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Abstract

A major issue when exploiting data for direct control design is noise handling, since overlooking or
improperly treating noise might have a catastrophic impact on closed-loop performance. Nonethe-
less, standard approaches to mitigate its effect might not be easily applicable for data-driven control
design, since they often require tuning a set of hyper-parameters via potentially unsafe closed-loop
experiments. By focusing on data-driven predictive control, we propose a noise handling approach
based on truncated dynamic mode decomposition, along with an automatic tuning strategy for its
hyper-parameters. By leveraging on pre-processing only, the proposed approach allows one to
avoid dangerous closed-loop calibrations, while being effective in coping with noise, as illustrated
on a benchmark simulation example.

Keywords: Data-driven predictive control; dynamic mode decomposition; noise handling.

1. Introduction

The possibility to cut corners by avoiding the modeling/identification of the plant made data-driven
control an appealing alternative to traditional model-based design approaches (see Formentin et al.
(2014) for a comparison between these two paradigms). In particular, translating the ideas of
model predictive control (MPC) into a purely data-based framework, data-driven predictive con-
trol (DDPC) allows to combine the advantages of constrained control with the ones of direct design
strategies. Indeed, as standard MPC, DDPC allows one to find the optimal control action in a reced-
ing horizon fashion, while accounting for possible constraints on the control input and the system
output. Nonetheless, DDPC does not require a parametric model for the system under control to
be known, being instead grounded on a behavioral description of the system Willems et al. (2005),
directly obtainable by a set of matrices constructed from experimental data. The first examples of
DDPC for Linear Time Invariant (LTI) systems appeared in Coulson et al. (2019a); Berberich et al.
(2020). Since then, several extensions have been proposed, including the one to nonlinear systems
Berberich et al. (2021) and the derivation of explicit data-driven predictive controllers in Sassella
et al. (2021); Breschi et al. (2021).

A key requirement for these techniques to result in satisfactory performance is a proper han-
dling of noisy measurements. Indeed, real data are always corrupted by noise and, consequently,
this affects the data-based predictor which DDPC strategies rely on. Noise treatment in data-driven
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control has been studied in Berberich et al. (2020); Coulson et al. (2019a,b), with Berberich et al.
(2020); Coulson et al. (2019a) focusing on the case of bounded noise, while Coulson et al. (2019b)
tackling noise handling from a probabilistic perspective. Ultimately, all these strategies result in the
introduction of regularization terms in the performance-oriented cost of DDPC, as comprehensively
summarized in Dorfler et al. (2021). Even though these regularization-based approaches have shown
to be effective, they require a careful selection of the regularization penalties to properly weight the
additional terms in the cost, whose choice is crucial to obtain satisfactory closed-loop performance.
However, little to no guidelines are provided on how to tune these important parameters, with their
choice generally performed in closed-loop, according to a cross-validation rationale. Such a cali-
bration procedure can be quite critical, possibly endangering the system and/or requiring a lengthy
iterative tuning period, which might be unfeasible when high performance are required. By rely-
ing on the data-based predictor introduced in De Persis and Tesi (2021), an alternative approach to
handle noise is presented in Sassella et al. (2021), which relies on performing several replicas of
the same experiment to average out noise from data. Even if this approach has proven its effective-
ness, repeated experiments are generally costly, with the imposed constraints on the data collection
campaign being likely limiting in practice.

To overcome the problems related to hyper-parameter tuning characterizing regularization-based
strategies and the experimental limitations imposed by the averaging approach in Sassella et al.
(2021), in this paper we propose to handle measurement noise via a pre-processing phase relying
on truncated dynamic mode decomposition (DMD) Kutz et al. (2016). Firstly derived to decompose
complex flows into simpler spatio-temporal data structures Schmid (2010), DMD has also proven
to be effective in extracting the relevant dynamics and input/output features of a dynamic system
from data Proctor et al. (2016). This approach allows us to avoid the introduction of additional
terms in the cost, with the management of noise moved prior to the actual control design phase,
along the same line of Sassella et al. (2021). Nonetheless, differently from the averaging strategy,
this approach for noise handling does not severely constraint experiment design. At the core of
DMD lies singular value decomposition (SVD), which allows one to detect the relevant dynam-
ics by truncation. Since this procedure requires the choice of the truncation thresholds (see e.g.,
Gavish and Donoho (2014)), we introduce an automatic tuning strategy for these hyper-parameters.
This allows us to overcome one of the major limitation of regularization-based strategies, with
hyper-parameters tuning performed in the data pre-processing phase, without requiring additional
experiments in closed-loop.

The paper is organized as follows. Section 2 introduces the considered framework for data-
driven predictive control, while Section 3 formalizes the noise handling problem we aim at tackling.
The proposed strategy is then presented in Section 4, along with an heuristic deputed to the auto-
matic tuning of the hyper-parameters. The results obtained on a benchmark example are discussed
in Section 5 and compared with the averaging strategy. Finally, Section 6 concludes the work by
summarizing the contribution and highlighting possible future research directions.

2. Background

Before presenting the strategy we propose for noise handling in data-driven predictive control
(DDPCQ), it is crucial to introduce the framework under which the control problem is solved. To
this end, let us consider a linear time invariant (LTI), discrete-time system, described by the un-
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known difference equations
z(t+1) = Az(t) + Bu(t), o
y(t) = C(t) + Du(t),

where u(t) € R™ and y(t) € RP are the inputs and outputs of the plant at time ¢ € N, respectively,
while z(¢) € R™ is the corresponding state vector, here assumed to be only partially accessible.
Suppose that the order n of the system is not known a-priori, whilst we dispose of an upper bound
p > n on the system’s order. Accordingly, as in (De Persis and Tesi, 2021, Section VI) let us
introduce a non-minimal state z(t) € R(™+P)P made of past inputs/outputs of the system, namely

) = [u(t=p)T o w(t-DT yt-pT o ye- 7" @

To gather information on the plant, let us assume that we can inject an input sequence {u(t) thfol

of length T' € N, which is persistently exciting of order ¢ + 1 according to the following definition,
with ¢ = (m + p)p.

Definition 1 (Persistence of excitation) An input sequence {u(t)}1_," is said to be persistently
exciting of order ¢ if the Hankel matrix

w(0)  w(l) --- zzLETZE)
u(l u(2) - uw(l — 1

Uoer—1 = ( ) ( ) . ( : +h) , 3)
ul—1) u(l) --- u(T —1)

is full row rank, i.e., rank(Uy g 7—1) = md.

Note that, when ¢ = 1 Up 1 7—1 is compactly denoted as Uy 7—1. Given {u(t) tT:})l, suppose that

we can gather the corresponding outputs {y(t)}tT:_Ol, so0 as to construct the Hankel matrices

Zor—1=1[2(0) =2(1) ... 2(T-1)] (4a)
Zvr=[=2(1) 2(2) ... 2(T)], (4b)

where z(t) is obtained from the measured data according to (2). For (De Persis and Tesi, 2021,
Lemma 3), the features of the input sequence guarantee that the following rank condition holds:

rank [UO’Tl} =(+m, )
20,71

whenever the dataset is sufficiently long, i.e., T' > (m + 1) + m. In this case, within a noiseless

setting, the dynamics of the non-minimal realization of the unknown system dictated by z(¢) in (2)

can be equivalently described via the data-driven representation outlined in the following theorem
(De Persis and Tesi, 2021, Theorem 7).

Theorem 2 (Data-driven dynamics) Consider the non-minimal state-space realization in the reach-
ability form (1) associated with the extended state (2). Let condition (5) hold. Then, the non-minimal
realization of the unknown system in reachability form has the equivalent data-driven representa-
tion:

Z(t + 1) = ZLTQT [:gﬂ s (6)
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Uo - . C
where ) = { ZO’T Y and QF denotes its Moore-Penrose right inverse.
0,71

It is worth stressing that this representation is more general than the one introduced in Sassella et al.
(2021), since it does not require the state to be directly measured nor the order of the system to
be exactly known. These advantages are counterbalanced by the increased dataset size required to
obtain an equivalent description of the system. Nonetheless, while the state is generally difficult to
be accessed in practice, designing an experiment that meets the required specifics in terms of dataset
length is likely to be less of an issue.

2.1. An input-output DDPC formulation

Let N, N, and N, denote the prediction, input and constraint horizons respectively, with N,, < N.
In this work, we leverage on the non-minimal state defined in (2) and on Theorem 2 to introduce the
following DDPC problem:

N-1
min > [E(k)TQz(K) + u(k)" Ru(k)] + 2(N)TPz(N) (7a)

k=0
st.zZ(k+1) = 2,701 Bgm , k=0,.,N—1, (7b)
z(0) = 2(t), (7c)
a(k)eU, k=0,..,N.—1, (7d)
gk)ey, k=0,...N.—1, (7e)
u(k) = Kz(k), N, <k<N, (70)

whose target is to steer both the predicted extended states {Z(k)}~_, and the inputs {u(k:)},%z_& to
zero starting from the initial condition z(0) = z(t), which is dictated by the current configuration of
the system. The trade-off between the regulation to zero of the extended state and the control effort
is governed by the positive semi-definite tunable matrix Q € R¢*¢, the positive definite weight
R € R™*™ and the terminal non-negative definite penalty P € RS*¢. Note that, when the system
is known to be open-loop stable, K € R™*¢ can be set as a matrix of zeros and P can be designed
from data as described in (Sassella et al., 2021, Section 5). Otherwise, according to Bemporad
et al. (2002b); Sassella et al. (2021), both P and K can be retrieved by solving a linear quadratic
regulation problem on the non-minimal system, based on the approach proposed in De Persis and
Tesi (2021). Differently from the DDPC formulation proposed in Sassella et al. (2021), here we
explicitly constrain the inputs and outputs of the system only (see (7d)-(7e)), as the state is not
directly accessible.

3. Problem statement

Suppose that the available dataset Dy = {u(t),y(t)}.-;' comprises noisy output measurements
only, namely

y(t) = y°(t) + v(t), ®)
with y°(t) € RP being the noiseless (not measured) output and v(t) € RP being the realization
of a zero mean white noise. Our goal is to design a data-driven predictive controller by iteratively
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solving (7), while handling the noise on the data in the construction of the data-based matrices
in (7b). We aim at fulfilling this objective without (i) constraining the data collection phase, i.e.,
by not demanding for repeated experiments with the same inputs as in Sassella et al. (2021), and
without (77) requiring potentially unsafe closed-loop tests to calibrate the hyper-parameters needed
to handle noise, as one might be asked to do using the approaches in Berberich et al. (2020); Déorfler
et al. (2021).

4. Dynamic mode decomposition for noise handling in DDPC

To attain the goal highlighted in Section 3, in this work we propose to pre-process the data matrices
in (7b) via dynamic mode decomposition (DMD) Kutz et al. (2016), since this tool is known to allow
for the extraction of meaningful information from available data, by braking them down into a set
of dynamic modes. Prior to the control design phase, we thus propose to perform singular value
decomposition (SVD) on both Z; 7 and (2, thus translating them into the following products:

Q=UaXaVy, Zir=Uz¥;Vy, 9

where Ug € CmtOx(m+0) 17, ¢ C*¢, Vg € CT*T and V; € CT*T are unitary matrices!,
Vg and V7 are the conjugate transposes of Vo and Vz, respectively, and Yo € Cm+OXT gand
Yz € C<*T are diagonal matrices, whose elements correspond to the singular values of {2 and AR
Since our objective is to have a predictor (7b) that is sufficiently accurate to perform the control task
at hand, but that will never be used standalone, we have decided to handle noise by truncation of
the matrices in (9), in line with the strategy presented in Proctor et al. (2016). As such, we try to
extract insights on the noiseless dynamics by introducing two truncation tunable thresholds rq and
rz, dictating the number of singular values of {2 and Z; 7 to be preserved. The DDPC scheme with
DMD is summarized in Algorithm 1, where the distinction between the pre-processing stage needed
for noise handling and the actual control design phase is highlighted.

4.1. A heuristic strategy for hyper-parameter tuning

The choice of the tunable thresholds rq and rz to be fed to Algorithm 1 is of paramount importance,
to guarantee that the relevant dynamics of the system are preserved, while noise is sufficiently miti-
gated. In this work, we introduce a heuristic for the automatic selection of these hyper-parameters,
that allows us to avoid any closed-loop calibration phase. To devise such strategy, we rely on the
inkling that the distinction between modes representative of the system and of noise is dictated by a
knee in the distribution of the singular values of both €2 and Z; 7. To detect the knees, we propose
to consider the common logarithm of the singular values of €2 and Z; 7, compute both their first
and second order derivatives and, finally, set rq and rz based on the indexes associated with the
maximum in the latter. This approach, summarized in Algorithm 2, allows us to tune all hyper-
parameters, without endangering the plant with closed-loop calibration tests in an attempt to select
them. Notice that data matrices are constructed with a single training set, thus no additional ex-
periments are required. We point out that this calibration strategy tends to be slightly conservative
by design, as it selects the truncation values not necessarily looking at the first knee in the singular
values distribution. Nonetheless, our tests have shown that this choice allows us to generally retain

1. A complex matrix M € C™*™ is said to be unitary if M*M = M M* = I,,, with M* being the conjugate transpose
of M.
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Algorithm 1 DDPC with DMD-based noise handling
Input: Data matrices Z1 7,{}; truncation thresholds rq, r.

Pre-processing phase
1. Perform SVD on Z; 7 and 2 as in (9);

2. Keep the first ro singular values of >, and the first 7 ones of X7 and set the remaining
diagonal terms to zero;

3. Retrieve the truncated matrices ) and ZLT as:
Q=UaXaVs, Zir=Uzs,V3, (10)

Control design
1. fort=0,1...,
1.1. Solve (7) with 2 and Z; 7 in (7b) replaced with Q and ZLT in (10), respectively;
1.2. Set u(t) to the first element of the optimal input sequence, i.e., u(t) = u*(0);
1.3. Discard the rest of the optimal sequence;
1.4. Apply u(t) and update ((t);

Algorithm 2 An heuristic for singular values truncation

Input: Common logarithm of the singular values {og Z}EC {oz i}z§:1-

1. Compute the first and second order discrete derivatives of the sequences {ag,i}ﬁtc,
{o Z7i}z§:1;
2. Find the maximum of the second order discrete derivatives, i.e.,

oo = Hl'aXDQO'Qﬂ;, 0z = max DQUZ,i;
A (A

3. Retrieve rq as: rq = argmax; D?0q; — 1, 7y = argmax; D?05,; — 1;
g ) Y g )

Output: Truncation values rq and 7.

all the needed information on the unknown system, eventually slightly reducing the filtering effect
of the DMD procedure.

5. A benchmark example
Consider the system introduced in Bemporad et al. (2002a), described by

0.7326 —0.0861 0.0609
z(t+1) = x(t) + u(t),
0.1722  0.9909 0.0064

[0 1.4142} (1),

1)

y(t)
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Figure 1: Logarithm of the singular values of Z; 7 and €2 for increasing level of noise, dictated by
the Signal-to-Noise Ratio (SNR). For Z; 7, the first p 4-n singular values are not affected
by noise, while the number of noise-insensitive values grows to p + n + m for €.
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Figure 2: Logarithm of the singular values of Z1 7 and their first and second order discrete deriva-
tives, for a SNR around 20 dB. The knee in the singular values distribution can be ef-
fectively retrieved by looking at the maximum of the second order discrete derivative,
according to the proposed heuristic.

Let us assume that we have no prior information on the system order and, as such, we conservatively
select p in (2) equal to 10. Accordingly, we fed the system with an input sequence of length T' =
1000, uniformly distributed within the interval [—5, 5], so as to guarantee persistency of excitation.
As introduced in (8), the output is corrupted by noise, here supposed to be normally distributed.

To understand whether the intuition founding the heuristic proposed in Section 4.1 is verified
in this benchmark case, we initially evaluate how the singular values of Z; 7 and €) are impacted
by noise. As shown in Figure 1, measurement noise causes changes after the twelfth singular value
of Zy r, thus suggesting a truncation value 7z = 12 . Similar conclusions (see Figure 1) can be
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Figure 3: Mean and standard deviation of the closed-loop input and states over Monte Carlo runs:
early vs automatic truncation.

Table 1: Maximum absolute deviation from the average values of the closed-loop output (s, ), input
(sy) and first state (s, ): automatic vs late truncation. The second state is not considered,
as it corresponds to the output.

| sy [ su | ss |
Automatic truncation: 7z = 12,7 = 13 | 5.11072 [ 4.11072 [ 3.51073
Late truncation: 7, = 16, rq = 17 531073149102 ]3910°3

inferred for €2, resulting in o = 7z +m = 13. Figure 2 reports the results obtaining by considering
the successive derivatives of the singular value sequence of Z; r for an intermediate noise level,
i.e., Signal-to-Noise Ratio (SNR) around 20 dB. This result supports our truncation logic, since
explanatory modes and that mainly linked to noise can be actually distinguished by looking at the
second derivative of the common logarithm of the singular values. Similar conclusions an be drawn
for the singular values of 2. Indeed, by applying Algorithm 2, we obtain r; = 12 and rq = 13.

Let us now consider the dataset obtained for a level of noise corresponding to a SNR of 20 dB.
By following the steps of Algorithm 1 with these truncation values, we use the available data to
design a data-driven predictive controller by imposing N = N, = N, =2, = I, R =1 and
considering the input constraint

—2<u(k)<2,Vk=0,...,N —1.

To select the terminal weight P, we instead find the data-driven Lyapunov matrix associated to the
open-loop system, as suggested in Sassella et al. (2021).
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Table 2: Experimental requirements and hyper-parameters: DMD-based approach vs averaging
Sassella et al. (2021). The number of experiments I should be chosen as large as pos-
sible, according to the practical limitations characterizing the data collection phase.

] DMD-based \ Averaging
Minimum experiment length 7' | (m + 1) +m (m+1)C+m
Required persistence of excitation m+( m+ ¢
Hyper-parameters rz and ro L
Constraints on data collection None Repeated experiments with the same input

By solving the control problem with 30 dataset generated via Monte Carlo simulations?, the
average closed-loop behavior attained over noiseless tests by employing the proposed DMD-based
DDPC and the heuristic summarized in Algorithm 2 is reported in Figure 3, along with the per-
formance obtained when rz and rq are smaller than the ones automatically tuned. Clearly the
proposed approach allows us to mitigate the effect of noise, as shown by the negligible standard
deviation computed over the input/output closed-loop trajectories. At the same time, it enables us to
attain a result which tightly resembles the one obtained when the true model of the system is used to
design the controller Bemporad et al. (2002a). On the other hand, truncating before the actual knee
in the singular value distribution can be detrimental for the final performance, leading to consistent
variations of the closed-loop output over the Monte Carlo runs and to worst performance in terms of
both tracking and required control effort. This result was expected since early truncation removes
modes that are relevant for the system dynamics. Instead, as shown in Table 1, a late truncation
only leads to a slight increase in the variability of the closed-loop input and output, overall resulting
in performance that is still close to the one obtained by using the proposed heuristic. This result
is somehow encouraging, showing that the eventual conservatism of the proposed heuristic (see
Section 4.1) would not have dramatic impacts on closed-loop performance. Both these outcomes
are further aligned with well-known results on the choice of a model’s order in subspace system
identification, see e.g., Bauer (2003).

5.1. A comparison with the strategy of Sassella et al. (2021)

We now compare the proposed DMD-based solution with the noise handling strategy introduced in
Sassella et al. (2021). Instead of relying on a pre-processing phase, the latter requires one to collect
data by replicating the same experiment L times, so as to construct a datatset on which the effect
of noise is mitigated by averaging out the measured outputs. As shown in Table 2, the DMD-based
approach proposed here and the averaging method of Sassella et al. (2021) share many features, but
the latter heavily constraints the data collection phase, thus reducing its applicability in practice.
To further compare the two approaches, we consider L. = 10 repeated experiments of length 1000,
carried out according to the previously discussed setting, and we augment the dataset used when
applying the DMD-based approach, so that 7' = 10000 in both cases. By running 100 Monte
Carlo simulations over data collection, we compare the performance attained with the DMD-based

2. Both the realization of the input and the measurement noise used to construct the data matrices in (6) are changed at
each simulation.
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Figure 4: DMD-based vs averaging strategy: J in (12) over 100 dataset realizations.

approach and the averaging strategy through the following metric:

Ty
T =>_[lz®l3 + lu®)Z] , (12)
t=0

where the state is exploited for performance assessment only and 7, = 100 is the horizon over
which closed-loop performance is checked. As shown in Figure 5.1, both approaches result in
similar values of the chosen performance index, with the DMD-based strategy leading to a slightly
lower variability with respect to the average performance index. This result confirms that the DMD-
based approach is a valid noise handling method, yet representing a more viable solution for noise
mitigation in practical applications, where performing repeated experiments might be not allowed
or too costly.

6. Conclusions

In this work, we have proposed a noise handling strategy for data-driven predictive control, that
relies on the use of truncated DMD. To calibrate the hyper-parameters characterizing the approach,
we have proposed a heuristic, whose effectiveness has been assessed over a benchmark case study.
The presented heuristic allows us to reduce the burden on the user-side, while not requiring closed-
loop calibrations. At the same time, it might result in conservative choices of the truncation value.
When compared to an existing strategy based on averaging, the presented DMD-based approach
results in a slightly improvement in performance, which is accompanied with a relevant benefit in
terms of applicability.

Future research will be devoted to assess more sophisticated strategies for singular value selec-
tion and compare them with the proposed heuristic. At the same time, future works will juxtapose
the DMD-based approach with other noise handling strategies presented in the literature, e.g., the
ones introduced in Dorfler et al. (2021).
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