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Abstract

In reinforcement learning (RL), when defining a Markov Decision Process (MDP), the envi-
ronment dynamics are implicitly assumed to be stationary. This assumption of stationarity, while
simplifying, can be unrealistic in many scenarios. In the continual reinforcement learning scenario,
the sequence of tasks is another source of nonstationarity. In this work, we propose to examine this
continual reinforcement learning setting through the block contextual MDP (BC-MDP) framework,
which enables us to relax the assumption of stationarity. This framework challenges RL algorithms to
handle both nonstationarity and rich observation settings and, by additionally leveraging smoothness
properties, enables us to study generalization bounds for this setting. Finally, we take inspiration
from adaptive control to propose a novel algorithm that addresses the challenges introduced by this
more realistic BC-MDP setting, allows for zero-shot adaptation at evaluation time, and achieves
strong performance on several nonstationary environments. I
Keywords: Reinforcement Learning, MDP, Block Contextual MDP, Continual Learning

1. Introduction

In the standard RL regime, many limiting assumptions are made to keep the problem setting tractable.
A typical assumption is that the environment is stationary, i.e., the dynamics and reward do not
change over time. However, from fluctuating traffic patterns to warehouse robots, most real-world
settings do not conform to this assumption. Even the observation and action space can change
over time in the more general case. These setups are commonly grouped under continual learning
paradigm (Ring et al., 1994; Thrun, 1998; Hadsell et al., 2020) and non-stationarity is incorporated
as a change in the task or environment distribution (that the agent operates in). The ability to handle
non-stationarity is essential for developing continual learning agents (Khetarpal et al., 2020).
Real-life settings present an additional challenge: we can not rely on access to an interpretable
and compact (if not minimal) state space. Often, we only have access to a rich and high-dimensional
observation space. For example, when driving a car on a wet road, we only have access to the “view’
around us and not the friction coefficient between the car and the road. Hence, we must account for
irrelevant information in the observation when designing agents for nonstationary environments.
We propose to model this more realistic, rich observation, nonstationary setting as a Block Con-
textual MDP (BC-MDP) by combining two common assumptions: (i) the block assumption (Du et al.,

’

1. The appendix contains additional details and is available at https://shagunsodhani.com/docs/ZeusAppendix.pdf

© 2022 S. Sodhani, F. Meier, J. Pineau & A. Zhang.



BLOCK CONTEXTUAL MDPs

2019) that addresses rich observations with irrelevant features and (ii) the contextual MDP (Hallak
et al., 2015) assumption - MDPs with different dynamics and rewards share a common structure and
a context that can describe the variation across tasks. We introduce the Lipschitz Block Contextual
MDP framework that leverages results connecting Lipschitz functions to generalization (Xu and
Mannor, 2010) and enables us to frame nonstationarity as a changing context over a family of
stationary MDPs (thus modeling it as a contextual MDP). We propose a representation learning
algorithm to enable the use of current RL algorithms (that rely on the prototypical MDP setting) in
nonstationary environments. It works by constructing a context space that is Lipschitz with respect
to the changes in dynamics and reward of the nonstationary environment. We show theoretically and
empirically that the trained agent generalizes well to unseen contexts. We also provide value bounds
based on this approximate abstraction which depend on some basic assumptions.

Our work is inspired from adaptive control (Slotine and Li, 1991), a control method that continu-
ously performs parameter identification to adapt to nonstationary dynamics of a system. Adaptive
control generally considers the “known unknowns,” where the system properties are known, but their
values are unknown. We focus on the “unknown unknowns” setting, where the agent neither knows
the property nor its value in any task. While our setup is similar to meta-learning methods that “learn
to learn,”, meta-learning techniques generally require finetuning or updates on the novel tasks (Finn
et al., 2017; Rakelly et al., 2019). In contrast our method can adapt in a zero-shot manner without
any parameter updates and does not suffer from catastrophic forgetting (McCloskey and Cohen,
1989). This property is very critical when designing continual learning agents that operate in the real
world. We refer to our proposed method as Zero-shot adaptation to Unknown Systems (ZeUS).

Contributions. We 1) introduce the Lipschitz Block Contextual MDP framework for the continual
RL setting, 2) provide theoretical bounds on adaptation and generalization ability to unseen tasks
within this framework utilizing Lipschitz properties, 3) propose an algorithm (ZeUS) to perform
online inference of “unknown unknowns” to solve a family of tasks (without performing learning
updates at test time) and ensure the prior Lipschitz properties hold, and 4) empirically verify the
effectiveness of ZeUS on environments with nonstationary dynamics or reward functions.

2. Related Work

In System Identification and Adaptive Control (Zadeh, 1956; Astrom and Bohlin, 1965; Swevers
et al., 1997; Ljung, 2010; Van Overschee and De Moor, 2012; Chiuso and Pillonetto, 2019; Ajay
et al., 2019; Yu et al., 2017; Zhu et al., 2018) setup, the goal is to perform system identification
of “known unknowns,” where the environment properties are known, but their values are unknown.
Applying this setup to the example of driving a car,, the agent knows that friction coefficient varies
across tasks but does not know its value. The agent can infer the unknown value (from observed
data) and condition its policy to solve a given task. We extend this setup to the “unknown unknowns’
setting, where the agent neither knows the environment property nor its value in any task.

Our work is related to the Continual (or Lifelong) RL (Ring et al., 1994; Gama et al., 2014; Ka-
planis et al., 2018; Aljundi et al., 2019; Javed and White, 2019; Hadsell et al., 2020). Specifically, we
focus on the passive nonstationarity setup where the environment dynamics may change irrespective
of the agent’s behavior (Khetarpal et al., 2020). Unlike Lopez-Paz and Ranzato (2017); Chaudhry
et al. (2019); Sodhani et al. (2020) which focus on challenges like catastrophic forgetting (McCloskey
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and Cohen, 1989) 2, we focus on the ability to continually adapt (the policy) to unseen tasks (Hadsell
et al., 2020).Unlike previous works like Xie et al. (2020) that uses a probabilistic hierarchical latent
variable model to learn a representation of the environment and perform off-policy learning, we use
task metrics to learn a context space and focus on generalization to unseen contexts.

Several works have focused on modeling the environment context from high-level pixel
observations (Pathak et al., 2017; Chen et al., 2018; Xu et al., 2019). This context (along with the
observation) is fed as input to the policy to enable it to adapt to unseen dynamics (by implicitly
capturing the dynamics parameters). These approaches learn a single, global dynamics model
conditioned on the output of a context encoder. Similar to these approaches, we also use a context
encoder but introduce an additional loss to learn a context space with Lipschitz properties with
respect to reward, and dynamics. Recently, Xian et al. (2021) proposed using HyperNetworks (Ha
et al., 2017) that use the context to generate the weights of the expert dynamics model.

Other works on structured MDPs, that leverage the Lipschitz properties, include Modi et al.
(2018) that assumes that the given contextual MDP is smooth and that the distance metric and
Lipschitz constants are known. In contrast, we propose a method that constructs a new smooth
contextual MDP, with bounds on downstream behavior based on the approximate-ness of the new
contextual MDP. Modi and Tewari (2020) propose RL algorithms with lower bounds on regret but
assume that the context is known and linear with respect to the MDP parameters. In contrast, we do
not assume access to the context at train or test time or linearity with respect to MDP parameters.

Meta-reinforcement learning methods (Finn et al., 2017; Nagabandi et al., 2019a; Rakelly
et al., 2019; Zhao et al., 2020) can be broadly classified as:i) Optimization-based methods (Finn et al.,
2017; Zintgraf et al., 2019) that require updating model parameters for each task (and therefore suffer
from catastrophic forgetting) and ii) Context-based methods (Nagabandi et al., 2019c¢) that perform
online adaptation given a context representation. Follow-up work (Lee et al., 2020) introduced
additional loss terms that encourage the context encoding to be useful for predicting both forward
(next state) and backward (previous state) dynamics while being temporally consistent. In contrast,
our objective is to learn a context space with Lipschitz properties with respect to reward and dynamics.
Some works have proposed modeling meta-RL as task inference (Humplik et al., 2019; Kamienny
et al., 2020) but assume access to some privileged information (like task-id) during training.

Our work is also related to the general problem of training a policy on Partially Observable
Markov Decision Processes (POMDPs) (Kaelbling et al., 1998; Igl et al., 2018; Zhang et al., 2019;
Hafner et al., 2019) that capture both nonstationarity and rich observation settings. Our experiments
are performed in the POMDP setup where we train the agent using pixel observations. However, we
focus on a specific class of POMDPs — the contextual MDP with hidden context, which enables
us to obtain strong generalization performance to new environments. We discuss additional related
works in multi-task RL, transfer learning, and MDP metrics in the Appendix .

3. Background & Notation

A Markov Decision Process (MDP) (Bellman, 1957; Puterman, 1995) is defined by a tuple
(S, A, R, T,~), where S is the set of states, A is the set of actions, R : § x A — R is the re-
ward function, 7' : § x A — Dist(S) is the environment transition probability function, and
v € [0, 1) is the discount factor. At each time step, the learning agent perceives a state s; € S, takes

2. Since our model does not perform parameter updates when transferring to unseen tasks, it does not suffer from
catastrophic forgetting.
3. Available at: https://shagunsodhani.com/docs/ZeusAppendix.pdf
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an action a; € A drawn from a policy 7 : S x A — [0, 1], and with probability T(s;1|s¢, a;) enters
next state sy41, receiving a numerical reward R;;; from the environment. The value function of
policy m is defined as: Vi (s) = Ex[> 1o 7' Ri+1]So = s]. The optimal value function V* is the
maximum value function over the class of stationary policies.

Contextual Markov Decision Process (Hallak et al., 2015) is an augmented Markov Decision
Process that utilize side information as context, similar to contextual bandits. For example, the
friction coefficient between car and road is a context variable that affects the environment dynamics.

Definition 1 (Contextual Markov Decision Process) A contextual Markov decision process (CMDP)
is defined by tuple (C, S, A, M) where C is the context space, S is the state space, A is the action
space. M is a function which maps a context ¢ € C to MDP parameters M(c) = { R, T°}.

In the real world, we typically operate in a “rich observation” setting without access to a
compressed state representation and the learning agent has to learn a mapping from the observation
to the state. This additional relaxation of the original CMDP definition as a form of Block MDP (Du
et al., 2019) was previously introduced in Sodhani et al. (2021) for the multi-task setting where the
agent focuses on a subset of the space for a specific task, which we present here again for clarity:

Definition 2 (Block Contextual Markov Decision Process (Sodhani et al., 2021)) A block contex-
tual Markov decision process (BC-MDP) is defined by tuple (C, S, O, A, M) where C is the context

space, S is the state space, O is the observation space, A is the action space. M is a function which

maps a context ¢ € C to MDP parameters and observation space M(c) = {R°,T¢, O¢}.

The continual learning setting differs from sequential multi-task learning as there is no delineation
of tasks when c changes, causing nonstationarity in the environment. We make an additional
assumption that the change in c is smooth over time and the BC-MDP itself is smooth, as shown in
Definition 3. We now define a Lipschitz MDP for the MDP family we are concerned with.

Definition 3 (Lipschitz Block Contextual MDP) Given a BC-MDP (C, S, O, A, M) and distance
metric d(-, ) over context space, if for any two contexts c1,co € C, we have the following constraints,

V(s,a), W(TQ (87 a)?TCQ(‘S? a)) < Lpd(cla 02)7
\V/(S, CL), ||R61(57a) - RCQ(’S’a)H < LT‘d(Cl7C2)>

then the BC-MDP is referred to as a Lipschitz BC-MDP with smoothness parameters L, and L,.

Here W denotes the Wasserstein distance. Note that Definition 3 is not a limiting assumption because
we do not assume access to the context variables ¢; and co, and they can therefore be chosen so that
the Lipschitz condition is always satisfied. In this work, we focus on a method for learning a context
space that satisfies the above property.

4. Generalization Properties of Lipschitz BC-MDPs

The key idea behind the proposed method (presented in full in Section 5) is to construct a context
space C with Lipschitz properties with respect to dynamics and reward, and therefore, optimal value
functions across tasks. In this section, we show how this Lipschitz property aids generalization. The
following results hold for any given observation (or state) space and are not unique to Block MDPs,
so we use notation with respect to states s € S without loss of generality. Since we do not have
access to the true context space, in Section 5, we describe how to learn a context space with the
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desired characteristics. To construct a context space that is Lipschitz with respect to tasks, notably
the optimal value functions across tasks, we turn to metrics based on state abstractions, and define a
task distance metric for the continual RL setting.

Definition 4 (Task Metric) Given two tasks sampled from a BC-MDP, identified by context ¢; & c;.
Let {|Ul be the space of bounded pseudometrics on context space S. We define F : |l — {|U by:

F(h)(ci,c5) := s,arél{aé'},(A} ‘Rc’i(s, a) — R (s, a)‘ + W(h) (Tci(s,a), T (s, a,))} , €))

where W (h) is the Wasserstein distance between transition probability distributions. This
iterative update has a unique fixed point which is our metric dyg.

We can now show that the dynamics, reward, and optimal value function are all also Lipschitz with
respect to disk. The first two are clear results from Definition 4.

Corollary 1 (V" is Lipschitz with respect to di,sx) Let V'* be the optimal, universal value func-
tion for a given discount factor vy and context space C. Then V'* is Lipschitz continuous with respect
10 diasp with Lipschitz constant ﬁ forany s € S,

1
V*(s,c) = V*(s,c)| < ﬁdmsk(c, d).

The proof can be found in the Appendix. Applying Theorem 1 to a continual RL setting assumes that
the context be identifiable from a limited number of environment interactions.

Assumption 1 (Identifiability) Ler k be some constant number of steps the agent takes in a new
environment with context c. There exists an €. > 0 such that a context encoder ) can take those
transition tuples (s;, ai, s,,7),1 € {1,...,k} and output a predicted context ¢ that is e.-close to c.
There are two key assumptions wrapped up in Assumption 1. The first is that the new environment is
uniquely identifiable from k£ transitions, and the second is that we have a context encoder that can
approximately infer that context. While this assumption can be strong for many high-dimensional
environments where it may be difficult for a random policy to identify the environment within &
steps, we are not trying to identify some ground truth context, but merely some notion of context as it
affects the optimal policy in a new environment. Thus, given that we are deploying learned agents in
these environments, by construction we only care about environment changes that affect that policy
and are noticeable within k steps. In practice, we use neural networks for modeling v and verify that
neural networks can indeed learn to infer the context, as shown in the Appendix.

Why do we care about the Lipschitz property? Xu and Mannor (2010) established that Lipschitz
continuous functions are robust, i.e. the gap between test and training error is bounded. This result is
only useful when the problem space is Lipschitz, which is often not the case in RL. However, we
have shown that any BC-MDP is Lipschitz continuous with respect to metric di,sx. We now define
a general supervised learning setup to bound the error of learning dynamics and reward models.
The following result requires that the data-collecting policy is ergodic, i.e. a Doeblin Markovian
chain (Doob, 1953; Meyn and Tweedie, 1993), defined as follows.

Definition 5 (Doeblin chain) A Markov chain {s;};°, on a state space S is a Doeblin chain (with
« and t) if there exists a probability measure p on S, o > 0, an integer t > 1 such that
P(sy € H|so =s) > ap(H); Y measurable H C S;Vs € S.
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Let £(-) denote expected error and Lemp(-) denote training error of an algorithm .4 on training data
s = {s1, ..., $p} and evaluated on points z € Z sampled from distribution :

. 1
L£() = Eenpl(As, 2); Lamp(') = ~ > L(As, ).

Here, Ag denotes the instantiation of the learned algorithm ftfihed on data s whereas A refers to
the general learning algorithm. We can now bound the generalization gap using a result from Xu and
Mannor (2010) using an additional assumption about the algorithm.

Theorem 1 (Generalization via Lipschitz Continuity (Xu and Mannor, 2010)) If the test error,
given a learning algorithm A, is 1i7 -Lipschitz and the training data s = {s1, ..., s, } are the first n
outputs of a Doeblin chain with constants o, t, then for any 6 > 0 with probability at least 1 — §,

1/4
L(As) = Lomp(As)| < — +M<8t2(Kln2+1n(1/6))> |

“1-x a?n

K denotes the e-covering number of the state space. e controls the granularity at which we discretize,
or partition, that space. If € is larger, K is smaller. M is a scalar that uniformly upper-bounds
the loss £. Once we learn a smooth context space, this result bounds the generalization error of
supervised learning problems like learned dynamics and reward models. These learned models allow
us to construct a new MDP that is ey, €7, €.-close to the original. We can now show how this error
propagates when learning a policy.

Theorem 2 (Generalization Bound) Without loss of generality we assume all tasks in a given
BC-MDP family have reward bounded in [0, 1]. Given two tasks M., and M,, we can bound the
difference in Q™ between the two MDPs for a given policy m learned under an €g, er, €.,-approximate
abstraction of M, and applied to M.,

_
21 —7)

HQWMCJ. - [Q;{;,éi]/vlcj | <er+(er+ e, + llci — )
Proof in the Appendix Theorem 2 shows that if we learn an e-optimal context-conditioned policy for
context ¢; and encounter a new context c; at evaluation time where ¢; is close to ¢;, then the context-
conditioned policy will be e-optimal for the new task by leveraging the Lipschitz property. While
these results do not scale well with the dimensionality of the state space and discount factor -y, they
show that representation learning is a viable approach to developing robust world models (Theorem 1),

which translates to tighter bounds on the suboptimality of learned ) functions (Theorem 2).
5. Zero-shot Adaptation to Unknown Systems

Based on the findings in Section 4, we can improve generalization by constructing a context space that
is Lipschitz with respect to the changes in dynamics and reward of the nonstationary environment.
In practice, computing the maximum Wasserstein distance over the entire state-action space is
computationally infeasible. We relax this requirement by taking the expectation over Wasserstein
distance with respect to the marginal state distribution of the behavior policy. This leads us to a
representation learning objective that leverages this relaxed version of the task metric in Definition 4:

L(9.,T.R) = MSE (] () — ()| d(cl,crz)) + Lo(6, . T, R) + Lr(9. %, T R),

dynamics loss reward loss

context loss

2
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Lp(p,, T,R) = MSE <T(¢(0§1),a?, (H1>)’(/)(0§-1H)> +MSE <T(¢(0§2),af2, (Hg)),@(ofil)),

ch,w,T,R):MSE(Rw(o?),a?, <H1>>,r;11)+MSE<R<¢<0?>,«1§% <H2>>,v~;‘il).

where red indicates stopped gradients. Hy := {o;*, az, 7,05}, ...} and Ho := {0, az, 7,07, ...}
are transition sequences from two environments with contexts c; and cg respectively. During training,
the transitions are uniformly sampled from a replay buffer. We do not require access to the true
context for computing d(c1, c2) (in Equation (2)) as we can approximate d(cy, ¢2) using Definition 4.
Specifically, we train a transition dynamics model and a reward model (via supervised learning) and
use their output to approximate d(c1, ¢2). In practice, we scale the context learning error, our task
metric loss, using a scalar value denoted as ay,.

We describe the architecture of ZeUS in Figure 1. We have an observation encoder ¢ that encodes
the pixel-observations into real-valued vectors. A buffer of interaction-history is maintained for
computing the context. The context encoder first encodes the individual state-action transition pairs
and then aggregates the representations using standard operations: sum, mean, concate, product, min
and max *. All the components are instantiated using feedforward networks and trained end-to-end.
During inference, assume that the agent is operating in some environment denoted by (latent) context
c1. At time t, the agent gets an observation of' which is encoded into s{* := ¢(0{")°. The context
encoder 1 encodes the last k interactions (denoted as H1) into a context encoding c; := 1 (H1)®.
The observation and context encodings are concatenated and fed to the policy to get the action.

During training, we sample a batch of interaction sequences from the buffer. For sake of
exposition, we assume that we sample only 2 sequences 1 and H5. Similar to the inference pipeline,
we compute ¢(o05'), ¥ (Hy), ¢(05?) and ¢(Hz) and the loss (Equation (2)). We highlight that the
algorithm does not know if the two (sampled) interactions correspond to the same context or not.
Hence, in a small percentage of cases, H; and Hy could correspond to the same context and the
context loss will be equal to 0. For implementing the loss in equation Equation (2), we do not need
access to the true context as the distance between the contexts can be approximated using the learned
transition and reward models using Definition 4. The pseudo-code is provided in the Appendix. Since
ZeUS is a representation learning algorithm, it must be paired with a policy optimization algorithm
for end-to-end training. In the scope of this work, we use SAC-AE Yarats et al. (2021)), though
ZeUS can be used with any policy optimization algorithm.

6. Experiments

We design our experiments to answer the following questions: i) How well does ZeUS perform
when training over a family of tasks with varying dynamics? ii) Can ZeUS adapt and generalize to
unseen environments (with novel dynamics or reward) without performing any gradient updates?
(see Figure 2 and Figure 3), iii) Can ZeUS learning meaningful context representations when training
over a family of tasks with varying dynamics? (see Figure 4)

6.1. Setup

Similar to the setups from Zhou et al. (2019); Lee et al. (2020); Zhang et al. (2021), we start with
standard RL environments and extend them by modifying parameters that affect the dynamics (e.g.

4. We experiment with these aggregation operators for all the baselines and not just ZeUS.
5. We overload notation here since the true state space is latent.
6. We again overload notation here since the true context space is also latent.
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Figure 1: Proposed ZeUS algorithm. The components shown in green (i.e. observation en-
coder, context encoder, dynamics model and reward model) are shared across tasks. Compo-
nents/representations in red or blue belong to separate tasks.
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the friction between agent and the ground) or the reward (e.g. target velocity) such that they exhibit
the challenging nonstationarity and rich-observation conditions of our BC-MDP setting. We create
environments with varying transition dynamics by varying some physical properties in the following
Mujoco (Todorov et al., 2012) based environments from the DM Control Suite (Tassa et al., 2018):
Cheetah-Run-v0 (length of cheetah’s torso), Walker-Walk-v0 (friction coefficient between walker
and the ground), Walker-Walk-v1 (length of walker’s foot) and Finger-Spin-v0 task (size of the
finger). For environments with varying reward function, we use the Cheetah-Run-v1 environment
(vary agent’s target velocity) and Sawyer-Peg-v0 environment (vary the goal position) from Zhao
et al. (2020) and assume access to the reward function, as done in Zhao et al. (2020).

For all environments, we pre-define a range of parameters to train and evaluate on. For the
case of nonstationary dynamics, we create two set of parameters for evaluation: interpolation (and
extrapolation) where the parameters are sampled from a range that lies within (and outside) the range
of parameters during training. For the case of nonstationary reward, we sample the parameters for
the test environments from the same range as the training environments. We report the evaluation
performance of the best performing hyper-parameters for all algorithms (measured using the training
performance). We run all experiments with 10 seeds and report both mean and standard error (denoted
by the shaded area on the plots).

6.2. Baselines

We select representative baselines from different areas of related work (Section 2): UP-OSI (Yu
et al., 2017) is a system identification approach that infers the true parameters and conditioning the
policy on the inferred parameters. Context-aware Dynamics Model , CaDM (Lee et al., 2020) is a
context modelling based approach that outperforms Gradient and Recurrence-based meta learning
approaches (Nagabandi et al., 2019b). HyperDynamics(Xian et al., 2021) generates the weights of
the dynamics model (for each environment) by conditioning on a context vector and is shown to
outperform both ensemble of experts and meta-learning based approaches (Nagabandi et al., 2019b).
We also consider a Context-conditioned Policy where the context encoder is trained using the one-step
forward dynamics loss. This approach can be seen as an ablation of the ZeUS algorithm without the
context learning error (from Equation (2)). We refer to it as Zeus-no-context-loss.

6.3. Adapting and generalizing to unseen environments

In Figure 2, we compare ZeUS’s performance on the heldout extrapolation evaluation environments
which the agent has not seen during training. The transition dynamics varies across these tasks. Hy-
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Figure 2: We compare the performance of the proposed ZeUS algorithm with CaDM, UP-OSI, Hy-
perDynamics and ZeUS-no-context-loss algorithms on the heldout evaluation environments (extrapo-
lation) for four families of tasks with different dynamics parameters.

perDynamics performs well on some environments but requires more resources to train (given that it
generates the weights of dynamics models for each transition in the training batch). UP-OSI uses
privileged information (in terms of the extra supervision). Both CaDM and ZeUS are reasonably
straightforward to implement (and train) though ZeUS outperforms the other baselines. The context
loss (Equation (2)) is an important ingredient for the generalization performance as observed by
the performance of Zeus-no-context-loss. The corresponding plots for performance on the training
environments and heldout interpolation evaluation environments are given in the Appendix. For
additional ablation results for these environments, refer to the Appendix.
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Figure 3: (a), (b): We compare the performance of the proposed ZeUS algorithm with CaDM, Hyper-
Dynamics, ZeUS-no-bisim and Meld algorithms on environments with different reward functions. (c):
[lustration of the Sawyer-Peg-VO task.

In Figure 3, we compare

ZeUS’s performance with the
baselines when the reward
function varies across tasks.
Since all the models have ac-
cess to the reward, we do not
compare with UP-OSI which is
trained to infer the reward. In-
stead we include an additional
baseline, Meld (Zhu et al.,
2020), a meta-RL approach
that performs inference in a la-

tent state model to adapt to a new task. Like before, ZeUS outperforms the other baselines.
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Figure 4: Norm of pairwise differences of contexts for different
tasks for Cheetah-Run-v0 setup when trained with context loss (left)

and without context loss (right).
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6.4. Learning a Meaningful Context Representation

We want to evaluate if the context representation constructed by ZeUS contains meaningful infor-
mation about the true context of the BC-MDP. We compute the norm of pairwise difference of the
learned contexts (corresponding to different tasks) for the Cheetah-Run-vO setup (length of cheetah’s
torso varies across the tasks) when it is trained with and without the context loss (Equation (2)). As
shown in Figure 4 (left), when training with the context loss, tasks that are closer in terms of torso
length are generally closer in the context space. We also report the Spearman’s rank correlation coef-
ficient between the ranking (of distance) between the learned contexts and the ground truth context.
Training with context loss results in a much higher correlation (0.60) than training without(0.23),
showing that the context loss is useful for capturing relationship across tasks.

Sl -4- CaDM
o sy e -60 HyperDynami
7. Limitations C . e
5 -70 T~ °~ -m- ZeUs-no-context-loss
A theoretical limitation of this work is the inability to provide E Meld
guarantees based on the likelihood of the model learning the 2 8
correct causal dynamics. By structuring the context space to & -9
. . . . o
be Lipschitz, we can give guarantees only for those dynamics & _,
and reward where the context is close to the contexts seen at AN
.. . . . . -110 -
training time. While this result flows directly from Theorem 2, 34 36 38 40 42 44 46

it is important to be aware of this limitation, namely that ZeUs Target Velocity

may have poor performance when the distance between the
training and evaluation contexts is high. We demonstrate an
example in Figure 5, where we plot the performance of the
agent for different values of target velocities (for Cheetah-
Run-v1). While ZeUS outperforms the other methods, its
performance also degrades as we move away from the training distribution.

Empirically, the performance of our algorithm also relies on dense reward signal to distinguish
across tasks. However, many real world environments do not naturally have dense reward. One
simple extension of our method to mitigate this issue in sparse reward environments is to use a
learned value function as a dense reward substitute.

Figure 5: The performance of all the
algorithms (on Cheetah-Run-v1) de-
grades as we move away from the
training distribution.

8. Discussion

In this work, we propose to use the Block Contextual MDP framework to model the nonstationary,
rich observation, RL setting. We provide theoretical bounds on adaptation and generalization ability
to unseen tasks within this framework and propose a representation learning algorithm (ZeUS) for
performing online inference of “unknown unknowns”. We empirically verify the effectiveness of
ZeUS on environments with nonstationary dynamics and reward functions.

There are several interesting directions for further research. One way to tighten the generalization
bounds is by constraining the neural networks used in ZeUS to have smaller Lipschitz constants. This
is known to be able to improve generalization bounds (Neyshabur et al., 2015). We can also consider
improving the algorithm to infer the underlying causal structure of the dynamics, as discussed in
Section 7. This is a much harder problem than constructing a context space and inferring context in
new environments. Another direction to extend ZeUS is to account for active nonstationarity, where
the agent’s actions can affect the environment. ZeUS would work for this setting, but there is clearly
an additional structure that can be leveraged for improved performance.

10
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