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Abstract
We study the following question in the context of imitation learning for continuous control: how
are the underlying stability properties of an expert policy reflected in the sample complexity of an
imitation learning task? We provide the first results showing that a granular connection can be made
between the expert system’s incremental gain stability, a novel measure of robust convergence
between pairs of system trajectories, and the dependency on the task horizon T of the resulting
generalization bounds. As a special case, we delineate a class of systems for which the number of
trajectories needed to achieve ε-suboptimality is sublinear in the task horizon T , and do so without
requiring (strong) convexity of the loss function in the policy parameters. Finally, we conduct
numerical experiments demonstrating the validity of our insights on both a simple nonlinear system
with tunable stability properties, and on a high-dimensional quadrupedal robotic simulation.
Keywords: Imitation learning, incremental stability, behavior cloning, statistical learning.

1. Introduction

Imitation Learning (IL) uses demonstrations of desired behavior, provided by an expert, to train a
policy (Hussein et al., 2017; Osa et al., 2018). IL offers many appealing advantages: it is often more
sample-efficient than reinforcement learning (Ross et al., 2011; Sun et al., 2017), and can lead to
policies that are more computationally efficient to evaluate online (Hertneck et al., 2018; Yin et al.,
2020). Indeed, there is a rich body of work demonstrating the advantages of IL-based methods in
a range of applications including video-game playing (Ross and Bagnell, 2010; Ross et al., 2011),
humanoid robotics (Schaal, 1999), and self-driving cars (Codevilla et al., 2018).

However, when applied to continuous control problems, little to no insight is given into how the
underlying stability properties of the expert policy affect the sample complexity of the resulting IL
task. In this paper, we address this gap and answer the question: what makes an expert policy easy to
learn? Our main insight is that when an expert policy satisfies a suitable quantitative notion of robust
incremental stability, i.e., when pairs of system trajectories under the expert policy robustly converge
towards each other, and when learned policies are also constrained to satisfy this property, then IL
can be made provably efficient. We formalize this insight through the notion of incremental gain
stability constrained IL algorithms, and in doing so, quantify and generalize previous observations
of efficient and robust learning subject to contraction based stability constraints.

Related Work. There exist a rich body of work examining the interplay between stability theory
and learning dynamical systems/policies satisfying stability/safety properties from demonstrations.
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Nonlinear stability and learning from demonstrations: Our work applies tools from nonlin-
ear stability theory to analyze the sample complexity of IL algorithms. Concepts from nonlinear
stability theory, such as Lyapunov stability or contraction theory (Lohmiller and Slotine, 1998),
have also been successfully applied to learn autonomous nonlinear dynamical systems satisfying
desirable properties such as (incremental) stability or controllability. As demonstrated empirically
in (Lemme et al., 2014; Ravichandar et al., 2017; Sindhwani et al., 2018; Singh et al., 2020), us-
ing such stability-based regularizers to trim the hypothesis space results in more data-efficient and
robust learning algorithms – however, no quantitative sample-complexity bounds are provided.

IL under covariate shift: Vanilla IL (e.g., Behavior Cloning) is known to be sensitive to covariate
shift: as soon as the learned policy deviates from the expert policy, errors begin to compound, lead-
ing the system to drift to new and possibly dangerous states (Pomerleau, 1989; Ross et al., 2011).
Representative IL algorithms that address this issue include DAgger (Ross et al., 2011) (on-policy
approach) and DART (Laskey et al., 2017) (off policy approach). Both approaches seek to mitigate
the effects of system drift at test-time by augmenting the data-set created by the expert: DAgger
iteratively augments its data-set of trajectories with appropriately labeled and/or corrected data of
the previous policy, whereas DART injects noise into the supervisor demonstrations and allows the
supervisor to provide corrections as needed. For loss functions that are strongly convex in the policy
parameters, DAgger enjoys Õ(T ) sample-complexity in the task horizon T , and this bound degrades
to Õ(T 2) when loss functions are only convex, whereas we are not aware of finite-data guarantees
for DART. IL algorithms more explicitly focused on stability/safety leverage tools from Bayesian
deep learning (Menda et al., 2017, 2019), model-predictive-control (Hertneck et al., 2018), robust
control (Yin et al., 2020), and PAC-Bayes (Ren et al., 2020). While the approach, generality, and
strength of guarantees provided by the aforementioned works vary, none provide insight as to how
the stability properties of the expert affect the sample complexity of the corresponding IL task.

Contributions. To provide fine-grained insights into the relationship between system stability and
sample complexity, we first define and analyze the notion of incremental gain stability (IGS) for a
nonlinear dynamical system. IGS provides a quantitative measure of convergence between system
trajectories, that strictly expands on the guarantees provided by contraction theory (Lohmiller and
Slotine, 1998) by allowing for a graceful degradation away from exponential convergence rates.

With the aim of understanding what experts of easy to learn, we analyze the sample-complexity
properties of IGS-constrained imitation learning algorithms. By linking nonlinear stability and sta-
tistical learning theory, we show that a degradation in the stability of the expert policy leads to a cor-
responding degradation of generalization bounds. In particular, we show that when imitating an IGS
expert policy, IGS-constrained behavior cloning requires m & qT 2a1(1−1/a2

1)/ε2a1 trajectories to
achieve imitation loss bounded by ε, where T is the task horizon, q is the effective number of param-
eters of the function class for the learned policy, and a1 ∈ [1,∞) is an IGS parameter determined by
the expert policy. We show that a1 = 1 for contracting systems, leading to task-horizon independent
bounds scaling as m & q/ε2. Furthermore, we construct a simple family of systems that gracefully
degrade away from these exponential rates such that a1 = 1 + p for p ∈ (0,∞), yielding sample-
complexity that scales as m & qT 2p(2+p)/1+pε2(1+p), which makes clear that an increase/decrease in
p yields a corresponding increase/decrease in sample-complexity. We further extend our analysis to
an IGS-constrained DAgger-like algorithm. We show that this algorithm enjoys comparable stabil-
ity dependent sample-complexity guarantees, requiring m & qT a

2
1(1−1/a1)(4+1/a1)/ε2a2

1 trajectories
to learn an ε-approximate policy, again recovering time-independent bounds for contracting sys-
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tems that gracefully degrade when applied to our family of systems satisfying a1 = 1 + p. As a
corollary, we provide the first results delineating a class of systems for which sample-complexity
bounds scale sublinearly in the task-horizon T . Our final theoretical contribution is a lower-bound
showing that stability-constrained IL is indeed necessary to ensure a graceful sample-complexity
dependence on the task-time horizon T . We then empirically validate our results on (a) our simple
family of nonlinear systems for which the underlying IGS properties can be quantitatively tuned, and
(b) a high-dimensional nonlinear quadrupedal robotic system. We show that the sample-complexity
scaling predicted by the underlying stability properties of the expert policy are indeed observed in
practice. Omitted proofs and details can be found in the full version of the paper (Tu et al., 2021).

2. Problem Statement

We consider the following discrete-time control-affine dynamical system:

xt+1 = f(xt) + g(xt)ut, xt ∈ Rn, ut ∈ Rd. (2.1)

Let ϕt(ξ, {ut}t>0) denote the state xt of the dynamics (2.1) with input signal {ut}t>0 and initial
condition x0 = ξ. For a policy π : Rn → Rd, let ϕπt (ξ) denote xt when ut = π(xt). Let X ⊆ Rn
be a compact set and let T ∈ N+ be the time-horizon over which we consider the behavior of (2.1).
We generate trajectories by drawing random initial conditions from a distribution D over X .

We fix an expert policy π? : Rn → Rd which we wish to imitate. The quality of our imitation is
measured through the following imitation loss:

`π′(ξ;π1, π2) :=
∑T−1

t=0 ‖∆π1,π2(ϕπ
′
t (ξ))‖2, ∆π1,π2(x) := g(x)(π1(x)− π2(x)). (2.2)

Our goal is to design and analyze imitation learning algorithms that produce a policy π̂ using
m = m(ε, δ) trajectories of length T seeded from initial conditions {ξi}mi=1 ∼ Dm, such that
with probability at least 1 − δ, the learned policy π̂ induces a state/input trajectory distribution
that satisfies Eξ∼D`π̂(ξ; π̂, π?) 6 ε. Crucially, we seek to understand how the underlying stability
properties of the expert policy π? manifest themselves in the number of required trajectoriesm(ε, δ).

Bounding the imitation loss has immediate implications on the safety, stability, and perfor-
mance of the learned policy π̂. Concretely, let h : Rn×(T+1) → Rs denote an Lh-Lipschitz ob-
servable function of a trajectory: examples of valid observable functions include Lyapunov/barrier
inequalities and constraints on the state or policy output. Then Eξ∼D‖hπ?(ξ) − hπ̂(ξ)‖2 6
LhEξ∼D

∑T
t=0‖ϕ

π?
t (ξ) − ϕπ̂t (ξ)‖2, where hπ(ξ) := h({ϕπt (ξ)}Tt=0). We subsequently show the

discrepancy term
∑T

t=0‖ϕ
π?
t (ξ)−ϕπ̂t (ξ)‖2 can be upper bounded by the imitation loss `π̂(ξ; π̂, π?),

and thus bounds on the imitation loss imply bounds on the deviations between hπ? & hπ̂.

3. Incremental Gain Stability

The crux of our analysis relies on a property which we call incremental gain stability (IGS). Before
formally defining IGS, we motivate the need for a quantitative characterization of convergence rates
between system trajectories. A key quantity that repeatedly appears in our analysis is the following
sum of trajectory discrepancy induced by policies π1 and π2:

discT (ξ;π1, π2) :=
∑T

t=0‖ϕ
π1
t (ξ)− ϕπ2

t (ξ)‖2. (3.1)

We already saw this quantity appear naturally in the deviation of hπ? and hπ̂. Furthermore, we will
reduce analyzing the performance of behavior cloning and our DAgger-like algorithm to bounding
the discrepancy (3.1) between trajectories induced by the expert policy π? and a learned policy π̂.
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The simplest way to control (3.1) is to use a discrete-time version of Grönwall’s inequality:
if the maps f and g defining system (2.1) as well as policies π1 and π2 are B-bounded and L-
Lipschitz, then we can upper bound discT (ξ;π1, π2) 6 O((L(1 + 2B))T )`π1(ξ;π1, π2) whenever
L(1 + 2B) > 1. This bound formalizes the intuition that the discrepancy (3.1) scales in proportion
to the deviation between policies π1 and π2, summed along the trajectory. Unfortunately, it is
undesirable due to its exponential dependence on the horizon T . In order to improve the dependence
on T , we need to assume some stability properties on the dynamics (f, g). We start by drawing
inspiration from the definition of incremental input-to-state stability (Tran et al., 2016).1

Definition 3.1 (Incremental input-to-state-stability (δISS)) Consider the discrete-time dynam-
ics xt+1 = f(xt, ut), and let ϕt(ξ, {ut}t>0) denote the state xt initialized from x0 = ξ with input
signal {ut}t>0. The dynamics f is said to be incremental input-to-state-stable if there exists a class
KL function ζ and class K∞ function γ such that for every ξ1, ξ2 ∈ X , {ut}t>0 ⊆ U , and t ∈ N,

‖ϕt(ξ1, {ut}t>0)− ϕt(ξ2, {0}t>0)‖X 6 ζ(‖ξ1 − ξ2‖X , t) + γ

(
max

06k6t−1
‖uk‖U

)
.

Definition 3.1 improves the Grönwall-type estimate in the following way. Suppose the closed-loop
system defined by f̃(x, u) = f(x) + g(x)π2(x) + u is δISS. Then the algebraic identity

xt+1 = f(xt) + g(xt)π1(xt) = f(xt) + g(xt)π2(xt) + ∆π1,π2(xt),

allows us to treat ∆π1,π2(xt) as an input signal, yielding discT (ξ;π1, π2) 6 Tγ (`π1(ξ;π1, π2)).
This bound certainly improves the dependence on T , but is not sharp: for stable linear systems,
it is not hard to show that discT (ξ;π1, π2) 6 O(1)`π1(ξ;π1, π2). In order to capture sharper rate
dependence on T , we need to modify the definition to more explicitly quantify convergence rates.

Definition 3.2 (Incremental gain stability) Consider the discrete time dynamics xt+1 = f(xt, ut).
Let a, a0, a1, b0, b1 ∈ [1,∞) and ζ, γ be positive finite constants satisfying a0 6 a1 and b0 6 b1.
Put Ψ := (a, a0, a1, b0, b1, ζ, γ). We say that f is Ψ-incrementally-gain-stable (Ψ-IGS) if for all
horizon lengths T ∈ N, initial conditions ξ1, ξ2 ∈ X , and input sequences {ut}t>0 ⊆ U , we have:2∑T

t=0 min{‖∆t‖a∧a0
X , ‖∆t‖a∨a1

X } 6 ζ‖ξ1 − ξ2‖aX + γ
∑T−1

t=0 max{‖ut‖b0U , ‖ut‖
b1
U }. (3.2)

Here, ∆t := ϕt(ξ1, {ut}t>0)− ϕt(ξ2, {0}t>0).

IGS quantitatively bounds the amplification of an input signal {ut}t>0 (and differences in initial
conditions ξ1, ξ2) on the corresponding system trajectory discrepancies {∆t}t>0. Note that a system
that is incrementally gain stable is automatically δISS. IGS also captures the phase transition that
occurs in non-contracting systems about the unit circle. For example, when ‖∆t‖ 6 1 and ‖ut‖ 6 1
for all t > 0, inequality (3.2) reduces to

∑T
t=0‖∆t‖a∨a1

X 6 ζ‖ξ1 − ξ2‖aX + γ
∑T−1

t=0 ‖ut‖
b0
U . Finally,

as IGS measures signal-to-signal ({ut}t>0 → {∆t}t>0) amplification, it is well suited to analyzing
learning algorithms operating on system trajectories.

For a pair of functions f(x), g(x), we say that (f, g) is Ψ-IGS if the system f(x) + g(x)u is
Ψ-IGS. It turns out that if (f + gπ2, Id) is Ψ-IGS, then

discT (ξ;π1, π2) 6 4 (γ ∨ 1)
1

a∧a0 T
1− 1

a∨a1 max

{
`π1(ξ;π1, π2)

b0
a∨a1 , `π1(ξ;π1, π2)

b1
a∧a0

}
. (3.3)

1. Definition 3.1 is more general than Definition 6 of (Tran et al., 2016) in that we only require a bound with respect to
an input perturbation of one of the trajectories, not both.

2. For a, b ∈ R, we let a ∨ b := max{a, b} and a ∧ b := min{a, b}.
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With this bound, the dependence on T is allowed to interpolate between 1 and T , and the depen-
dence on `π1(ξ;π1, π2) is made explicit. Next, we state a Lyapunov based sufficient condition for
Definition 3.2 to hold, which is checked pointwise in space rather than over entire trajectories.

Proposition 3.3 (Incremental Lyapunov function implies stability) Let a, a0, a1, b0, b1 ∈ [1,∞)
and α, α, a, b be positive finite constants satisfying a0 6 a1, b0 6 b1, and α 6 α. Suppose there
exists a non-negative function V : Rn×Rn → R+ satisfying α‖x−y‖aX 6 V (x, y) 6 α‖x−y‖aX ,
such that for all x, y ∈ Rn and u ∈ U ,

V (f(x, u), f(y, 0))− V (x, y) 6 −amin{‖x− y‖a0
X , ‖x− y‖

a1
X }+ bmax{‖u‖b0U , ‖u‖

b1
U }. (3.4)

Then, f is Ψ-incrementally-gain-stable with Ψ =
(
a, a0, a1, b0, b1,

α
α∧a ,

b
α∧a

)
.

An example of an IGS system is a contracting system (Lohmiller and Slotine, 1998).

Proposition 3.4 Consider the dynamics xt+1 = f(xt, ut). Suppose that f is autonomously con-
tracting, i.e., there exists a positive definite metric M(x) and a scalar ρ ∈ (0, 1) such that:

∂f

∂x
(x, 0)TM(f(x, 0))

∂f

∂x
(x, 0) 4 ρM(x) ∀x ∈ Rn.

Suppose also that the metric M satisfies µI 4 M(x) 4 µI for all x ∈ Rn, and that there exists a
finite Lu such that the dynamics satisfies ‖f(x, u) − f(x, 0)‖2 6 Lu‖u‖2 for all x ∈ Rn, u ∈ Rd.
Then we have that f is Ψ-IGS, with Ψ =

(
1, 1, 1, 1, 1,

√
µ
µ

1
1−√ρ , Lu

√
µ
µ

1
1−√ρ

)
.

Proposition 3.4 shows that for contracting systems, (3.3) is bounded by O(`π1(ξ;π1, π2)). A
concrete example is a piecewise linear system f(x, u) =

(∑K
i=1Ai1{x ∈ Ci}

)
x + Bu where

the Ai’s are stable, {Ci} partitions Rn, and there exists a common quadratic Lyapunov function
V (x) = xTPx which yields the metric M(x) = P .

Our next example is a family of systems that gracefully degrade away from exponential rates.

Proposition 3.5 Consider the scalar dynamics xt+1 = xt−ηxt |xt|
p

1+|xt|p +ηut for p ∈ (0,∞). Then

as long as 0 < η < 4
5+p , we have that f is Ψ-IGS, with Ψ =

(
1, 1, 1 + p, 1, 1, 22+p

η , 22+p
)

The systems described in Proposition 3.5 behave like stable linear systems when |xt| > 1 (hence
a0 = 1), and like polynomial systems when |xt| < 1 (hence a1 = 1 + p). This also highlights the
need to be able to capture this phase-transition within our definitions.

4. Algorithms and Theoretical Results

In this section we define and analyze IGS-constrained imitation learning algorithms. We begin by
introducing our main assumption of dynamics and policy class regularity.

Assumption 4.1 (Regularity) We assume that the dynamics (f, g), policy class Π, expert π?, and
initial condition distribution D satisfy, for some Bg, B0, L∆ ∈ [1,∞):

(a) The dynamics (f, g) satisfy (i) f(0) = 0 and (ii) supx∈Rn‖g(x)‖op 6 Bg.
(b) The policy class Π contains π?, is convex3, and π(0) = 0 for all π ∈ Π.

3. Convexity is a stronger assumption than required and made to streamline the presentation. It can be relaxed to Π
being closed under a finite number of convex combinations (1− α)π1 + απ2, α ∈ [0, 1], π1, π2 ∈ Π.
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(c) ∆π1,π2 is L∆-Lipschitz for all π1, π2 ∈ Π.
(d) The distribution D over initial conditions satisfies ‖ξ‖2 6 B0 a.s. for ξ ∼ D.

We now turn to our main stability assumption. Let fπcl(x) := f(x) + g(x)π(x) denote the
closed-loop dynamics induced by a policy π. Our main stability assumption is that (fπ?cl , Id) is Ψ-
IGS. For ease of exposition, we restrict the degrees of freedom of the Ψ-IGS parameters, but note
that our results extend to the general case at the expense of more cumbersome expressions.

Assumption 4.2 (Incremental Gain Stability) Let Ψ = (a, a0, a1, b0, b1, ζ, γ) be a tuple satisfy-
ing a = a0, b := b0 = b1, ζ > 1, γ > 1, and a > b. Let SΨ denote the set of policies π such that
(fπcl, Id) is Ψ-IGS. We assume that π? ∈ SΨ.

Algorithm 1: Constrained Mixing Iterative Learning
Data: Trajectory budget m, number of epochs E that

divides m, mixing rate α ∈ (0, 1], initial

conditions
{
{ξki }

m/E
i=1

}E−1

k=0
∼ Dn, expert π?,

stability parameters Ψ, and scalars {ci}E−2
i=1 .

1 π0 ← π?, c0 ← 0.
2 for k = 0, . . . , E − 2 do

3 Collect trajectories Tk =
{
{ϕπkt (ξki )}T−1

t=0

}m/E
i=1

.

4 π̂k← cERM (Tk, πk, ck, 0).
5 πk+1 ← (1− α)πk + απ̂k.
6 end

7 Collect trajectories TE−1 =
{
{ϕπE−1

t (ξi)}T−1
t=0

}m/E
i=1

.

8 cE−1 ← (1−α)E

α
1

m/E

∑m/E
i=1 `πE−1(ξE−1

i ;πE−1, π?).
9 π̂E−1← cERM

(
TE−1, πE−1, cE−1, (1− α)E

)
.

10 πE ← 1
1−(1−α)E

[(1−α)πE−1 +απ̂E−1− (1−α)Eπ?].

11 return πE .

Note that the assumptions of
boundedness of g and Lipschitz con-
tinuity of ∆π1,π2 in Assumption 4.1
can be relaxed to continuity of the
dynamics (f, g) and boundedness of
π ∈ Π by our assumption that π? ∈
SΨ, which ensures boundedness over
state trajectories under bounded in-
puts. However, explicitly definingBg
and L∆ streamlines the exposition.
Next, we assume that the expert pol-
icy lies in our policy class, i.e., that
π? ∈ Π, to guarantee that zero imita-
tion loss can be achieved in the limit
of infinite data; it is straightforward
to relax this assumption to Π ∩ SΨ 6=
∅ and prove results with respect to the
best stabilizing policy in class.

IGS-Constrained Mixing Itera-
tive Learning (CMILe) is presented in

Algorithm 1. CMILe integrates ideas from Stochastic Mixing Iterative Learning (SMILe) (Ross and
Bagnell, 2010), constrained policy optimization (Luo et al., 2019; Schulman et al., 2015), and the
IGS tools developed in Section 3. As in SMILe and DAgger, CMILe proceeds in epochs, beginning
with data generated by the expert policy, and iteratively shifts towards a learned policy via updates
of the form πk+1 = (1−α)πk +απ̂k, where πk is the current data-generating policy, π̂k is the pol-
icy learned using the most recently generated data, and α ∈ (0, 1] is a mixing parameter. However,
CMILe contains two key differences: it constrains πk to (i) remain close to πk−1 (constraint (4.2b)),
and (ii) to induce Ψ-IGS closed-loop systems (constraint (4.2c)). The latter allows us to leverage
the Ψ-IGS machinery of §3 to analyze Algorithm 1.

In presenting our results, we specialize the policy class Π to have the particular parametric form:

Π = {π(x, θ) : θ ∈ Rq, ‖θ‖2 6 Bθ}, (4.1)

with Bθ > 1, and π a fixed twice continuously differentiable map. As an example, neural networks
with q weights and twice continuously differentiable activation functions are captured by the policy
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class (4.1). We note that our results do not actually require a parameteric representation: as long as
a particular policy class Rademacher complexity can be bounded, then our results apply. In what
follows, we define L∂2π := 1 ∨ sup‖x‖6ζ1/aB0,‖θ‖6Bθ

∥∥∥ ∂2π
∂θ∂x

∥∥∥
`2(Rq)→M(Rd×n)

, with M(Rd×n) the

space of d× n real-valued matrices equipped with the operator norm.

Algorithm 2: cERM (T , πroll, c, w)

Data: T =
{
{ϕπroll

t (ξi)}T−1
t=0

}m
i=1

, policy πroll ∈ Π,

constraint c > 0, weight w ∈ [0, 1)
1 return the solution to:

minimizeπ̄∈Π
1
m

∑m
i=1 `πroll

(ξi; π̄, π?) (4.2a)

subject to 1
m

∑m
i=1 `πroll

(ξi; π̄, πroll) 6 c, (4.2b)
1

1−w [(1− α)πroll + απ̄ − wπ?] ∈ SΨ. (4.2c)

IGS-Constrained Behavior Cloning.
We first analyze a single epoch version
of Algorithm 1, which reduces to Be-
havior Cloning (BC) subject to inter-
polating the expert policy on the train-
ing data (constraint (4.2b)) and induc-
ing a Ψ-IGS closed-loop system (con-
straint (4.2c)). Our analysis is summa-
rized in the following theorem, which
bounds the closed-loop imitation loss.

Theorem 4.3 (IGS-constrained BC) Suppose that Assumption 4.1 and Assumption 4.2 hold. Set
α = E = 1 in Algorithm 1. Suppose that m satisfies:

m > Ω(1)qζ
2
aB2

0T
2
(

1− 1
a1

)
max{BgBθL∂2π, L∆}2.

With probability at least 1− e−q over the randomness of Algorithm 1, we have that:

Eξ∼D`π1(ξ;π1, π?) 6 O(1)γ
1
a ζ

b
aa1B

b
a1
0 T

(
1− 1

a1

)(
1+

b
a1

)
L∆ max{BgBθL∂2π, L∆}

b
a1

( q
m

) b
2a1 .

Theorem 4.3 shows that the imitation loss for IGS-constrained BC decays asO
(
T 2(1−1/a1)( qm)b/2a1

)
.

We discuss implications on sample-complexity after analyzing the general setting.

IGS-CMILe. Next we show that if the mixing parameter α and number of episodes E are cho-
sen appropriately with respect to the Ψ-IGS parameters of the underlying expert system, sample-
complexity guarantees similar to those in the IGS-constrained BC setting can be obtained. The key
to ensuring that guarantees can be bootstrapped across epochs is the combination of a trust-region
constraint (4.2b) and IGS-stability constraints (4.2c) on the intermediate policies.

Theorem 4.4 (IGS-CMILe) Suppose that Assumption 4.1 and Assumption 4.2 hold, and that:

m > Ω(1)E(q ∨ logE)ζ
2
aB2

0T
2
(

1− 1
a1

)
max{BgBθL∂2π, L∆}2.

Suppose further that for k ∈ {1, ..., E − 2}, we have:

ck 6 O(1)ζ
1
aB0T

1− 1
a1 max{BgBθL∂2π, L∆}

√
E(q ∨ logE)

m
,

that E divides m, E > 1
α log

(
1
α

)
, and α 6 min

{
1
2 ,

1
L∆γ1/aT 1−1/a1

}
. Then with probability at

least 1− e−q over the randomness of Algorithm 1, Algorithm 1 is feasible for all epochs, and:

Eξ∼D`πE (ξ;πE , π?) 6 O(1)ζ
b
aa1 γ

(
1− b

2

a2
1

)
1
aB

b
a1
0 T

1− 1
a1L

1− b
2

a2
1

∆

×max{BgBθL∂2π, L∆}
b
a1E

1+
b

2a1

(
q ∨ logE

m

) b2

2a2
1
.
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Theorem 4.4 states that if the mixing parameter α and number of episodes E are set according
to the underlying IGS-stability parameters of the expert system then the imitation loss of the final
policy πE scales as Õ

(
T (1−1/a1)(2+b/2a1)( qm)b

2/2a2
1
)
.

Sublinear rates. From the above discussion, we can delineate classes of systems for which im-
itation loss bounds are sublinear in the task horizon T . Using that b > 1, we see that IGS-
constrained behavior cloning requires m & T 2a1(1−1/a2

1)/ε2a1 trajectories to achieve ε-bounded
imitation loss: hence, if a1 ∈ [1, 1

4(1 +
√

17) ≈ 1.28), this sample-complexity bound scales sub-
linearly in T . A similar analysis shows that CMILe achieves sublinear scaling in T whenever
a1 ∈ [1, 1

8(3 +
√

41) ≈ 1.175). Finally, when a system is contracting, a = a1 = b = 1 (Prop. 3.4),
and hence the imitation-loss bounds for both IGS-constrainted BC and CMILe reduce to Õ

(√ q
m

)
.

Necessity of stability constraints. We illustrate the necessity of imposing stability constraints to
derive high probability sub-exponential in T bounds on the imitation error. Consider the LTI system
xt+1 = Axt+ut,with expert π?(x) = −Axt, andA = diag(2, 2, 0, ..., 0).Observe that ϕπ?t (ξ) = 0
for all t > 1 and ξ ∈ Rn. Hence, for any m initial conditions ξ1, ..., ξm, all the informative data we
will see from the expert is {(ξi, yi := π?(ξi))}mi=1.

Let m0 be large enough so that (1 − 1/m)m > 1/(2e) for all m > m0 (such an m0 exists
since limm→∞(1 − 1/m)m = 1/e), and fix any m > m0. Consider D defined as Pξ∼D(ξ =
e1) = 1 − 1/m and Pξ∼D(ξ = e2) = 1/m, where ei ∈ Rn is the i-th standard basis vector. Let
Em :=

⋂m
i=1{ξi = e1}, and observe that P(Em) = (1 − 1/m)m > 1/(2e). We will consider

optimization over the compact convex policy class Π = {x 7→ Kx : K ∈ Rn×n, ‖K‖F 6 2
√

2}
which contains π?. Note that Assumptions 4.1 and 4.2 hold for the closed-loop expert dynamics
and policy class. The ERM problem is minK∈Rn×n:‖K‖F62

√
2

1
m

∑m
i=1‖Kξi − yi‖2. It is easy to

check that on Em (a constant probability event), K̂ = −2e1e
T
1 is an interpolating solution of this

ERM problem. Let π̂(x) = K̂x. Since ϕπ̂t (e2) = 2te2, a straightforward computation shows
that Eξ∼D`π̂(ξ; π̂, π?) > 4(2T−1)

m = Ω(2T /m). This illustrates that under our assumptions, sub-
exponential bounds are impossible without enforcing stability constraints.

5. Experiments

In our experiments, we implement neural network training by combining the haikuNN library (Hen-
nigan et al., 2020) with optax (Hessel et al., 2020) in jax (Bradbury et al., 2018).

Tuneable Ψ-IGS System. We consider the dynamical system in R10:

xt+1 = xt − ηxt
|xt|p

1 + |xt|p
+

η

1 + |xt|p
(h(xt) + ut), η = 0.3. (5.1)

All arithmetic operations in (5.1) are element-wise. We set h : R10 → R10 to be a randomly
initialized two layer MLP with zero biases, hidden width 32, and tanh activations. The expert policy
is set to be π? = −h, so that the expert’s closed-loop dynamics are given by xt+1 = xt−ηxt |xt|

p

1+|xt|p .
From Proposition 3.5, the incremental stability of the closed-loop system degrades as p increases.

In this experiment, we vary p ∈ {1, ..., 5} to see the effect of p on the final task goal error
and imitation loss. We compare four different algorithms, and investigate the inclusion of IGS
constraints (4.2c). BC is standard behavior cloning. CMILe is Algorithm 1, with hard constraints
replaced by soft constraints in the cost. CMILe+Agg is CMILe, except that at epoch k, the data
from previous epochs j ∈ {0, ..., k − 1} is also used in training. DAgger is the imitation learning
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p BC+IGS BC CMILe+IGS CMILe
1 0.149± 0.020 0.335± 0.073 0.167± 0.013 0.199± 0.047
2 0.454± 0.032 0.782± 0.158 0.510± 0.018 0.692± 0.026
3 0.829± 0.131 1.128± 0.118 0.852± 0.057 1.099± 0.046
4 1.220± 0.176 1.737± 0.126 1.041± 0.045 1.412± 0.052
5 1.899± 0.160 2.067± 0.214 1.236± 0.035 1.535± 0.042

Table 1: Final ‖xexpertT − xILT ‖2 of BC and CMILe with and without IGS constraints on (5.1).

algorithm from Ross et al. (2011). For all algorithms, we fix the number of trajectoriesm from (5.1)
to be m = 250. The horizon length is T = 100. The distribution D over initial condition is set as
N(0, I). We set the policy class Π to be two layer MLPs with hidden width 64 and tanh activations.
Each algorithm minimizes the imitation loss using 300 epochs of Adam with learning rate 0.01 and
batch size 512. For all algorithms except BC, we use E = 25 epochs with α = 0.15 (in DAgger’s
notation, we set βk = 0.85k), resulting in 10 trajectories per epoch.

In Table 1, we track the difference in norm ‖xexpert
T − xIL

T ‖2 between the expert’s (xexpert
T )

and the IL algorithm’s final state (xIL
T ), both seeded from the same initial conditions. The ta-

ble entries are computed by rolling out 500 test trajectories and computing the median quan-
tity over the test trajectories. Each algorithm is repeated for 50 trials, and the median quantity
±max(80th percentile − median,median − 20th percentile) (over the 50 trials) is shown. In Ta-
ble 1, we see that as p decreases, the goal deviation error decreases, showing that the task becomes
easier, as predicted by our main results.4 Finally, we note that while the same trends hold for both
vanilla and IGS-constrained versions of BC and CMILe, the quantitative performance degrades,
showing that stability constraints reduce sample-complexity by trimming the hypothesis space.

Unitree Laikago. We now study IL on the Unitree Laikago robot, an 18-dof quadruped with 3-dof
of actuation per leg. We use PyBullet (Coumans and Bai, 2016–2021) for our simulations. The goal
of this experiment is to demonstrate, much like for the previous tuneable family of Ψ-IGS systems,
that increasing the stability of the underlying closed-loop expert decreases the sample-complexity
of imitation learning. We do this qualitatively by studying a sideways walking task where the robot
tracks a constant sideways linear velocity: the larger the desired linear velocity, the more unstable
the resulting expert. Our expert controller is a model-based predictive controller using a simplified
center-of-mass dynamics as described in Di Carlo et al. (2018). The stance and swing legs are
controlled separately, and we restrict our imitation learning to the stance leg controller, as it is
significantly more complex than the swing leg controller.5 Furthermore, instead of randomizing
over initial conditions, we inject randomization into the environment by subjecting the Laikago
to a sequence of random push forces throughout the entire trajectory. We compare BC, CMILe,
CMILe+Agg (omitting DAgger for space reasons). We set the horizon length to T = 1000. We
featurized the robot state into a 14-dimensional feature vector, and the output of the policy is a
12-dimensional vector (x, y, z contact forces for each of the 4 legs). We used a policy class of two
layer MLPs of hidden width 64 with ReLU activations. For training, we ran 500 epochs of Adam
with a batch size of 512 and step size of 0.001. To assess the effect of the number of samples on

4. This trend is reflected in all the imitation learning algorithms that we evaluated, but in the interest of space, we only
show results for BC and CMILe and IGS-constrained versions thereof – qualitatively similar results are obtained for
the other algorithms, and can be found in the full paper (Tu et al., 2021)

5. More details about the expert controller can be found in the full paper.
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Figure 1: IL on a sideways walking task. The top, middle, and bottom rows show the deviation error
|yexpT − yILT |, the survival times, and the imitation loss 1

T Eξ∼D`πE
(ξ;πE , π?) of the various algorithms.

IL, we vary the number of rollouts per epoch S ∈ {1, ..., 5}. For CMILe and CMILe+Agg, we fix
α = 0.3 and E = 12. We provide BC with S × E total trajectories.

Figure 1 shows the result of our experiments. In the top row, we plot the deviation |yexp
T − yIL

T |
between the expert’s (yexp

T ) and the IL algorithm’s final y position (yIL
T ). We observe that as the

target linear speed decreases, the deviation between the expert and IL algorithms also decreases;
this qualitative trend is consistent with Theorem 4.3 and Theorem 4.4.6 In the middle row, we plot
the survival times for each of the algorithms, which is the number of simulation steps (out of 1000)
that the robot executes before a termination criterion triggers when the robot is about to fall. We
see that for all algorithms, by decreasing the sideways linear velocity, the resulting learned policy
is able to avoid falling more. In the bottom row, we plot the average closed-loop imitation loss
1
T Eξ∼D`πE (ξ;πE , π?). We see that for BC, the imitation loss shows improvement with increased
samples for linear speed of 0.2, but none for the larger linear speeds of 0.3, 0.4. This trend is less
apparent for CMILe and CMILe+Agg, but is reflected in the deviation error |yexp

T − yIL
T |.

6. Conclusions & Future Work

We showed that IGS-constrained IL algorithms allow for a granular connection between the stability
properties of an underlying expert system and the resulting sample-complexity of an IL task. Our
future work will focus on theoretically characterizing why CMILe and DAgger significantly outper-
form BC in our experiments. We will also look to apply the general framework for reasoning about
learning over trajectories in continuous state and action spaces that we developed to other settings.

6. Note that the y positions are computed by subjecting the Laikago to the same sequence of random force pushes for
both the expert and IL algorithm.
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