x) = −M(x)⊤P

[
J(x)

]
PM(x).

If J(x) ⪰ 0, then LB(x) ⪯ 0 and condition (4) is satisfied. Consequently,

B(x) = M(x)⊤[N0,TH(x)]−1M(x)

is a CBC and
u = U0,TQ(x)M(x) = U0,TH(x)(N0,TH(x))−1M(x)

is its corresponding safety controller for the unknown ct-NPS, which completes the proof.

Remark 9 It is worth mentioning that conditions (10)-(12) correspond to conditions (2)-(4), which
are standard for synthesizing control barrier certificates.

In the remainder of this section, we discuss the implementation of Theorem 8. Here, we consider
the state set X , initial set X0, and unsafe set X1 as

X =

mx⋃
i=1

Xi, with Xi := {x ∈ Rn
∣∣ gik(x) ≥ 0, k = 1, . . . , k}, (13)

X0 =

m0⋃
i=1

X0i, with X0i := {x ∈ Rn
∣∣ fik(x) ≥ 0, k = 1, . . . , k0}, (14)

X1 =

m1⋃
i=1

X1i, with X1i := {x ∈ Rn
∣∣hik(x) ≥ 0, k = 1, . . . , k1}, (15)

with gik(x), fik(x), and hik(x) being polynomial. The input set U is defined as

U := {u ∈ Rm
∣∣ b⊤j u ≤ 1, with j = 1, . . . ,J }, (16)

with bj ∈ Rm being some constant vectors. Additionally, we raise the following corollary which is
required for our implementation results.

Corollary 10 Consider a CBC B(x) = M(x)⊤PM(x) with P ≻ 0 as in Definition 3 for a ct-
NPS Σ in (1), and γ̃ ∈ R>0. If M(x(0))⊤PM(x(0)) ≤ γ̃, then M(x(t))⊤PM(x(t)) ≤ γ̃ for all
t ∈ R>0.

Corollary 10 can readily be verified with the help of non-positiveness of LB(x) (4). By em-
ploying Corollary 10, we are ready to show the next result for computing a CBC and its associated
safety controller.

Corollary 11 Consider a ct-NPS Σ as in (1), sets X , X0, and X1 as in (13)-(15), respectively, an
input set U as in (16), and data U0,T , X1,T , and N0,T as in (6), (8), and Lemma 6, respectively.
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If there exist a positive definite matrix P ∈ RN×N , a matrix polynomial H(x) ∈ RT×N , and
γ1, γ2 ∈ R>0, with γ2 > γ1 such that

−M(x)⊤PM(x)−
k0∑
k=1

λ′
ik(x)fik(x) + γ1, ∀i ∈ [1,m0], ∀k ∈ [1, k0], (17)

M(x)⊤PM(x)−
k1∑
k=1

λ′′
ik(x)hik(x)− γ2, ∀i ∈ [1,m1],∀k ∈ [1, k1], (18)

−[
∂Z

∂x
X1,TH(x) +H(x)⊤X⊤

1,T (
∂Z

∂x
)⊤]−

k∑
k=1

λik(x)gik(x)IN ,∀i ∈ [1,mx], ∀k ∈ [1, k], (19)

1− b⊤j U0,TH(x)PM(x)− λu(x)
(
γ1 −M(x)⊤PM(x)

)
,∀j = 1, . . . ,J , (20)

are sum-of-square (SOS), with λik(x), λ′
ik(x), λ

′′
ik(x), and λu(x) being SOS polynomials, and

IN = PN0,TH(x), then B(x) = M(x)⊤PM(x) is a CBC for Σ with the corresponding safety
controller u = U0,TH(x)PM(x).

Proof It is straightforward that if (17) holds, then one has M(x)⊤PM(x)+
∑k0

k=1 λ
′
ik(x)fik(x) ≤

γ1, ∀i ∈ [1,m0],∀k ∈ [1, k0]. Since λ′
ik(x) are SOS polynomials, then

∑k
k=1λik(x)gik(x) are

non-negative given the definition of X0 in (14). Hence, M(x)⊤PM(x) ≤ γ1 holds ∀x ∈ X0,
indicating that (10) holds with P =

[
N0,TH(x)

]−1. Similarly, (18) implies that M(x)⊤PM(x)−∑k1
k=1 λ

′′
ik(x)hik(x) ≥ γ2, ∀i ∈ [1,m1],∀k ∈ [1, k1]. Since λ′′

ik(x) are SOS polynomials, one has∑k1
k=1 λ

′′
ik(x)hik(x) ≥ 0, and accordingly M(x)⊤PM(x) ≥ γ2 for all x ∈ X1, indicating that (11)

holds with P =
[
N0,TH(x)

]−1. Next, we show that (19) implies that

Ji(x) := −[
∂Z

∂x
X1,TH(x)+H(x)⊤X⊤

1,T (
∂Z

∂x
)⊤] ⪰ 0 (21)

hold for all x ∈ Xi, i ∈ [1,mx]. First, (19) is SOS implying that Ji(x)−
∑k

k=1λik(x)gik(x)IN ⪰ 0.
Since λik(x) are SOS polynomials for all k ∈ [1, k],

∑k
k=1λik(x)gik(x) are non-negative over Xi.

Then, one can readily verify that Ji(x) ⪰ 0, ∀x ∈ Xi, and (12) holds accordingly. Finally, we
show that (20) ensures that u = U0,TH(x)PM(x) ∈ U for all x ∈ B1(x) with B1(x) := {x ∈
Rn|M(x)⊤PM(x) ≤ γ1}, and IN = PN0,TH(x). Note that we only need to consider the set
B1(x) instead of the whole state set X since Corollary 10 shows that state trajectories of the system
stay inside the set B1(x). Considering the definition of U as in (16), u ∈ U requires that

b⊤j U0,TH(x)PM(x) ≤ 1, (22)

holds ∀j = 1, . . . ,J , and ∀x ∈ B1(x). Note that (20) implies that b⊤j U0,TH(x)PM(x) +

λu(x)(γ1 −M(x)⊤PM(x)) ≤ 1. Hence, (22) holds since λu is an SOS polynomial.

Remark 12 Observe that one can employ existing software tools in the relevant literature such
as SOSTOOLS (Papachristodoulou et al., 2013) together with a semidefinite programming (SDP)
solver such as SeDuMi (Sturm, 1999) to readily enforce conditions (17)-(20) over the sets X0, X1,and
X , while searching for the matrix polynomial H(x) and matrix P .
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Remark 13 Remark that condition (20) is a bilinear matrix inequality (BMI) due to having a bilin-
earity between decision matrices H and P . In order to resolve this problem, one can first obtain a
candidate for P based on (17) and (18), and then try to search for appropriate H(x) such that (19)
and (20) hold. As an alternative approach, one can also use the technique proposed in (Hassibi
et al., 1999) to linearize the BMI using a first-order perturbation approximation and then solve the
linearized version. In this case, similar to all local methods for solving BMIs, the choice of the
initial value is important for the convergence.

4. Case Study

Here, we focus on the following nonlinear polynomial system borrowed from (Guo et al., 2020):

ẋ1 = x2,

ẋ2 = x21 + u, (23)

which is of the form of (1), with

A =

[
1 0
0 1

]
, B =

[
0
1

]
, M(x) =

[
x2
x21

]
,

and n = N = 2. Here, we consider the state set X = [−20, 20] × [−20, 20], the initial set
X0 = [−2.5, 2.5]× [−2.5, 2.5], the unsafe set X1 = [−20, 20]× [10, 20]∪ [−20, 0]× [−20,−10]∪
[3.5, 7] × [−4, 0], and the input set U = [−30, 30]. We assume that both matrices A and B are
unknown and treat this system as a black-box one. To collect data, we initialize the system at

Figure 1: Several state trajectories, initial set X0, unsafe set X1, and level sets M(x)⊤PM(x) =
γ1 and M(x)⊤PM(x) = γ2.

x(0) = [2; 3] and simulate the system with inputs that are randomly selected from the input set
following a uniform distribution. The data are collected with a sampling time τ = 0.02s and they
are as follows

U0,5 =
[
0.8134 3.6710 −0.4437 −1.9421 −0.7241

]
,

X0,5 =

[
2 2.0610 2.1246 2.1906 2.2581
3 3.0987 3.2597 3.3439 3.4040

]
,
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X1,5 =

[
3 3.0987 3.2597 3.3439 3.4040

4.8134 7.9186 4.0701 2.8565 4.3747

]
.

Accordingly, one has

N0,5 =

[
3 3.0987 3.2597 3.3439 3.4040
4 4.2476 4.5137 4.7986 5.0988

]
,

with N0,5 being defined as in Lemma 6 with T = 5. With the help of Theorem 8 and Corollary 11,
we obtain

H(x) =


0.4266 0.07214x1−0.3641
−0.2245 −0.1001x1−0.0333
0.2831 0.0047x1−0.3398
0.1311 0.0097x1−0.3049
−0.5217 0.01334x1+0.9762

, P =

[
5.8938 0

0 2.6160

]
,

with γ1 = 139.03, and γ2 = 392.56. The associated safety controller is

u = −0.8877x31 − x21 − 2.8264x2. (24)

Figure 2: Several input trajectories of the system.
For the simulation results, we randomly select 105 initial states from the initial state set and

simulate the system for 4 seconds, while the controller in (24) is applied in the closed-loop. We
depicted some state and input trajectories in Figures 1 and 2, respectively. Moreover, we also
depicted in Figure 1 the initial set X0, the unsafe set X1, and the corresponding level sets specified
by γ1 and γ2 as in Corollary 11. One can readily see that the system in (23) is safe and the input
constraint is also satisfied.

5. Conclusion

In this work, we proposed a data-driven approach for safety controller synthesis of continuous-time
nonlinear polynomial systems with unknown models. Our proposed framework utilized notions of
control barrier certificates constructed from data. Under a certain rank condition, we synthesized
polynomial state-feedback controllers to ensure the safety of unknown systems only via a single
trajectory collected from systems. We demonstrated the effectiveness of our proposed approaches
by applying them to a nonlinear polynomial system with unknown dynamics.
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