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Abstract

We present a data-driven algorithm for efficiently computing stochastic control policies for general
joint chance constrained optimal control problems. Our approach leverages the theory of kernel
distribution embeddings, which allows representing expectation operators as inner products in a
reproducing kernel Hilbert space. This framework enables approximately reformulating the orig-
inal problem using a dataset of observed trajectories from the system without imposing prior as-
sumptions on the parameterization of the system dynamics or the structure of the uncertainty. By
optimizing over a finite subset of stochastic open-loop control trajectories, we relax the original
problem to a linear program over the control parameters that can be efficiently solved using stan-
dard convex optimization techniques. We demonstrate our proposed approach in simulation on a
system with nonlinear non-Markovian dynamics navigating in a cluttered environment.
Keywords: kernel distribution embeddings, stochastic optimal control, joint chance constraints

1. Introduction

The deployment of reliable autonomous systems requires control algorithms that are robust to model
misspecifications and to external disturbances. To enable safety-critical applications, these control
algorithms should also explicitly enforce constraints. For instance, an autonomous car should al-
ways respect speed limits and avoid pedestrians at all times while accounting for uncertain road
conditions and external disturbances. The presence of these two sources of aleatoric and epistemic
uncertainty presents a significant challenge for traditional stochastic optimal control techniques,
which typically rely upon an accurate model of the system and calibrated uncertainty quantifica-
tion. Critically, the accuracy of the model and of its associated uncertainty estimates may deterio-
rate over time as the system is deployed in new environments. This motivates the use of data-driven
techniques that leverage collected measurements of the system to design efficient adaptive control
laws. However, existing data-driven techniques tend to be complex to implement (e.g., neural net-
work controllers), may require system-specific assumptions restricting possible applications (e.g.,
dynamics that are linear in the uncertain parameters), or may not explicitly account for constraints
that are crucial for the reliable deployment of these intelligent autonomous systems.

* These authors contributed equally to this work.
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Figure 1: We propose a data-driven algorithm to efficiently compute control trajectories u for uncertain
dynamical systems. The key consists of representing the state trajectory distribution Q(+|xo,u) by a condi-
tional distribution embedding m(x,w) from a reproducing kernel Hilbert space H. This approach allows
approximating the true embedding m(xo, u) using a dataset D of observed trajectories of the uncertain sys-
tem (see Assumption 1). The resulting embedding estimate 1(x, u) defines an approximation Q(-| o, u) of
Q(-|zo, u) that is used to efficiently compute a stochastic control policy to drive the system to a goal region
Xaoal while avoiding all unsafe sets O (e.g., representing obstacles) at all times.

Contributions: we present a data-driven control algorithm to efficiently compute stochastic control
inputs for general joint chance constrained control problems given observed transitions from the
system. The key consists of leveraging the theory of kernel distribution embeddings, which allows
representing expectation operators as inner products in a reproducing kernel Hilbert space (RKHS).
By applying this theory to the stochastic kernel that characterizes the uncertain system dynamics
(Figure 1), we derive a tractable relaxation of the original joint chance constrained problem that is a
linear program over the control parameters. Our approach allows computing randomized open-loop
control strategies for non-Markovian nonlinear dynamical systems subject to nonconvex constraints.
Outline: we discuss related work in Section 2 and our joint chance constrained problem formulation
in Section 3. Section 4 describes how stochastic kernel embeddings are used to relax the original
intractable problem using a dataset of trajectories as a linear program over the stochastic open-loop
control parameters. We validate our approach in Section 5 and conclude in Section 6.

2. Related work

A wide range of model-based stochastic control techniques have been developed to efficiently con-
trol uncertain systems. By leveraging a model of the system, these approaches explicitly account
for uncertainty while enforcing constraints. For instance, stochastic model predictive controllers
(Mesbah, 2016) explicitly enforce constraints along the state trajectory, dynamic programming ap-
proaches (Ono et al., 2015) use a Lagrangian relaxation and augment the control objective with a
penalty on constraint violation, and control barrier functions (Clark, 2019) provide a condition that
guarantees closed-loop forward invariance. Guaranteeing constraint satisfaction with high proba-
bility typically involves considering a chance constrained problem formulation. The most common
formulation enforces pointwise chance constraints that ensure the independent satisfaction of each
constraint at each time step with high probability (Castillo-Lopez et al., 2019; Lew et al., 2020;
Hewing et al., 2020; Polymenakos et al., 2020; Khojasteh et al., 2020; Jasour et al., 2021). In con-
trast, joint chance constraints guarantee trajectory-wise constraints satisfaction with high probability
(Blackmore et al., 2011; Frey et al., 2020; Schmerling and Pavone, 2017; Koller et al., 2018; Lew
et al., 2022) which is of particular interest whenever all constraints should be satisfied at all times
jointly. For instance, a drone transporting a package should always avoid obstacles and reach its
destination with high probability over the distribution of possible payloads. Unfortunately, tackling
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joint chance constrained formulations is particularly challenging due to the need to consider the full
distribution of the state trajectory. Common approaches decompose such constraints using Boole’s
inequality (Blackmore et al., 2011; Ono, 2016) which can be conservative (Schmerling and Pavone,
2017), or perform robust trajectory optimization given confidence sets for the model parameters
(Koller et al., 2018; Lew et al., 2022) which requires assuming bounded external disturbances and
relying on robust uncertainty propagation techniques that can be conservative.

The performance of model-based controllers depends on prior domain knowledge, which may
become inaccurate over time as the system is deployed in new environments. For this reason, data-
driven control techniques have been proposed to leverage measurements of the system to efficiently
characterize its properties and adapt to changes in its operating conditions. Popular data-driven ap-
proaches leverage Gaussian processes models (Deisenroth et al., 2015; Ostafew et al., 2016; Kho-
jasteh et al., 2020; Williams and Rasmussen, 2006; Berkenkamp et al., 2017; Koller et al., 2018;
Lew et al., 2022) which make Gaussian-distributed predictions for the state transitions of the sys-
tem, linearly-parameterized dynamics (Coulson et al., 2019; Berberich et al., 2021), Koopman op-
erators (Abraham and Murphey, 2019), random Fourier features (Boffi, 2021), and neural networks
(Chua et al., 2018). A key algorithmic feature of these approaches is to directly model single-step
transitions of the system. While intuitive and sufficient from a statistical viewpoint, this approach
makes uncertainty propagation challenging, requiring particle-based approaches to represent the
distribution of the trajectory (Blackmore et al., 2010; Janson et al., 2015; Chua et al., 2018).

In this work, we take a drastically different approach and leverage the theory of distributional
kernel embeddings to characterize the joint distribution of the state trajectory from data. This ap-
proach allows tackling general nonlinear, non-Markovian dynamical systems, representing joint
chance constraints as a linear operation in an RKHS, and optimizing over open-loop stochastic
control policies by solving a linear program over the control parameters. Kernel distribution em-
beddings have been thoroughly studied in the recent years (Song et al., 2009; Smola et al., 2007;
Griinewilder et al., 2012; Park and Muandet, 2020), but are not yet popular within the control com-
munity. Controller synthesis applications have been explored in (Thorpe and Oishi, 2021), but the
authors do not consider constraints and only consider one-step transition kernels. In contrast, we
tackle a joint chance constrained problem formulation that explicitly accounts for constraints and
represent the distribution of the entire state trajectory. As a byproduct, this approach allows handling
non-Markovian dynamical systems that are resistant to traditional one-step modeling techniques.

3. Problem Formulation

First, we describe our notation. We denote a conjunction (logical AND) by A and a disjunction
(logical OR) by V. R and N denote the sets of real and natural numbers, respectively. Given a space
Eand N € N, we denote the Cartesian product EV £ E x ... x E (N times). For a subset A C F,
the map 14 : £ — {0, 1} denotes the indicator function of A, which satisfies 14(z) =1ifz € A
and 14(x) = 0if z ¢ A. We denote the Borel o-algebra on a topological space E by #(E).

Definition 3.1 (Stochastic Kernel) Ler (E,E) and (F,F) be measurable spaces. A stochastic
kernel from E to F is amap r : F x E — [0, 1] such that x — k(A | x) is E-measurable for all
A € F and B — k(B | x) is a probability measure on (F, F) forall x € E.

3.1. Chance Constrained Optimization

Let (2, G, P) be a probability space and f : R” x R x RP x R? — R" be a continuous function.
Given an initial state o € R", our goal is to safely control a system with stochastic dynamics
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Tiy1 = f(ZL‘t, U, Wi, 9), te N, (D)

where z; € X C R"™ denotes the state of the system at time ¢, u; € & C R™ is the control input,
w = (wy)¢en is a stochastic process characterizing external disturbances, and 6 is a random variable
that describes uncertain model parameters (e.g., a drone transporting an uncertain payload of mass
0 that is sampled at the beginning of the control task and held constant over time, see Section 5).
This formulation is particularly challenging due to the fact that the system described in (1) is
non-Markovian. Specifically, at any time ¢ € N, the stochastic state trajectory z = (x¢)¢en satisfies

Ty = ft(x())uvwve) é f('autfhwtflae) -0 f(JUOaUOaU)OaG)a (2)

where u = (us)z;%) denotes the control trajectory. Since the parameters # are uncertain and the

disturbances w; are not necessarily independent, the increments x;4; — x; are not independent, i.e.
the state trajectory x is not a Markov process. Intuitively, the parameters are randomized only once
and their uncertainty is propagated along the entire state trajectory, see (Lew et al., 2021).

We consider the problem of minimizing the sum of two (possibly non-convex) state and input
cost functions £ : XV — R and ¢ : " — R. For instance, * may be chosen as a quadratic cost
that penalizes tracking error and £* may penalize control effort. In addition to this control objective,
the system should reach a desired compact goal region Xy, C A at a specified time N € N while
avoiding all unsafe sets of states Oy C X (e.g., representing potentially nonconvex obstacles). Due
to the stochasticity of the system, guaranteeing strict constraint satisfaction with probability one
may be infeasible. Instead, given a tolerable failure probability threshold § € (0, 1), we require that
all constraints are jointly satisfied with probability at least 1 — ¢, a requirement often referred to as
a joint chance constraint.

In general, the optimal solution of such chance constrained control problems are stochastic
control policies (Altman, 1999; Ono, 2016). As such, we formulate a stochastic optimal control
problem over the set A of all open-loop stochastic policies 7 : Z(UY) x X — [0, 1], where 7 is
a stochastic kernel from X to &/”. Optimizing over closed-loop stochastic policies is challenging;
we leave such extensions for future work. The resulting control problem is expressed as follows:

Hgﬁ E[*(x) 4 0" (u)] (3a)
st x4 = f(zg, u,wy, 0), u~w(-|zg), t=0,1,...,N—1, (3b)
N-1
P(( /\ Tt ¢ Ot) A ($N € Xgoal)) >1-4, (3¢)
t=1

where the state and control trajectories are denoted as z = (2;)/; and u = (u;)¥,'. This problem
is challenging due to the non-convexity of the cost function (3a), the nonlinearity of the uncertain
dynamics (3b), the joint chance constraint (3c), and the non-Markovianity of the state-trajectory
(x¢)N_; which requires reasoning about the joint probability distribution of the state trajectory.
Without imposing assumptions regarding the system parameterization and the distribution of the
disturbances and parameters, the problem in (3) is intractable. Instead of relying on such assump-
tions, in this work, we assume access to a dataset of observed transitions from the system. Such a
dataset may come from prior observations of the system evolution or from high-fidelity simulations.
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Assumption 1 (Dataset) We have access to a dataset D = {(x{,u’, 2)}, of M € N independent
and identically distributed (i.i.d.) trajectories, where x¥ and u' are sampled i.i.d. from probability
distributions on X and UN and x* = (xf,...,2%) are i.i.d. trajectories satisfying (1) for each i.

In the next section, we propose an equivalent reformulation of the problem in (3) using stochastic
kernels. This reformulation is the basis for our data-driven approach that leverages the dataset D.

3.2. Reformulation using Stochastic Kernels

The state trajectory : that satisfies (1) can be characterized by a stochastic kernel Q : Z(XN) x
X x UN — [0,1] that assigns a probability measure Q(- | o, u) to every initial condition zg € X
and control sequence u € U on the measurable space (XY, 2(X"V)). This kernel can be defined
as Q(A | zg,u) = IP’(/\?L1 ry = fi(xo,u,w,0) € A) forany A = Ay x --- x Ay € B(X"N) and
(zg,u) € X x UN. As such, Assumption 1 states that one has access to M independent trajectory
samples ¢ that are distributed according to Q(- | x}, u®).

For any initial state 2y € X, any control trajectory v € UV, and any measurable function ¢ :
XN — R, we denote the expectation with respect to this probability measure as EQ(2]z0,u)[9()] =
Sy~ 9(2)Q(dz | xo,u). Since Eq(y)uy.0)[9(2)] is a function of the initial condition 2 and control
input u € U, reformulating the original problem in (3) amounts to computing the expectation over
the stochastic control policy. Since the distribution of the control inputs w is characterized by the
stochastic kernel 7, for any measurable function h : ¥ — R, we define the conditional expectation
Er(ufoo) [(0)] = fygn h(u)m(dulzy).

The two stochastic kernels ) and 7 allow representing the joint chance constraint in (3c) as the
expectation of an indicator function. Let 7 = (X\O1) x - - - X (X\On_1) X Xgoa C X N denote the
set of all state trajectories which reach the goal set while avoiding the unsafe sets at all times, and let
17 (x) denote the indicator of 7, which is one if vy € Xgoq and z; & Oy forallt =1,...,N — 1,
and is zero otherwise. Then, the joint chance constraint in (3c) can be reformulated as

N-1

Ew(u|aco) [EQ(x|xo,u)[1T(l’)H = ]P<< /\ Tt ¢ Ot> A\ ($N S Xgoal)) >1-— 0. (4)

t=1

Using (4) and the stochastic kernel (), we reformulate the original problem in (3) as

min  Er(uja) [EQeiro.u € (x) + £ (w)]] (5a)
St Enuleo) [EQelmon[17(@)] =1 0. (5b)

Since the stochastic kernel () that characterizes the state trajectory x is unknown, the problem
above is generally intractable. In the next section, we show how the dataset D allows relaxing the
problem in (5) using a framework known as kernel embeddings of distributions. This approach
allows representing the expectation operators in (5) as elements in a high-dimensional function
space and subsequently reformulating the original problem as a linear program in this space.

4. Hilbert Space Embeddings of Distributions

The main challenge in solving (5) is evaluating the expectations with respect to the stochastic kernels
(2 and 7 that characterize dynamics uncertainty and the stochasticity of the control policy. Our key
insight consists of embedding an integral operator as an element in an RKHS. With this approach,
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evaluating the expectations in (5) amounts to performing a linear operation between two functions of
an RKHS. We use the dataset from Assumption 1 to approximate the expectation operator associated
to the unknown stochastic kernel ). Then, by selecting a finite-dimensional representation for the
stochastic policy, we propose a tractable finite-dimensional approximation of (5).

4.1. Reproducing Kernel Hilbert Space Embeddings

In this section, we endow our problem with an RKHS structure that enables representing the ex-
pectation operators in problem (5) as linear functions. First, we define the positive definite kernel
function kyn : XN x XN — R (Steinwart and Christmann, 2008, Definition 4.15). According to
the Moore-Aronszajn theorem (Aronszajn, 1950), this kernel defines a unique corresponding RKHS
A of functions from X'V to R with associated inner product (-, -)  such that: (i) kyn (z,-) € S
for all z € XV, and (ii) g(x) = (g, kyn(z,-)) s forall g € 7 and z € XN, As a consequence
of the reproducing property, kyn(z,2') = (kyn(z,-), kyn~(2',-)) ., which is often referred to
as the kernel trick (Steinwart and Christmann, 2008). We assume that the kernel &y~ is B(X™V)-
measurable and bounded, such that sup,c y~ \/kyn~ (z,2) < co. With these conditions, according
to (Song et al., 2009), for every zg € X and v € U N there exists an element m(xg,u) € H, called
the conditional distribution embedding, which is a linear function from XV to R defined as

m(zo, 1) £ Eg(ulzg.u [kan (). (6)

By the reproducing property and linearity of the expectation, the expectation of any function of the
RKHS 57 with respect to the stochastic kernel () can be evaluated as an inner product with the
conditional distribution embedding. Specifically, for any 2o € X and any u € UV,

EQ(x|xo,u) [g(x)] = <gv m(:(}(), u)>%" forany g € 2. (7

Assuming that the cost function £* and the indicator function 17 belong to 77, the inner expecta-
tions in (5) with respect to () can be rewritten as a linear operation using the distribution embedding
m(xo,u). As such, our approach does not rely on specific assumptions about the dynamics, the
uncertain parameters, and the disturbances. The main challenge consists of computing an accurate
approximation of the distribution embedding m(x, ), which we pursue in the next section.

4.2. Empirical Embedding Estimate

Since the true stochastic kernel () is unknown a priori, we do not have access to the conditional dis-
tribution embedding m(zo, u) € 7. To construct an empirical estimate 7 (zg, u) of this operator,
we leverage the dataset D from Assumption 1. Specifically, as in (Griinewailder et al., 2012; Capon-
netto and De Vito, 2007; Micchelli and Pontil, 2005), we search for a best- ﬁt solution in the RKHS
as the solution to the regularlzed least-squares problem 7 = arg mingc o 7 Zl kxn (2, ) —

f(@h, u')||% + All f||%, where X > 0 is a regularization parameter and 2 is a vector-valued RKHS
of functlons from X x UYN to 4 (see Micchelli and Pontil, 2005, for more information). The
solution to this problem is unique:

m(zo,u) = @' (G + AMI) " K (20, u), (8)

where ® € M is a feature vector with elements ®; = kyn(2,-) € #, G € RM*M jg 4
Gram matrix with elements G;; = kx (z), 2}))kyn~ (u', u?), where ky and ky~ are positive definite
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Figure 2: We search for a stochastic
kernel embedding p(x) in the RKHS
. This defines a stochastic kernel
m(u|xo) that characterizes the con-
trol policy. Using this policy kernel
and the approximate state trajectory
stochastic kernel Q (x|, u), we rep-
resent the state trajectory distribution
and reformulate the original stochas-
tic control problem.

m(ulzy)

kernels on X' and U™, respectively, and K (z¢,u) € RM is a vector with elements [K (¢, u)]; =
kx (zh, w0)ky~ (u', u). This estimate /(x, u) of the conditional distribution embedding m (z¢, u)
enables an efficient approximation of the expectation in (7). Specifically, for any function g € 72,

B (azo,u)9(2)] = (g, m(z0,u)) » = (g, M(x0,u)) » = 9 (G+AMI) K (zo,u), (9)

where g = [g(z1),...,g(z™)]T € RM. With (9), the inner expectations in (5) with respect to the
unknown stochastic kernel () can be approximated using simple matrix operations.

The quality of this approximation generally depends on the dataset D from Assumption 1, on
the kernel choice, and on the number of samples M. The convergence properties of conditional dis-
tribution embeddings have been studied in the literature, see (Song et al., 2009, 2010; Griinewilder
et al., 2012; Park and Muandet, 2020). Notwithstanding minor variations in the underlying theoret-
ical framework, existing results show that the empirical estimate of a kernel distribution embedding
converges in probability to the true embedding as the sample size increases, and suggest an optimal
rate of convergence of O, (M -1/ 4) (Park and Muandet, 2020). Exactly quantifying the approxima-
tion error in (9) for a finite number of samples is beyond the scope of this work.

4.3. Stochastic Control Trajectory Representation

To reformulate the problem in (5), it remains to compute the expectation with respect to any chosen
stochastic policy . At this point, one could search for a deterministic control sequence v € UV and
obtain a tractable approximate reformulation of the original problem. However, this reformulation
would be non-convex if /* and k;;~ are non-convex.

Instead, optimizing over the larger set of stochastic policies allows for more efficient control
strategies (Altman, 1999; Ono, 2016). Note that under the condition that k;,~ is Z(U” )-measurable
and bounded, any stochastic policy 7 (- | z() can be represented by a conditional distribution em-
bedding p(zp) in the RKHS % associated with k;;~. Accordingly, the expectation of any function
h € 9 with respect to the stochastic policy can be expressed as an inner product in the RKHS %
as Er(u|we) [P (70, u)] = (h, p(20))2 . However, depending on the choice of kernel &;,~, the repre-
sentation of the embedding p(z() may be infinite-dimensional. Thus, optimizing over all possible
stochastic embeddings is generally intractable. This observation motivates our finite-dimensional
policy representation, which we characterize by the set of stochastic kernel embeddings

P

P
plzo) = Y yj(wo)kyn (@), where Y " v;(z0) =1, 0= (), (10)
j=1 j=1
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where v(z9) € R”, the elements %/ € " are user-specified control sequences, and j = 1,. .., P.
The finite set of control sequences A = {u’ }le can be chosen strategically to uniformly cover
the control space "V, can be sampled randomly (independently of Assumption 1), or can be pre-
specified depending on the application (e.g., informed by a sampling-based planner with an ap-
proximate deterministic dynamics model, Ichter et al., 2018). The coefficients 7;(zo) characterize
the probability values that weight the admissible control sequences in A. Correspondingly, the last
two conditions in (10) constrain the coefficient vector v(zp) to lie within a probability simplex
S ={y € RY| Zf; 17 = 1,0 < ~}. This guarantees that the kernel distribution embedding
p(xo) defines a valid stochastic kernel 7 characterizing the control policy.

Restricting the search of stochastic kernel embeddings to a finite-dimensional subspace of %
allows a tractable relaxation of the original problem. Indeed, for any function h € %/, we have

P
Er(uzo) [R(w)] = (b, p(70))q = <h > i)y (@ - > =Y @ )yy(x0).  (1D)
oy =1

7j=1

Assuming that /% € %/, this relaxation enables a tractable evaluation of the expectation opera-
tor with respect to the stochastic control policy (- | z¢). Intuitively, (- | zo) is a sum of Dirac
functions centered at each control trajectory %/ € U weighted by the probability coefficient v (z0)
(Berlinet and Thomas-Agnan, 2011, Chapter 4, §1.1). Importantly, (11) is linear in the unknown pa-
rameter y(zo) € RY. This relaxation offers a tractable linear reformulation of the original problem,
although it induces sub-optimality relative to the computationally intractable problem of optimizing
over the infinite-dimensional space of stochastic policies. We leave the quantification of this sub-
optimality gap (perhaps by first quantifying the error between the empirical approximation in (10)
and any feasible stochastic embedding p(z¢), see (Kanagawa et al., 2018, §6.2)) to future work.

4.4. Approximate chance constrained Optimization Problem

Using the estimate 7m(x, v) and the policy estimate p(xg), the expectations in (5) can be approxi-
mated using simple matrix multiplications and inner products. Specifically, for any function g € JZ,
comblnlng (9) with (11), we obtain E,(,(2)[EQ(z|weu[9(®)]] = ({g,7(z0,")) e, P(20))r =
P =19 (G + AMI)"1K (¢, )v;(w0). This motivates the following approximation of (5):

: x T -1 u T
min (z (G + AMI) "' R(zo) + £ )fy(:ng) (12a)

s.t. (i;(G + /\MI)_lR(xo)> (o) >1—46, 1T~(xg) =1, 0=r(x), (12b)

where R(z) € RM*F is a matrix such that each column [R(x)]; = K (w0, @) such that [R(x)];; =
kx(xh, 20)kyn (ul, @), and £%, €%, 17 € RM are vectors with elements £ = (% (x?%), £ = (“(@W),
and [17]; = 17(2%), respectlvely The approximate problem in (12) is a linear program over the
coefficients y(x) (that represent probability weights over the admissible control sequences in .A)
that can be efficiently solved via interior-point or simplex algorithms. Thus, the solution to (12) is
a randomized control strategy, i.e., an open-loop stochastic control policy with values in A. The
quality of the resulting stochastic control strategy that solves the problem in (12) generally depends
on the quality of the dataset D from Assumption 1 and on the choice of the control inputs in A.
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Figure 3: Solutions from our proposed data-driven algorithm for different values of the tolerable failure
probability threshold 6. Blue trajectories from Monte-Carlo (MC) simulations denote feasible trajectories
which reach the goal set X,oq1 and avoid obstacles O. Red trajectories violate constraints. We use MC = y%
to denote the percent of sampled trajectories that violate constraints.

5. Numerical Experiments

We consider the problem of controlling a quadrotor system operating in turbulent conditions, with
nonlinear dynamics given by x11 = Axy + B(0)us + d(x¢, 0) + wy, where

1 At 0 0 1 At2/2 0 A2 |vg|vg/2
/01 0 o0 _ 1| At 0 _ At|vg|vg
A=1y o 1 af BO) = m| 0 Azl d(w,0) = —a A [vylv,/2] (13)
0 0 0 1 0 At Atlvylvy
and At = 1. The state and control inputs of the system are denoted as x¢ = [py ¢, Uy ¢, Dy.ts Uyﬂg] €
R* and u; = [ug,uy] € R% Starting from an initial condition 2o = [—0.5,0, —0.5, 0], the goal

consists of computing a stochastic policy such that the system reaches the set Xpout = {2 € R* |
|(pz—10,py—10)|| < 2.5 at time N = 15 while avoiding two polytopic obstacles O shown in
Figure 3. The disturbances wy are i.i.d. zero-mean Gaussian-distributed, with diagonal covariance
matrix ¥ = diag([1072,0,1072,0]). The dynamics are parameterized by uncertain parameters
f = (m, «) representing the mass m > 0 of the system and an uncertain drag coefficient o > 0.
We assume that the parameters (m, «) of the system are uncorrelated random variables such that
(m —0.75)/(0.5) ~ Beta(2,2) and (o — 0.4)/(0.2) ~ Beta(2, 5), where Beta(a, b) denotes a Beta
distribution with shape parameters (a,b). As discussed in Section 3, this system is not Markovian
due to the temporal correlation between the state trajectory « and the uncertain parameter 6.

We generate a dataset D = {(z, u’, 2*)}*, as in Assumption 1 with M = 2500 by uniformly
sampling initial conditions z, € [—0.5, —0.05, —0.5, —0.05] x [0.5,0.05,0.5,0.05]. The control
sequences u’ are generated by uniformly sampling u} € [0, 1]? for ¢t = 0,1, 2 to impose variability
in the sample trajectories, and then selecting controls for ¢ > 3 via a feedback controller, where
ul = K(x;—(10,0,10,0)) given closed-loop trajectories x simulated using (13) and a pre-specified
linear feedback gain K = [}22°9,9.] € R**4. These control trajectories u’ are then used to
simulate open-loop trajectories ' again, which ensures that these trajectories correspond to open-
loop control inputs. Finally, the control sequences A = {@’ }le with P = 2500 are selected with
the same approach as described above, except that we use a uniform grid to select the control inputs
@] at the first three time steps, ¢ = 0,1, 2, and use the dynamics in (13) with constant parameters
(m,a) = (1,0.005). We then presumed no knowledge of the system dynamics in (13) or the
stochastic kernel () to compute a solution to the problem.

Using the datasets D and .4, we compute a kernel-based approximation of the original chance
constrained problem and stochastic policy using (12). We set the regularization parameter to be A =
10~7 and use a Gaussian kernel k(z,z") = exp(—o||z — 2’||2) with the kernel parameter o chosen
as the median Euclidean distance between sample points. We use the 1inprog function from
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scipy to formulate and solve the linear programs in (12). Our Python implementation, as well as
code to reproduce all figures and analysis is available at https://github.com/ajthor/socks.
Results are shown in Figure 3 for different values of ¢. Figure 3 shows 1,000 Monte-Carlo
simulations using the open-loop policy computed via our method. For all values of 4, the algorithm
computes a randomized control policy that satisfies the desired success rate 1 — §. The results in
Figure 3 show that with larger values of J, the algorithm is more likely to select control inputs
that generate trajectories passing through the riskier middle corridor between the obstacles. This is
expected behavior, as § directly controls the maximum allowable probability of constraint violation.
We compare our approach with the method proposed
in (Ono, 2016), which consists of decomposing the joint 104
chance constraint using Boole’s inequality and combin- — =
ing a Lagrangian relaxation approach with a bisection = Xyoul

technique to obtain a mixed control strategy. Since this
approach considers linear dynamics, we implement this
§=5%
MC= 10.2%

baseline assuming that m = 1 and a@ = 0 using the dy- |

namics in (13). We present results for 6 = 0.05 in Fig- 01

ure 4 and generate 1,000 Monte-Carlo simulations using 0 5 10

the resulting mixed control strategy and the nonlinear dy- Figure 4: Solution from the approach
namics in (13). We observe that the solution from this ap-  ,,oposed in (Ono, 2016). Blue Monte-
proach is similar to the output of our data-driven method, Carlo trajectories denote feasible trajecto-
in that it mixes two control strategies that generate tra- ries that reach the goal set Xyoq and avoid
jectories from two different control sequences. However, obstacles O. Red trajectories indicate tra-
10.2% of trajectories violate constraints using the method Jjectories which violate constraints.

in (Ono, 2016). This comparison demonstrates the need to consider the nonlinear, non-Markovian
dynamics of this system to reliably solve this problem.

6. Conclusion

In this paper, we presented a novel data-driven technique leveraging stochastic kernel embeddings
to compute stochastic control trajectories for general joint chance constrained control problems. By
directly approximating the integral operator associated to the distribution of the state trajectory, this
model-free approach is agnostic to the particular parameterization of the dynamics and of the dis-
tribution of the uncertain parameters and external disturbances. It is also computationally efficient,
since the original stochastic problem is approximately reformulated as a linear program over the
control parameters. Numerical experiments demonstrate the efficacy of our approach for control-
ling a challenging nonlinear non-Markovian dynamical system subject to non-convex constraints.
An important direction of future work is the accurate characterization of the approximation error
in (9). Specifically, given further distributional and smoothness assumptions, finite-sample error
bounds between the true and empirical embeddings in (9) could allow the strict satisfaction of the
original joint chance constraint (3c). Future work will investigate different control input selection
strategies, e.g., using non-convex optimization or cross-entropy policy optimization approaches.
Of practical interest is investigating different choices of kernels to yield better accuracy and less
conservative behavior (e.g., by meta-learning a kernel tailored to the true system). Finally, our
data-driven approach could motivate reinforcement learning strategies to actively gather data and
improve the stochastic kernel embedding approximation quality while balancing the exploration-
exploitation trade-off that arises from this constrained Markov decision process formulation.
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