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Abstract
Formal synthesis of controllers for stochastic control systems with unknown models is a challeng-
ing problem. In this paper, we focus on safety controller synthesis for nonlinear stochastic control
systems. The approach consists of a learning step followed by a controller synthesis scheme us-
ing control barrier functions. In the learning phase, we employ Gaussian processes (GP) to learn
models of unknown stochastic control systems in the presence of both process and measurement
noises. In the controller synthesis phase, we compute control barrier functions together with their
corresponding controllers based on the learned GP and quantify lower bounds on the probabilities
of safety satisfaction for the original unknown systems equipped with the synthesized controllers.
Finally, the effectiveness of the proposed approach is illustrated on a room temperature control and
a vehicle lane-keeping example.
Keywords: Synthesis, safety controllers, stochastic systems with unknown models, Gaussian pro-
cesses, control barrier functions

1. Introduction

Designing safety controllers for safety-critical applications is an important problem. Here, safety
is considered in the sense of preventing the system from reaching a given unsafe set. The general
approaches for synthesizing a safety controller require accurate mathematical models of the system
dynamics. However, closed-form models derived from first principles for many real-world systems
are complex or even not available, and hence one cannot use model-based techniques for such sys-
tems. Hence, the design of safety controllers is much more challenging for systems with unknown
or partially known models.

Approaches based on Barrier functions (Prajna et al. (2007)) have been promising for syn-
thesizing safety controllers. These discretization-free approaches usually formulate the search for
barrier functions as sum-of-squares (SOS) optimization problems which are computed using exist-
ing semidefinite programming (SDP) solvers (Ames et al. (2019); Borrmann et al. (2015)). Barrier
functions can also be leveraged to synthesize controllers for complex logic specifications (Yang
et al. (2020); Li and Belta (2019)). Unfortunately, approaches based on barrier functions require a
precise mathematical model of the system which may not be available.
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Recently, Gaussian processes (GPs) have emerged as a learning-based technique for modelling
unknown dynamical systems which allow for a quantification of uncertainty for the learned model
(Williams and Rasmussen (2006)). The uncertainty quantification provides out-of-sample perfor-
mance guarantees, making the GPs attractive tools in control applications like adaptive control
(Chowdhary et al. (2014)), feedback-linearization (Umlauft et al. (2017)), and policy through rein-
forcement learning for robotic applications (Akametalu et al. (2014)). An accurate GP regression
model can often be constructed using only a relatively small number of training samples.This prop-
erty makes GPs more desirable with respect to other data-driven approaches such as those based
on scenario convex problems (SCP) (Calafiore and Campi (2006)), which require large numbers of
samples for providing out-of-sample performance guarantees (Salamati et al. (2021); Berger et al.
(2021)).

Related Work: Recently, there have been some results to combine GPs with control barrier
functions for safety controller synthesis of unknown nonlinear control-affine systems. The work
in Jagtap et al. (2020a) uses GPs to model unknown continuous-time control-affine dynamics and
then uses the learned GPs to compute control barrier certificates together with their corresponding
controllers satisfying safety specifications. The work in Castañeda et al. (2021) uses GP regression
to learn model uncertainties for control-affine systems with known nominal dynamics. The GPs are
then used to adjust control barrier certificates, earlier derived from the nominal dynamics. Another
approach has been proposed to combine GP learning with abstraction-based techniques for partially
known stochastic systems (Jackson et al. (2020, 2021)). However, none of these existing approaches
can synthesize safety controllers for fully unknown stochastic systems without discretizing state
sets, while considering both process and measurement noises simultaneously.

In this paper, we provide a scheme to synthesize safety controllers for nonlinear stochastic
control systems with unknown dynamics. First, we use the Gaussian process regression to learn
a model of the unknown stochastic system with a probabilistic guarantee on the model accuracy.
Specifically, we use the improved Gaussian process upper confidence bound (IGP-UCB) (Chowd-
hury and Gopalan (2017)) for establishing the probabilistic closeness between the learned GP and
the original unknown model. Then, we construct a control barrier certificate together with the cor-
responding controller using the Counterexample Guided Inductive Synthesis framework (CEGIS)
(Ravanbakhsh and Sankaranarayanan (2015)). The synthesized controller is shown to satisfy the
specified safety specification on the original system with an a priori chosen confidence bound. Our
approach is one of the first attempts that accounts for both process and observation noises in the
controller synthesis process for unknown stochastic systems. We use a room temperature control
example and a vehicle lane-keeping scenario to illustrate the effectiveness of the proposed results.

2. Preliminaries and Problem Definition

2.1. Preliminaries

We consider the probability space (Ω,FΩ,P), where Ω is the sample space, FΩ is a sigma-algebra
consisting of subsets of Ω as events, and P is the probability measure that assigns probability to
those events. Random variables X are assumed to be measurable functions of form X : (Ω,FΩ)→
(SX ,FX). Any random variable induces a probability measure on (SX ,FX) as Prob{A} =
PΩ{X−1(A)} for any A ∈ FX .
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2.2. Notations

We denote the set of positive integers by N := {1, 2, 3, ...} and the set of non-negative integers
by N0 := {0, 1, 2, ...}. The set of real, positive real, and non-negative real numbers are denoted
by R, R>0, and R≥0, respectively. We use Rn to denote an n-dimensional Euclidean space and
the space of real matrices with n rows and m columns is denoted by Rn×m. The (n-dimensional)
multivariate normal distribution is denoted by N (µ,C) with mean vector µ ∈ Rn and covariance
matrix C ∈ Rn×n. We use the notation

⋂n
i=1Mi, for the conjunction of events M1, . . .Mn.

A Hilbert space of square integrable functions which includes functions of the form h(x) =∑
i αik(x, xi), where αi ∈ R, x, xi ∈ X ⊂ Rn, is called a reproducing kernel Hilbert space

(RKHS) if k : X × X 7→ R≥0 is a symmetric positive definite function called kernel. The cor-
responding induced RKHS norm with respect to a kernel k is denoted by ‖h‖k. A more rigorous
discussion on RKHS norms can be found in Paulsen and Raghupathi (2016).

A random sequence εr := {εr(t) : Ω 7→ W, t ∈ N0} is conditionally R-sub-Gaussian for a
fixed constant R ∈ R≥0 if it satisfies

∀t ∈ N0,∀b ∈ R, E[ebεr(t) | Ft−1] ≤ e

(
b2R2

2

)
, (1)

where Ft−1 is the sigma-algebra generated by the random variables {εr(0), εr(1), . . . , εr(t− 1)} .
We use εr ∼ subG(R) to denote such a random sequence.

2.3. Discrete-time stochastic control systems

We consider discrete-time stochastic control systems as the underlying models for unknown sys-
tems.

Definition 1 A discrete-time stochastic control system (dt-SCS) is characterized by a tuple S =
(X,U, ε, f), where

• X ⊆ Rn is a Borel space as the state space of the system. We denote by (X,B(X)) the
measurable state space where B(X) is the Borel sigma-algebra on the state space.

• U ⊆ Rm is a Borel space as input space of the system.

• ε = [ε1, . . . , εn] is a vector of n independent σ-sub-Gaussian random sequences, i.e. εi ∼
subG(σ), ∀i ∈ {1, . . . , n}, σ ∈ R≥0.

• Map f :X×U 7→X is a measurable function characterizing the state evolution of the system.

For a given initial state x(0) = x0 ∈ X0 ⊂ X and input sequence {u(t) : Ω → U, t ∈ N0}, the
state evolution is characterized by the following difference equation:

x(t+ 1) = f(x(t), u(t)) + ε(t), t ∈ N0. (2)

We assume that the safety of a dt-SCS S is enforced by a stationary policy u : X → U mapping at
any time t the current state x(t) to an input u(t). For the main problem formulation, we consider
the following assumptions.

Assumption 1 For a dt-SCS S = (X,U, f, ε), the map f : X × U 7→ X is unknown.
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We also assume that the map f in S has low complexity, as measured under the reproducing kernel
Hilbert space (RKHS) norm (Paulsen and Raghupathi (2016)) as follows:

Assumption 2 For a dt-SCS S = (X,U, f, ε), each component of the map f has a bounded RKHS
norm with respect to the kernel k, i.e. ∃Bj ∈ R≥0 s.t. ‖fj‖k ≤ Bj for all j ∈ {1, . . . , n}.

The RKHS has a property of being dense in the space of continuous functions for positive definite
kernels over a compact domain X . This means that the kernel can arbitrarily approximate any
continuous function over the compact domain X (Seeger et al. (2008)). Assumption 2 allows us to
use Gaussian process regression to model f . Next, we have some assumptions on the availability of
the training data-set.

Assumption 3 For a dt-SCS S = (X,U, f, ε), we have access to measurements for x(t) ∈ X ,
u(t) ∈ U and to the noisy observations y(t) = x(t + 1) + w(t) = f(x(t), u(t)) + ε(t) + w(t),
∀t ∈ N0, where w = [w1, . . . , wn], is a vector of n independent θ-sub-Gaussian random sequences
representing the measurement noise (independent of ε), i.e. wi∼subG(θ), i ∈ {1, . . . , n}, θ ∈ R≥0.

In practice, measurements f(x(t), u(t)) can be acquired by simulating or running the system S
from multiple initial conditions. Then, the observations y(t) can be rewritten as

y(t) = f(x(t), u(t)) + ν(t), (3)

t ∈ N0, where ν = [ν1, . . . , νn] and νi ∼ subG(R) with R2 = θ2 + σ2, i ∈ {1, . . . , n}.
The controller synthesis problem investigated in this paper can now be stated as follows:

Problem 1 For a system dt-SCS S satisfying Assumptions 1-3, an initial setX0 ⊂ X , and an unsafe
setXu ⊂ X , synthesize a controller that provides a lower bound on the probability that the solution
process of S starting in X0 does not reach Xu within a bounded time horizon.

3. Gaussian Process Modelling

A Gaussian process (GP) is a non-parametric probabilistic framework belonging to the kernel meth-
ods family in machine learning (Bishop (2006)). It utilizes the concept of a prior probability distri-
bution over discrete random variables and generalizes them to an infinite space of continuous func-
tions. Its most important application is the GP regression, which is used to model unknown nonlin-
ear functions. A GP with a domain Xin is completely specified by its mean function m : Xin 7→ R
and covariance function k : Xin × Xin 7→ R written as GP(m, k). We denote by f ∼ GP(m, k)
the approximation of function f by a GP G(m, k). The a-priori distribution (i.e. before training
the GP) corresponding to f ∼ GP(m, k) at any point x ∈ Xin is Gaussian with the mean and co-
variance given by m(x) and k(x, x), respectively. The covariance function (also known as kernel)
k(x, x′) is a similarity measure between any two inputs x, x′ ∈ Xin. The kernel choice is largely
problem-dependent with the linear, squared-exponential, and Matérn kernels being most commonly
utilized ones. It is common to take the mean function m to be a zero-valued function, which we
also assume here without loss of generality.

The GP approximation for an n-dimensional function f : X × U → X , where X ⊂ Rn, U ⊂
Rm, can be obtained by modeling each component fj by n independent GPs i.e.,

fj ∼ GPj(0, kj), (4)
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where the kernel is denoted by kj : (X × U)× (X × U) 7→ R, j ∈ {1, 2, . . . , n}, and 0 represents
zero-valued function.

Suppose we collect N measurements {y(1), . . . , y(N)} and {(x, u)(1), . . . , (x, u)(N)}, where
y(i) = f((x, u)(i)) + ν(i), i ∈ {1, 2, . . . , N}, (as in Assumption 3); then the posterior distribution
corresponding to fj(x, u), for j ∈ {1, 2, . . . , n}, at an arbitrary state x ∈ X and input u ∈ U is
computed as a normal distribution N (µj(x, u), ρ2

j (x, u)) with the mean and covariance given by

µj(x, u) = k
T
j (Kj + (1 + 2/N)IN )−1yj ,

ρ2
j (x, u) = kj((x, u), (x, u))− kTj (Kj+(1+2/N)IN )−1kj ,

(5)

respectively, where IN is the identity matrix, kj =[kj((x, u)(1), (x, u)), . . . , kj((x, u)(N), (x, u))]T ∈
RN , yj = [y

(1)
j , . . . , y

(N)
j ]T ∈ RN , and

Kj =

kj((x, u)(1), (x, u)(1)) . . . kj((x, u)(1), (x, u)(N))
...

. . .
...

kj((x, u)(N), (x, u)(1)) . . . kj((x, u)(N), (x, u)(N))

 ∈ RN×N .

Now, the function f can be approximated by augmenting the mean and covariance functions in
(5) from each GP as follows:

µ(x, u) := [µ1(x, u), µ2(x, u), . . . , µn(x, u)]T

ρ2(x, u) := [ρ2
1(x, u), ρ2

2(x, u), . . . , ρ2
n(x, u)]T .

(6)

The following lemma shows that we can quantify the upper bound on the difference between
the true value f(x, u) and the inferred mean µ(x, u) with a probability lower bound.

Lemma 2 Consider a dt-SCS S = (X,U, f, ε) satisfying Assumptions 1-3, and a learned GP for
f using N training points, having the posterior mean and covariance functions as in (5). Then, the
following inclusion holds true with a confidence of at least (1− δ)n:

f(x, u) ∈ {µ(x, u) + d | d ∈ D},∀x ∈ X,∀u ∈ U (7)

where,D :={[d1, . . . , dn]T |dj ∈ [−βj ρ̄j , βj ρ̄j ], j ∈ {1, . . . , n}}, βj =Bj+R
√

2
(
αj+1+log(1

δ )
)
,

and ρ̄j2(x, u) = maxx∈X,u∈U ρ
2
j (x, u).

The proof is similar to that of (Umlauft et al., 2018, Lemma 2). It follows from (Chowdhury and
Gopalan, 2017, Theorem 2) by extending the scalar result that µj(x, u)− βjρj(x, u) ≤ fj(x, u) ≤
µj(x, u)+βjρj(x, u),∀x ∈ X,∀u ∈ U holds with a confidence of at least 1−δ to an n-dimensional
state-set.

Remark 3 Computing the information-theoretic term αj in the expression of βj above, which
quantifies the mutual information gain between the original function and the finite data samples, is
an NP-hard problem in general. For commonly used kernels, e.g. the squared-exponential or the
linear kernel, αj grows sub-linearly with the number of data samples N , as detailed in Srinivas
et al. (2009). In our case-study, we circumvent this problem by directly approximating d in (7) using
a Monte-Carlo approach (details in Section 5).
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4. Control Barrier Functions

Here, we introduce a notion of control barrier functions which is used to find a control policy that
yields a lower bound on the probability that a discrete time stochastic system avoids an unsafe set
over a bounded time horizon, as formalized in the next lemma borrowed from Jagtap et al. (2020b).

Lemma 4 Consider a dt-SCS S = (X,U, f, ε) as in Definition 1 and sets X0, Xu ⊆ X as the
initial and unsafe sets, respectively. Suppose there exists a function B : X 7→ R≥0, and constants
c ∈ R, λ ∈ R≥0, γ ∈ R>0, with γ > λ, such that

B(x) ≤ λ, ∀x ∈ X0, (8)

B(x) > γ, ∀x ∈ Xu, (9)

and ∀x ∈ X, ∃u ∈ U, such that

E[B(x(t+ 1)) | x(t) = x, u(t) = u]−B(x(t)) ≤ c. (10)

Then, under a control policy u associated with B (cf. existential quantifier in condition (10)), the
lower bound on the probability that the solution process of S starting from any initial state xo ∈ X0

does not reach Xu in a bounded time horizon [0, T ] is given by

P{x(t) 6∈ Xu,∀t ∈ [0, T ] ⊂ N0 | x(0) = x0} ≥ 1− λ+ max(0, c)T

γ
. (11)

Remark 5 Condition (10) in Lemma 4 implicitly gives rise to a (stationary) control policy u :
X 7→ U according to the existential quantifier on the input for any state x ∈ X .

For a dt-SCS with unknown map f , we derive a lower bound on the probability that the solution
process does not enter an unsafe set in a bounded time horizon via a learned GP using data as
described in Section 3.

Theorem 6 Consider a dt-SCS S = (X,U, f, ε) satisfying Assumptions 1-3, a learned Gaussian
process model with the posterior mean µ and covariance ρ2(·) as given in (6), and the result in
Lemma 2. Let X0, Xu ⊂ X represent the initial and unsafe sets for S, respectively. Suppose there
exists a function B : X 7→ R≥0, constants c ∈ R, λ ∈ R≥0, γ ∈ R>0, with γ > λ, such that

B(x) ≤ λ, ∀x ∈ X0, (12)

B(x) > γ, ∀x ∈ Xu, (13)

and ∀x ∈ X, ∃u ∈ U such that ∀d ∈ D,

E[B(µ(x(t), u(t)) + d+ ε(t)) | x(t) = x, u(t) = u]−B(x(t)) ≤ c, (14)

where D is the set defined in (7). Then, under a control policy u associated with B (cf. existential
quantifier in (14)), the following inequality, which provides the lower bound on the probability that
the solution process of S starting from any initial state xo ∈ X0 does not reachXu within a bounded
time horizon [0, T ], holds with a confidence of at least (1− δ)n

P{x(t) 6∈ Xu,∀t ∈ [0, T ] ⊂ N0 | x(0) = x0} ≥ (1− λ+ max(0, c)T

γ
). (15)
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Proof From the result in Lemma 2, we have that the inclusion f(x, u) ∈ {µ(x, u) + d | d ∈
D},∀x ∈ X,∀u ∈ U , holds with a confidence of at least (1− δ)n. Together with (14), this implies
that the condition:
∀x ∈ X,∃u ∈ U such that,

E[B(f(x(t), u(t)) + ε(t)) | x(t) = x, u(t) = u]−B(x(t)) ≤ c, (16)

holds true with a confidence of at least (1− δ)n.
It then follows from Lemma 4 that the inequality

P{x(t) 6∈ Xu,∀t ∈ [0, T ] ⊂ N0 | x(0) = x0} ≥ (1− λ+ max(0, c)T

γ
). (17)

holds with a confidence of at least (1− δ)n.

4.1. Calculation of barrier certificate

The computation of a control barrier function (if existing) for a dt-SCS is a difficult task, in gen-
eral. However, if the input set of a dt-SCS is assumed to be finite, i.e. U = {u1, u2, . . . , uk},
where ui ∈ Rm, i ∈ {1, 2, . . . , k}, then the search for a parametric control barrier function and its
associated control policy becomes tractable. We employ the Counterexample Guided Inductive Syn-
thesis framework (CEGIS) which has recently become popular for the synthesis of barrier functions
(Solar-Lezama et al. (2006); Jagtap et al. (2020a)). The following lemma, adapted from (Jagtap
et al., 2020a, Lemma 4.4), provides feasibility conditions that, if satisfied, guarantee the existence
of a control barrier function for the unknown system using its learned GP.

Lemma 7 Consider a dt-SCS S = (X,U, f, ε) satisfying Assumptions 1-3, whereU={u1, . . . , uk}
with ui ∈ Rm, ∀i ∈ {1, 2, . . . , k}. LetXo, Xu ⊂ X . Suppose there exists a functionB : X 7→ R≥0,
and constants c ∈ R, λ ∈ R>0, γ ∈ R≥0, where γ > λ, such that the following expression holds

∧
x∈X0

B(x)≤λ
∧
x∈Xu

B(x)>γ
∧
x∈X

(∨
u∈U

(∧
d∈D

E[B(µ(x, u)+d+ ε) | x, u]−B(x)≤c

))
. (18)

Then, B satisfies the conditions in Theorem 6 and any u : X 7→ U defined as “for any x ∈ X pick
u ∈ U satisfying E[B(µ(x, u) + d+ ε)]−B(x) ≤ c for an arbitrary d ∈ D” is the corresponding
control policy.

To employ the CEGIS framework for the computation ofB(x) as in Lemma 7, one can consider
a function of the parametric form B(a, x) =

∑p
i=1 aibi(x) with user-defined basis functions bi(x)

and unknown coefficients ai ∈ R, i ∈ {1, 2, . . . , p}. Now, one can re-write the feasibility expression
from Lemma 7 based on coefficients ai.

The coefficients ai can be efficiently found using Satisfiability Modulo Theories (SMT) solvers
(De Moura and Bjørner (2008); Gao et al. (2013)). Detailed discussions on the CEGIS approach
can be found in Jagtap et al. (2020b).

7
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Figure 1: Room temperature control

5. Case Study

5.1. Room temperature control

The safety controller synthesis approach was tested on a model, taken from Meyer et al. (2017), for
temperature regulation of a circular building of three connected rooms. We define the dt-SCS for this
model as S = (X,U, f, ε), where X = [0, 45]3, U = {0, 0.6}3, and for each x = [x1, x2, x3] ∈ X ,
and u = [u1, u2, u3] ∈ U ,

fi(x, u) := xi + α(xi+1 + xi−1 − 2xi) + β(Te − xi) + η(Th − xi)ui, (19)

i ∈ {1, 2, 3}, where fi represents the ith component of f , xi represents the temperature (in degrees
Celsius) of the ith room, xi+1 and xi−1 represent the temperatures of the neighbouring rooms (with
x0 = x3 and x4 = x1), ui represents the heater input of the ith room. The finite set U corre-
sponds to the heater off and on configurations respectively. The constant Th = 50◦C is the heater
temperature, Te = −1◦C is the ambient temperature, and constants α = 0.045, β = 0.0045, and
η = 0.09 are heat exchange coefficients. The process noise is a vector ε = [ε1, ε2, ε3], where
εi ∼ subG(0.01), i ∈ {1, 2, 3}.

For the safety specification, we consider an initial state set X0 = [21, 22]3, and an unsafe re-
gion Xu = [0, 20]3 ∪ [23, 45]3. For the formal synthesis of a safety controller, first, we model
the unknown maps fi, i ∈ {1, 2, 3}, by training three independent GPs. For each GP fi ∼
GP i(0, ki), the kernel ki is the squared-exponential function (Srinivas et al. (2009)), defined as
ki((x, u), (x′, u′)) = σ2

fi
exp (−‖(x,u)−(x′,u′)‖2

2σ2
li

), where σfi and σli are the hyper-parameters of the

kernel. We assume a measurement noise sequence wi ∼ subG(1.01). We collect N = 200 samples
of x, u, and yi = fi(x, u) + εi + wi = fi(x, u) + νi (as in Assumption 3), where νi ∼ subG(R),
R =

√
0.012 + 1.00712, i ∈ {1, 2, 3}, by simulating the system from multiple initial conditions

and inputs chosen randomly from a uniform distribution. Using MATLAB’s fitrgp module, we
obtain the hyper-parameters of the kernel functions, resulting in σ2

f1
= 560.97, σ2

f2
= 560.98,

σ2
f3

= 560.95, σl1 = 1963.70, σl2 = 1963.71, and σl3 = 1963.66. As mentioned in Remark 3,
computing the information-theoretic term α is a hard problem in general. Thus, we employ Monte-
Carlo approach (Asmussen and Glynn (2007)) to obtain a probability bound on the accuracy of the

8
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learned GP provided in Lemma 2. For a fixed error bound βiρ̄i = 0.01 (i.e. D = [−0.01, 0.01]3) on
the distance between the actual map fi(x, u) and the learned map µi(x, u), we obtain a probability
interval for (7) as [0.9987, 0.9999] with a confidence of 1−10−10 using 106 realizations. The lower
bound (1− δ)3 in Lemma 2 can thus be chosen as 0.9987.

In the next step, a polynomial-type control barrier function is obtained using the CEGIS ap-
proach as described in Section 4.1. The barrier function is computed as

B(x) = 9.506219x21 + 11.369872x22 + 11.847413x23 − 8.073953x1x2 − 9.339144x1x3

+13.856766x2x3 − 35.793193x1 − 16.10336x2 − 10.319252x3 + 662.86428,
(20)

resulting in λ = 0.5, γ = 11, and c = −0.55. The corresponding control policy is chosen as

u(x) = arg min
u∈U

||u||, subject to: E[B(µ(x, u)+d+ ε)]−B(x)≤c, (21)

for an arbitrarily chosen d ∈ [−0.01, 0.01]3. For a bounded time horizon [0, T ], where T = 5s, this
results in a probability lower bound of 0.9545 in (15) that holds with a confidence of at least 0.9987.
Figure 1(a) shows a few realizations of the evolution of temperature of the three rooms under this
policy and Figure 1(b) shows the satisfaction of the last condition of the barrier certificate for the
learned model.

5.2. Vehicle model

Here, we consider a vehicle lane keeping example in which the constant velocity kinematic single-
track model of a vehicle (BMW 320i) is used. The discrete-time version of the dynamics (Jag-
tap et al. (2020b)) is formulated as a dt-SCS S = (X,U, f, ε) where X = [0, 50] × [−6, 6] ×
[−0.05, 0.05]× [−0.1, 0.1], U = {−0.5, 0, 0.5}, and for each x = [x1, x2, x3, x4] ∈ X , and u ∈ U ,

f1(x, u) := x1 + τsv cos(x4),

f2(x, u) := x2 + τsv sin(x4),

f3(x, u) := x3 + τsu,

f4(x, u) := x4 + τs
v

lwb
. tan(x3).

(22)

States x1 and x2 are the (Cartesian) position coordinates, x2 is the steering angle, and x4 is the
heading angle of the vehicle. The constants in the above equations are sampling time τs = 0.01
s, forward velocity v = 10 m/s, and length of wheel base lwb = 2.578 m. The process noise is
ε = [ε1, ε2, ε3, ε4], where each εi ∼ subG(0.01), i ∈ {1, 2, 3, 4}.

For the safety specification, we consider an initial state set X0 = [0, 5]× [−0.1, 0.1]× [−0.005,
0.005] × [−0.01, 0.01], and an unsafe set Xu = Xu1 ∪ Xu2 where Xu1 = [0, 50] × [−6,−2] ×
[−0.05, 0.05]× [−0.1, 0.1], and Xu2 = [0, 50]× [2, 6]× [−0.05, 0.05]× [−0.1, 0.1].

We model the unknown maps fi, i ∈ {1, 2, 3, 4}, by training four independent GPs. For each GP
fi ∼ GP i(0, ki), the kernel ki is the squared-exponential function (Srinivas et al. (2009)).We collect
N = 500 samples of x, u, and yi = fi(x, u) + εi +wi = fi(x, u) + νi (as in Assumption 3), where
νi ∼ subG(R), R =

√
0.012 + 1.0042, i ∈ {1, 2, 3, 4}, by simulating the system from multiple

initial conditions and inputs chosen randomly from a uniform distribution. As in the previous case
study, we obtain the hyper-parameters of the kernel functions using MATLAB’s fitrgp module,
resulting in σ2

f1
= 55.2606, σ2

f2
= 165.8472, σ2

f3
= 1499.86, σ2

f4
= 0.0423, σl1 = 107.4961,

σl2 = 359.8126, σl3 = 3653.275, and σl4 = 0.1461. Using the Monte-Carlo sampling approach,

9
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(a) Evolution of the position (states x1 and x2) of
the vehicle using the controller in (24)

(b) Third barrier condition as in (10)

Figure 2: Vehicle lane following control

for a fixed error bound βiρ̄i = 0.1 (i.e. D = [−0.1, 0.1]4) on the distance between the actual map
fi(x, u) and the learned map µi(x, u), i ∈ {1, . . . , 4}, we obtain a probability interval for (7) as
[0.9201, 0.9371] with a confidence of 1 − 10−10 using 106 realizations. The lower bound (1 − δ)3

can be thus chosen as 0.9201. In the next step a polynomial control barrier function given below
was obtained using the CEGIS approach as described in Section 4.1:

B(x) = 90.45852x21 + 19166.082475x22 − 53595.4041x23 + 185791.32465x24 − 1879.96065x1x2

− 1896.165937x1x3 − 271.77839x1x4 − 7526.572264x2x3 + 6769.374605x2x4

+ 26855.30431x3x4 − 1744.956593x1 + 22161.708246x2 − 69823.820245x3

+ 2474.137174x4 + 5847.015382,

(23)

resulting in λ = 0.5, γ = 37610, and c = 469.3125. The corresponding control policy is chosen as

u(x) = arg min
u∈U

||u||, subject to: E[B(µ(x, u)+d+ ε)]−B(x)≤c, (24)

for an arbitrarily chosen d ∈ [−0.1, 0.1]4. For a bounded time horizon [0, T ], where T = 4s, this
results in a probability lower bound 0.9501 in (15) that holds with a confidence of at least 0.9201.
Figure 2(a) shows a few realizations of the position of the vehicle under this control policy and
Figure 2(b) shows the last condition of barrier certificate for the learned model.

6. Conclusions

In this work, we proposed a discretization-free approach for formal synthesis of safety controllers
for fully unknown stochastic systems using Gaussian process learning and control barrier certifi-
cates. In the future, we aim to extend this approach to include more complex properties. Also, we
plan on exploring the idea of computation of the barrier certificates using constrained Gaussian pro-
cesses which allows us to combine the learning and the barrier computation steps simultaneously
while preserving the formal guarantees.

10
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