
Proceedings of Machine Learning Research vol 168:1–15, 2022 4th Annual Conference on Learning for Dynamics and Control

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

Cameron R. Wolfe CRW13@RICE.EDU
Department of Computer Science, Rice University, Houston, TX, USA.

Anastasios Kyrillidis ANASTASIOS@RICE.EDU

Department of Computer Science, Rice University, Houston, TX, USA.

Editors: R. Firoozi, N. Mehr, E. Yel, R. Antonova, J. Bohg, M. Schwager, M. Kochenderfer

Abstract
We propose a novel, structured pruning algorithm for neural networks—the iterative, Sparse
Structured Pruning algorithm, dubbed as i-SpaSP. Inspired by ideas from sparse signal recov-
ery, i-SpaSP operates by iteratively identifying a larger set of important parameter groups (e.g.,
filters or neurons) within a network that contribute most to the residual between pruned and dense
network output, then thresholding these groups based on a smaller, pre-defined pruning ratio. For
both two-layer and multi-layer network architectures with ReLU activations, we show the error
induced by pruning with i-SpaSP decays polynomially, where the degree of this polynomial becomes
arbitrarily large based on the sparsity of the dense network’s hidden representations. In our experi-
ments, i-SpaSP is evaluated across a variety of datasets (i.e., MNIST, ImageNet, and XNLI) and
architectures (i.e., feed forward networks, ResNet34, MobileNetV2, and BERT), where it is shown
to discover high-performing sub-networks and improve upon the pruning efficiency of provable
baseline methodologies by several orders of magnitude. Put simply, i-SpaSP is easy to implement
with automatic differentiation, achieves strong empirical results, comes with theoretical convergence
guarantees, and is efficient, thus distinguishing itself as one of the few computationally efficient,
practical, and provable pruning algorithms.
Keywords: Neural Network Pruning, Greedy Selection, Sparse Signal Recovery
Source Code: https://github.com/wolfecameron/i-SpaSP
Appendix: https://arxiv.org/abs/2112.04905

1. Introduction

Background. Neural network pruning has garnered significant recent interest (Frankle and Carbin,
2018; Liu et al., 2018; Li et al., 2016), as obtaining high-performing sub-networks from larger,
dense networks enables a reduction in the computational and memory overhead of neural network
applications (Han et al., 2015a,b). Many popular pruning techniques are based upon empirical
heuristics that work well in practice (Frankle et al., 2019; Luo et al., 2017; He et al., 2017). Generally,
these methodologies introduce some notion of “importance” for network parameters (or groups of
parameters) and eliminate parameters with negligible importance.

The empirical success of pruning methodologies inspired the development of pruning algorithms
with theoretical guarantees (Baykal et al., 2019; Liebenwein et al., 2019; Mussay et al., 2019; Baykal
et al., 2018; Ramanujan et al., 2019). Among such work, greedy forward selection (GFS) (Ye et al.,
2020; Ye et al., 2020)—inspired by the Frank-Wolfe algorithm (Frank et al., 1956)—differentiated
itself as a methodology that performs well in practice and provides theoretical guarantees. However,
GFS is inefficient in comparison to popular pruning heuristics.

© 2022 C.R. Wolfe & A. Kyrillidis.

https://github.com/wolfecameron/i-SpaSP
https://arxiv.org/abs/2112.04905

I-SPASP

This Work. We leverage greedy selection (Needell and Tropp, 2009; Khanna and Kyrillidis, 2018) to
develop a structured pruning algorithm that is provable, practical, and efficient. This algorithm, called
iterative, Sparse Structured Pruning (i-SpaSP), iteratively estimates the most important parameter
groups1 within each network layer, then thresholds this set of parameter groups based on a pre-
defined pruning ratio—a similar procedure to the CoSAMP algorithm for sparse signal recovery
(Needell and Tropp, 2009). Theoretically, we show for two and multi-layer networks that i) the
output residual between pruned and dense networks decays polynomially with respect to the size
of the pruned network and ii) the order of this polynomial increases as the dense network’s hidden
representations become more sparse.2 In experiments, we show that i-SpaSP is capable of discovering
high-performing sub-networks across numerous different models (i.e., two-layer networks, ResNet34,
MobileNetV2, and BERT) and datasets (i.e., MNIST, ImageNet, and XNLI). i-SpaSP is simple to
implement and significantly improves upon the runtime of GFS variants.

2. Preliminaries

Notation. Vectors and scalars are denoted with lower-case letters. Matrices and certain constants are
denoted with upper-case letters. Sets are denoted with upper-case, calligraphic letters (e.g., G) with
set complements Gc. We denote [n] = {0, 1, . . . , n}. For x ∈ RN , ‖x‖p is the `p vector norm. xs is
the s largest-valued components of x, where |x| ≥ s. supp(x) returns the support of x. For index set
G, x|G is the vector with non-zeros at the indices in G. For X ∈ Rm×n, ‖X‖F and X> represent the
Frobenius norm and transpose of X . The i-th row and j-th column of X are given by Xi,: and X:,j ,
respectively. rsupp(X) returns the row support of X (i.e., indices of non-zero rows). For index set
G, XG,: and X:,G represent row and column sub-matrices, respectively, that contain rows or columns
with indices in G. µ(X) : Rm×n −→ Rm sums over columns of a matrix (i.e., µ(X) =

∑
iX:,i),

while vec(X) : Rm×n −→ Rmn stacks columns of a matrix. X ∈ Rm×n is p-row-compressible
with magnitude R ∈ R≥0 if |µ(X)|(i) ≤ R

i
1
p
, ∀i ∈ [m], where | · |(i) denotes the i-th sorted vector

component (in magnitude). Lower p values indicate a nearly row-sparse matrix and vice versa.

Network Architecture. Our analysis primarily considers two-layer, feed forward networks3:

f(X,W) = W (1) · σ(W (0) ·X) (1)

The network’s input, hidden, and output dimensions are given by din, dhid, and dout. X ∈ Rdin×B

stores the full input dataset with B examples. W (0) ∈ Rdhid×din and W (1) ∈ Rdout×dhid denote the
network’s weight matrices. σ(·) denotes the ReLU activation function and H = σ(W 0 ·X) stores
the network hidden representations across the dataset. We also extend our analysis to multi-layer
networks with similar structure; see Appendix ?? for more details.

3. Related Work

Pruning. Neural network pruning strategies can be roughly separated into structured (Han et al.,
2016; Li et al., 2016; Liu et al., 2017; Ye et al., 2020; Ye et al., 2020) and unstructured (Evci et al.,

1. “Parameter groups” refers to the minimum structure used for pruning (e.g., neurons or filters).
2. To the best of the authors’ knowledge, we are the first to provide theoretical analysis showing that the quality of

pruning depends upon the sparsity of representations within the dense network.
3. Though (1) has no bias, a bias term could be implicitly added as an extra element within the input and weight matrices.

2

I-SPASP

2019, 2020; Frankle and Carbin, 2018; Han et al., 2015) variants. Structured pruning, as considered
in this work, prunes parameter groups instead of individual weights, allowing speedups to be achieved
without sparse computation (Li et al., 2016). Empirical heuristics for structured pruning include
removing parameter groups with low `1 norm (Li et al., 2016; Liu et al., 2017), measuring the
gradient-based sensitivity of parameter groups (Baykal et al., 2019; Wang et al., 2020; Zhuang et al.,
2018), preserving network output (He et al., 2017; Luo et al., 2017; Yu et al., 2017), and more (Suau
et al., 2020; Chin et al., 2019; Huang and Wang, 2018; Molchanov et al., 2016). Pruning typically
follows a three-step process of pre-training, pruning, and fine-tuning (Li et al., 2016; Liu et al., 2018),
where pre-training is typically the most expensive component (Chen et al., 2020; You et al., 2019).

Provable Pruning. Empirical pruning research inspired the development of theoretical foundations
for network pruning, including sensitivity-based analysis (Baykal et al., 2019; Liebenwein et al.,
2019), coreset methodologies (Mussay et al., 2019; Baykal et al., 2018), random network pruning
analysis (Malach et al., 2020; Orseau et al., 2020; Pensia et al., 2020; Ramanujan et al., 2019), and
generalization analysis (Zhang et al., 2021). GFS—analyzed for two-layer (Ye et al., 2020; Wolfe
et al., 2021) and multi-layer (Ye et al., 2020) networks—was one of the first pruning methodologies
to provide both strong empirical performance and theoretical guarantees.

Greedy Selection. Greedy selection efficiently discovers approximate solutions to combinatorial
optimization problems (Frank et al., 1956). Many algorithms and frameworks for greedy selection
exist; e.g., Frank-Wolfe (Frank et al., 1956), sub-modular optimization (Nemhauser et al., 1978),
CoSAMP (Needell and Tropp, 2009), and iterative hard thresholding (Khanna and Kyrillidis, 2018).
Frank-Wolfe has been used within GFS and to train deep neural networks (Bach, 2014; Pokutta
et al., 2020), thus forming a connection between greedy selection and deep learning. Furthering this
connection, we leverage CoSAMP (Needell and Tropp, 2009) to formulate our proposed methodology.

4. Methodology

i-SpaSP is formulated for two-layer networks in Algorithm 1, where the pruned model size s and total
iterations T are fixed. S stores active neurons in the pruned model, which is refined over iterations.

Why does this work? Each iteration of i-SpaSP follows a three-step procedure in Algorithm 1:

Step I: Compute neuron “importance” Y given the current residual matrix V .
Step II: Identify s neurons within the combined set of important and active neurons (i.e., Ω ∪ S)

with the largest-valued hidden representations.
Step III: Update V with respect to the new pruned model estimate.

We now provide intuition regarding the purpose of each individual step within i-SpaSP.

Estimating Importance. Yij is the importance of hidden neuron i with respect to dataset example j.
We can characterize the discrepancy between pruned and dense network output U ′ and U as:

L(U,U ′) =
1

2
‖W (1) ·H − U ′‖2F . (2)

Considering U ′ fixed, ∇HL(U,U ′) = (W (1))> · V . As such, if Yij is a large, positive (negative)
value, decreasing (increasing) Hij will decrease the value of L locally. Then, because H is non-
negative and cannot be modified via pruning, one can realize that the best methodology of minimizing
(2) is including neurons with large, positive importance values within S, as in Algorithm 1.

3

I-SPASP

Algorithm 1 i-SpaSP for Two-Layer Networks
Parameters: T , s; S := ∅; t := 0
compute hidden representation
H = σ(W (0) ·X)
h = µ(H)

compute dense network output
U = W (1) ·H
V = U

while t < T do
t = t+ 1

Step I: Estimating Importance
Y = (W (1))> · V
y = µ(Y)
Ω = supp(y2s)

Step II: Merging and Pruning
Ω? = Ω ∪ S
b = h|Ω?

S = supp(bs)

Step III: Computing New Residual
V = U −W (1)

:,S ·HS,:
end
return pruned model with neurons in S
return {W (0)

S,: ,W
(1)
:,S }

Merging and Pruning. The 2s most-important
neurons—based on µ(Y) components—are se-
lected and merged with S , allowing a larger set of
neurons (i.e., more than s) to be explored. From
here, s neurons with the largest-valued compo-
nents in µ(H) are sub-selected from this com-
bined set to form the next pruned model estimate.
Because hidden representation values are not con-
sidered in importance estimation, performing this
two-step merging and pruning process ensures
neurons within S have both large hidden activa-
tion and importance values, which together indi-
cate a meaningful impact on network output.

Computing the New Residual. The next pruned
model estimate is used to re-compute V , which
can be intuitively seen as updating U ′ in (2). As
such, importance in Algorithm 1 is based on the
current pruned and dense network residual and
(2) is minimized over successive iterations.

4.1. Implementation

Automatic Differentiation. Because Y =
∇HL(U,U ′), importance within i-SpaSP can be
computed efficiently using automatic differentia-
tion (Paszke et al., 2017; Abadi et al., 2015); see

Algorithm 2 for a PyTorch-style example. Automatic differentiation simplifies importance estimation
and allows it to be run on a GPU, making the implementation efficient and parallelizable. Because
the remainder of the pruning process only leverages basic sorting and set operations, the overall
implementation of i-SpaSP is both simple and efficient.

Other Architectures. Algorithm 2 can be easily generalized to more complex network modules
(i.e., beyond feed-forward layers) using automatic differentiation. Notably, convolutional filters
or attention heads can be pruned using the importance estimation from Algorithm 2 if sum(·) is
performed over both batch and spatial dimensions. Furthermore, i-SpaSP can be used to prune
multi-layer networks by greedily pruning each layer of the network from beginning to end.

Large-Scale Datasets. Algorithm 1 assumes the entire dataset is stored within X . For large-scale
experiments, such an approach is not tractable. As such, we redefine X within experiements to
contain a subset or mini-batch of data from the full dataset, allowing the pruning process to be
performing in an approximate—but computationally tractable—manner. To improve the quality of
this approximation, a new mini-batch is sampled during each i-SpaSP iteration, but the size of such
mini-batches becomes a hyperparameter of the pruning process.4

4. Both GFS (Ye et al., 2020) and multi-layer GFS (Ye et al., 2020) adopt a similar mini-batch approach during pruning.

4

I-SPASP

H.requires_grad := True

with torch.no_grad():

prune_out := prune_layer(HS,:)

dense_out := dense_layer(H)

obj := sum
(
1
2
(dense_out− prune_out)2

)
obj.backward()

importance := sum(H.grad,dim = 0)

return importance

Algorithm 2: i-SpaSP importance computation via
automatic differentiation.

Block 2 Block 15

ResNet34 Block Index

101

102

103

104

T
im

e
(s

)

i-SpaSP Stoch. GFS GFS

Figure 1: Runtime of pruning ResNet34
blocks with i-SpaSP and GFS variants to 20%
(i.e., plain) or 40% (i.e., dotted) of filters.

4.2. Computational Complexity and Runtime Comparisons

Denote the complexity of matrix-matrix multiplication as ξ. The complexity of pruning a network
layer with T iterations of i-SpaSP is O(Tξ + Tdhid log(dhid)). GFS has a complexity of O(sξdhid),
as it adds a single neuron to the (initially empty) network layer at each iteration by exhaustively
searching for the neuron that minimizes training loss. Though later GFS variants achieve complexity
of O(sξ) (Ye et al., 2020), i-SpaSP is more efficient in practice because the forward pass (i.e. O(ξ))
dominates the pruning procedure and T � s (e.g., T = 20 in Section 6).

As a practical runtime comparison, we adopt a ResNet34 model (He et al., 2015) and measure
wall-clock pruning time5 with i-SpaSP and GFS. We use the public implementation of GFS (Ye,
2021) and test both stochastic and vanilla variants6. i-SpaSP uses settings from Section 6, and
selected ResNet blocks are pruned to ratios of 20% or 40% of original filters; see Figure 1. i-SpaSP
significantly improves upon the runtime of GFS variants; e.g., i-SpaSP prunes Block 15 in roughly 10
seconds, while GFS takes over 1000 seconds in the best case. Furthermore, unlike GFS, the runtime
of i-SpaSP is not sensitive to the size of the pruned network (i.e., wall-clock time is similar for ratios
of 20% and 40%), though i-SpaSP does prune later network layers faster than earlier layers.

5. Theoretical Results

Proofs are deferred to Appendix ??. The dense network is pruned from dhid to s neurons via i-SpaSP.
We assume that W (1) satisfies the restricted isometry property (RIP) (Candes and Tao, 2006):

Assumption 1 (Restricted Isometry Property (RIP) (Candes and Tao, 2006)) Denote the r-th
restricted isometry constant as δr and assume δr ≤ 0.1 for r = 4s.7 Then, W (1) satisfies the RIP
with constant δr if (1− δr)‖x‖22 ≤ ‖W (1) · x‖22 ≤ (1 + δr)‖x‖22 for all ‖x‖0 ≤ r.

5. We prune the 2nd (64 channels) and 15th (512 channels) convolutional blocks. We choose blocks in different network
regions to view the impact of channel and spatial dimension on pruning efficiency.

6. Vanilla GFS exhaustively searches neurons within each iteration, while the stochastic variant randomly selects 50
neurons to search per iteration.

7. This is a numerical assumption adopted from (Needell and Tropp, 2009), which holds for Gaussian matrices of size
Rm×n when m ≥ O

(
r log(n

r
)
)
.

5

I-SPASP

No assumption is made upon W (0). We hypothesize that Assumption 1 is mild due to properties
like semi or quarter-circle laws that bound the eigenvalues symmetric, random matrices within
some range (Edelman and Wang, 2013), but we leave the formal verification of this assumption as
future work. We define H = σ(W (0) ·X) ∈ Rdhid×B , which can be theoretically reformulated as
H = Z +E for s-row-sparse Z and arbitrary E. From here, we can show the following about the
residual between pruned and dense network hidden representations after t iterations of Algorithm 1.

Lemma 1 If Assumption 1 holds, the pruned approximation to H after t iterations of Algorithm 1,
HSt,:, is s-row-sparse and satisfies the following inequality:

‖µ(H −HSt,:)‖2 ≤ (0.444)t‖µ(H)‖2 +

(
14 +

7√
s

)
‖µ(E)‖1

Going further, Lemma 1 can be used to bound the residual between pruned and dense network output.

Theorem 2 Let U = W (1) ·H and U ′ = W
(1)
:,St ·HSt,: denote pruned and dense network output,

respectively. Vt = U − U ′ stores the residual between pruned and dense network output over the
entire dataset. If Assumption 1 holds, we have the following at iteration t of Algorithm 1:

‖Vt‖F ≤ ‖W (1)‖F ·
(

(0.444)t‖µ(H)‖2 +

(
14 +

7√
s

)
‖µ(E)‖1

)
Because ‖µ(H)‖2 decays linearly in Theorem 2, ‖µ(E)‖1 dominates the above expression for

large t. By assuming H is row-compressible, we can derive a bound on ‖µ(E)‖1.

Lemma 3 AssumeH is p-row-compressible with magnitudeR, whereH = Z+E for s-row-sparse

Z and arbitrary E. Then, ‖µ(E)‖1 ≤ R · s
1− 1

p

1
p
−1
.

Lemma 3 can then be combined with Theorem 2 to bound the error due to pruning via i-SpaSP.

Theorem 4 Assume Algorithm 1 is run for a sufficiently large number of iterations t. If Assumption
1 holds and H is p-row-compressible with factor R, the output residual between the dense network
and the pruned network discovered via i-SpaSP can be bounded as follows:

‖Vt‖F ≤ O
(
s

1
2
− 1

p p(2
√
s+ 1)

1− p

)
.

Proof This follows directly from substituting Lemma 3 into Theorem 2, assuming t is large enough
such that (0.444)t‖W (1)‖F ‖µ(H)‖2 ≈ 0, and factoring out constants in the resulting expression.

Theorem 4 indicates that the quality of the pruned network is dependent upon s and p. Intuitively,
one would expect that lower values of p (implying sparser H) would make pruning easier, as neurons
corresponding to zero rows in H could be eliminated without consequence. This trend is observed
exactly within Theorem 4; e.g., for p =

{
3
4 ,

1
2 ,

1
4

}
we have ‖Vt‖F ≤ {O(s−

1
3),O(s−1),O(s−3)},

respectively. To the best of the authors’ knowledge, our work is the first to theoretically characterize
pruning error with respect to sparsity properties of network hidden representations. This bound can
also be extended to similarly-structured (see Appendix ??), multi-layer networks:

6

I-SPASP

Theorem 5 Consider an L-hidden-layer network with weight matrices {W (0), . . . ,W (L)} and
hidden representations {H(1), . . . H(L)}. The hidden representations of each layer are assumed to
have dimension d for simplicity. We define H(`) = σ(W (`) ·H(`−1)), where H(1) = σ(W (0) ·X)
and H(L) = W (L) ·H(L−1). We assume all weight matrices other than W (0) obey Assumption 1 and
all hidden representations other than H(L) are p-row-compressible. i-SpaSP is applied greedily to
prune each network layer, in layer order, from d to s hidden neurons. Given sufficient iterations t,
the residual between pruned and dense multi-layer network output behaves as:

‖V (L)
t ‖F ≤ O

 L∑
i=1

(
14 +

7√
s

)L−i+1
‖W (L)‖F

L−i∏
j=1

‖vec(W (j))‖1

(dL−i
2 s

1− 1
p

1
p − 1

) (3)

Pruning error in (3) is summed over each network layer. Considering layer i, the green factor
is inherited from Theorem 2 with an added exponent due to a recursion over network layers after
i. Similarly, the blue factor accounts for propagation of error through weight matrices after layer
i, revealing that green and blue factors account for propagation of error through network layers.
The red portion of (3), which captures the convergence properties of multi-layer pruning, comes
from Lemma 3, where an extra factor d

L−i
2 arises as an artifact of the proof.8 Because d is fixed

multiple of s determined by the pruning ratio, this factor disappears when p is small, leading the
expression to converge. For example, if p = 1

4 , the red expression in (3) behaves asymptotically as
{O(s−2.5),O(s−2),O(s−1.5), . . . } for layers at the end of the network moving backwards.

6. Experiments

0 50 100

10−12

10−9

10−6

10−3

0 100 200

10−13

10−9

10−5

10−1

‖V ‖2
F

dhid = 100 dhid = 200

Pruned Layer Size

p = 0.3 p = 0.5 p = 0.7 p = 0.9

Figure 2: i-SpaSP pruning experiments for two-layer net-
works of different sizes and p ratios. The error decay rate
increases with decreasing p, confirming that more compress-
ible hidden representations aid in the pruning process.

Within this section, we provide em-
pirical analysis of i-SpaSP. We first
present synthetic results using two-
layer neural networks to numerically
verify Theorem 4. Then, we per-
form experiments with two-layer net-
works on MNIST (Deng, 2012), con-
volutional neural networks (CNNs) on
ImageNet (ILSVRC2012), and multi-
lingual BERT (mBERT) (Devlin et al.,
2018) on the cross-lingual NLI corpus
(XNLI) (Conneau et al., 2018). For all
experiments, we adopt best practices
from previous work (Li et al., 2016)
to determine pruning ratios within the
dense network, often performing less pruning on sensitive layers; see Appendix ?? for details. As
baselines, we adopt both greedy selection methodologies (Ye et al., 2020; Ye et al., 2020) and several
common, heuristic methods. We find that, in addition to improving upon the pruning efficiency

8. This artifact arises because `1 norms must be replaced with `2 norms in certain areas to form a recursion over network
layers. This artifact can likely be removed by leveraging sparse matrix analysis for expander graphs (Bah and Tanner,
2018), but we leave this as future work to simplify the analysis.

7

I-SPASP

of GFS (i.e., see Section 4.2 for runtime comparisons on ResNet pruning experiments), i-SpaSP
performs comparably to baselines in all cases, demonstrating that it is both performant and efficient.

6.1. Synthetic Experiments

To numerically verify Theorem 4, we construct syntheticH matrices with different row-compressibility
ratios p, denoted asH = {H(i)}Ki=1. For each p ∈ {0.3, 0.5, 0.7, 0.9}, we randomly generate three
unique entries withinH (i.e., K = 12) and present average performance across them all. We prune a
randomly-initialized W (1) from size dhid × dout to sizes s× dout for s ∈ [dhid]. (i.e., each setting of
s is a separate experiment) using T = 20.9. We test dhid ∈ {100, 200}, and the same W (1) matrix is
used for experiments with equal hidden dimension; see Appendix ?? for more details.

Results are displayed in Figure 2, where ‖V ‖2F is shown to decay polynomially with respect to
the number of neurons within the pruned network s. Furthermore, as predicted by Theorem 4, the
decay rate of ‖V ‖2F increases as p decreases, revealing that higher levels of sparsity within the dense
network’s hidden representations improve pruning performance and speed with respect to s. This
trend holds for all hidden dimensions that were considered.

6.2. Two-Layer Networks

250 500 750 1000

50

60

70

80

90

100

250 500 750 1000

97.50

97.75

98.00

98.25

T
es

t
A

cc
ur

ac
y

Pruned Layer Size

Before Fine-Tuning After Fine-Tuning

Dense i-SpaSP GFS Top-K

Figure 3: Performance of networks pruned with different
greedy algorithms on MNIST before (left) and after (right)
fine-tuning. Although GFS performs well prior to fine-
tuning, i-SpaSP always yields the top-performing network
after fine-tuning.

We perform pruning experiments with
two-layer networks on MNIST (Deng,
2012). All MNIST images are flat-
tened and no data augmentation is
used. The dense network has 10×103

hidden neurons and is pre-trained be-
fore pruning. We prune the dense net-
work using i-SpaSP, GFS, and Top-K,
which we use as a naive greedy se-
lection baseline.10 After pruning, the
network is fine-tuned using stochastic
gradient descent (SGD) with momen-
tum. Performance is reported as an av-
erage across three separate trails; see
Appendix ?? for more details.

As shown in Figure 3-right, i-
SpaSP outperforms other pruning methodologies after fine-tuning in all experimental settings. Net-
works obtained with GFS perform well without fine-tuning (i.e., Figure 3-left) because neurons are
selected to minimize loss during the pruning process. Because i-SpaSP selects neurons based upon
the importance criteria described in Section 4, the pruning process does not directly minimize training
loss, thus leading to poorer performance prior to fine-tuning (i.e., Top-K exhibits similar behavior).
Nonetheless, i-SpaSP, in addition to improving upon the pruning efficiency of GFS, discovers a set

9. We find that the active set of neurons selected by i-SpaSP becomes stable (i.e., few neurons are modified) after 20
iterations or less in all synthetic experiments.

10. Top-k selects k neurons with the largest-magnitude hidden representations in a mini-batch of data. It is a naive baseline
for greedy selection that is not used in previous work to the best of our knowledge.

8

I-SPASP

of neurons that more closely recovers dense network output, as revealed by its superior performance
after fine-tuning.

6.3. Deep Convolutional Networks

We perform structured filter pruning of ResNet34 (He et al., 2015) and MobileNetV2 (Sandler
et al., 2018) with i-SpaSP on ImageNet (ILSVRC 2012). Beginning with public, pre-trained models
(Paszke et al., 2017), we use i-SpaSP to prune chosen convolutional blocks within each network,
then fine-tune the pruned model using SGD with momentum. After pruning each block, we perform
a small amount of fine-tuning; see Appendix ?? for more details. Numerous heuristic and greedy
selection-based algorithms are adopted as baselines; see Table 1.

Pruning Method Top-1 Acc. FLOPS
R

es
N

et
34

Full Model He et al. (2015) 73.4 3.68G

Filter Pruning Li et al. (2016) 72.1 2.79G
Rethinking Pruning Liu et al. (2018) 72.0 2.79G

More is Less Dong et al. (2017) 73.0 2.75G
i-SpaSP 73.5 2.69G

GFS Ye et al. (2020) 73.5 2.64G
Multi-Layer GFS Ye et al. (2020) 73.5 2.20G

SFP He et al. (2018a) 71.8 2.17G
FPGM He et al. (2019) 72.5 2.16G

i-SpaSP 72.5 2.13G
GFS Ye et al. (2020) 72.9 2.07G

Multi-Layer GFS Ye et al. (2020) 73.3 1.90G

M
ob

ile
N

et
V

2

Full Model Sandler et al. (2018) 72.0 314M

i-SpaSP 71.6 260M
GFS Ye et al. (2020) 71.9 258M

Multi-Layer GFS Ye et al. (2020) 72.2 245M
i-SpaSP 71.3 242M

LEGR Chin et al. (2019) 71.4 224M
Uniform 70.0 220M

AMC He et al. (2018b) 70.8 220M
i-SpaSP 70.7 220M

GFS Ye et al. (2020) 71.6 220M
Multi-Layer GFS Ye et al. (2020) 71.7 218M

Meta Pruning Liu et al. (2019) 71.2 217M

Table 1: Test accuracy of ResNet34 and MobileNetV2 mod-
els pruned to different FLOP levels with various pruning
algorithms on ImageNet.

ResNet34. We prune ResNet34 to
2.69 and 2.13 GFlops with i-SpaSP.
As shown in Table 1, i-SpaSP yields
comparable performance to GFS vari-
ants at similar FLOP levels; e.g., i-
SpaSP matches 75.5% test accuracy
of GFS with the 2.69 GFlop model
and performs within 1% of GFS vari-
ants for the 2.13 GFlop model. How-
ever, the multi-layer variant of GFS
(Ye et al., 2020) does discover sub-
networks with fewer FLOPS and sim-
ilar performance in both cases. i-
SpaSP improves upon or matches the
performance of all heuristic methods
at similar FLOP levels.

MobileNetV2. We prune Mo-
bileNetV2 to 260, 242, and 220
MFlops with i-SpaSP. In all cases, sub-
networks discovered with i-SpaSP
achieve performance within 1% of
those obtained via both GFS variants
and heuristic methods. Although Mo-
bileNetV2 performance is relatively
lower in comparison to ResNet34, i-
SpaSP is still capable of pruning the
more difficult network to various dif-
ferent FLOP levels and performs com-
parably to baselines in all cases.

Discussion. Within Table 1, the performance of i-SpaSP is never more than 1% below that of a
similar-FLOP model obtained with a baseline pruning methodology, including both greedy selection
and heuristic-based methods. As such, similar to GFS, i-SpaSP can be seen as a theoretically-
grounded pruning methodology that is practically useful, even in large-scale experiments. Such

9

I-SPASP

pruning methodologies that are both theoretically and practically relevant are few. In comparison to
GFS variants, i-SpaSP significantly improves pruning efficiency; see Section 4.2. Thus, i-SpaSP can
be seen as a viable alternative to GFS—both theoretically and practically—that may be preferable
when runtime is a major concern.

6.4. Transformer Networks

Method Pruning Ratio Top-1 Acc.

Full Model - 71.02

Uniform
25% 62.73
40% 66.43

Michel et al. (2019)
25% 62.97
40% 67.31

i-SpaSP
25% 63.70
40% 68.11

Table 2: Test accuracy of mBERT models pruned
and fine-tuned on the XNLI dataset.

We perform structured pruning of attention
heads using the mBERT model (Devlin et al.,
2018) on the XNLI dataset (Conneau et al.,
2018), which contains textual entailment anno-
tations across 15 different languages. We begin
with a pre-trained mBERT model and fine-tune
it on XNLI prior to pruning. Then, structured
pruning is performed on the attention heads
of each layer using i-SpaSP, uniform pruning
(i.e., randomly removing a fixed ratio of atten-
tion heads), and a sensitivity-based masking ap-
proach (Michel et al., 2019) (i.e., a state-of-the-
art heuristic approach for structured attention
head pruning for transformers). After pruning models to a fixed ratio of 25% or 40% of original
attention heads, we fine-tune the pruned networks and record their performance on the XNLI test set;
see Appendix ?? for further details.

As shown in Table 2, models pruned with i-SpaSP outperform those pruned to the same ratio
with either uniform or heuristic pruning methods in all cases. The ability of i-SpaSP to effectively
prune transformers demonstrates that the methodology can be applied to the structured pruning
of numerous different architectures without significant implementation changes (i.e., using the
automatic differentiation approach described in Section 4.1). Furthermore, i-SpaSP even outperforms
a state-of-the-art heuristic approach for the structured pruning of transformer attention heads, thus
again highlighting the strong empirical performance of i-SpaSP in comparison to heuristic pruning
methods that lack theoretical guarantees.

7. Conclusion

We propose i-SpaSP, a pruning methodology for neural networks inspired by sparse signal recovery.
Our methodology comes with theoretical guarantees that indicate, for both two and multi-layer
networks, the quality of a pruned network decays polynomially with respect to its size. We connect
this theoretical analysis to properties of the dense network, showing that pruning performance
improves as the dense network’s hidden representations become more sparse. Practically, i-SpaSP
performs comparably to numerous baseline pruning methodologies in large-scale experiments and
drastically improves upon the computationally efficiency of the most common provable pruning
methodologies. As such, i-SpaSP is a practical, provable, and efficient algorithm that we hope will
enable a better understanding of neural network pruning both in theory and practice. In future work,
we wish to extend i-SpaSP to cover cases in which network pruning and training are combined
into a single process, such as utilizing regularization-based approaches to induce sparsity during
pre-training or updating network weights to improve sub-network performance as pruning occurs.

10

I-SPASP

Acknowledgments

Compute resources used for this work were provided by Alegion Inc. This work is supported by
NSF FET:Small no. 1907936, NSF MLWiNS CNS no. 2003137 (in collaboration with Intel), NSF
CMMI no. 2037545, NSF CAREER award no. 2145629, and Rice InterDisciplinary Excellence
Award (IDEA).

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015.

Francis Bach. Breaking the Curse of Dimensionality with Convex Neural Networks. arXiv e-prints,
art. arXiv:1412.8690, December 2014.

Bubacarr Bah and Jared Tanner. On the construction of sparse matrices from expander graphs.
Frontiers in Applied Mathematics and Statistics, 4:39, 2018.

Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. Data-dependent
coresets for compressing neural networks with applications to generalization bounds. arXiv
preprint arXiv:1804.05345, 2018.

Cenk Baykal, Lucas Liebenwein, Igor Gilitschenski, Dan Feldman, and Daniela Rus. SiPPing
Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks. arXiv e-prints, art.
arXiv:1910.05422, October 2019.

Emmanuel J Candes and Terence Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE transactions on information theory, 52(12):5406–5425,
2006.

Xiaohan Chen, Yu Cheng, Shuohang Wang, Zhe Gan, Zhangyang Wang, and Jingjing Liu.
EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets. arXiv e-prints, art.
arXiv:2101.00063, December 2020.

Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Legr: Filter pruning via learned
global ranking. 2019.

Alexis Conneau, Ruty Rinott, Guillaume Lample, Adina Williams, Samuel R. Bowman, Holger
Schwenk, and Veselin Stoyanov. Xnli: Evaluating cross-lingual sentence representations. In
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2018.

11

I-SPASP

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan. More is less: A more complicated
network with less inference complexity. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5840–5848, 2017.

Alan Edelman and Yuyang Wang. Random matrix theory and its innovative applications. In Advances
in Applied Mathematics, Modeling, and Computational Science, pages 91–116. Springer, 2013.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the Lottery:
Making All Tickets Winners. arXiv e-prints, art. arXiv:1911.11134, November 2019.

Utku Evci, Yani A. Ioannou, Cem Keskin, and Yann Dauphin. Gradient Flow in Sparse Neural
Networks and How Lottery Tickets Win. arXiv e-prints, art. arXiv:2010.03533, October 2020.

Marguerite Frank, Philip Wolfe, et al. An algorithm for quadratic programming. Naval research
logistics quarterly, 3(1-2):95–110, 1956.

Jonathan Frankle and Michael Carbin. The Lottery Ticket Hypothesis: Finding Sparse, Trainable
Neural Networks. arXiv e-prints, art. arXiv:1803.03635, March 2018.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Stabilizing the
Lottery Ticket Hypothesis. arXiv e-prints, art. arXiv:1903.01611, March 2019.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. arXiv e-prints, art. arXiv:1510.00149,
October 2015.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and connections for
efficient neural networks. arXiv preprint arXiv:1506.02626, 2015b.

Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and William J.
Dally. EIE: Efficient Inference Engine on Compressed Deep Neural Network. arXiv e-prints, art.
arXiv:1602.01528, February 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. arXiv e-prints, art. arXiv:1512.03385, December 2015.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 4340–4349, 2019.

12

I-SPASP

Yihui He, Xiangyu Zhang, and Jian Sun. Channel Pruning for Accelerating Very Deep Neural
Networks. arXiv e-prints, art. arXiv:1707.06168, July 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pages 784–800, 2018b.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pages 304–320, 2018.

Rajiv Khanna and Anastasios Kyrillidis. Iht dies hard: Provable accelerated iterative hard threshold-
ing. In International Conference on Artificial Intelligence and Statistics, pages 188–198. PMLR,
2018.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning Filters for
Efficient ConvNets. arXiv e-prints, art. arXiv:1608.08710, August 2016.

Lucas Liebenwein, Cenk Baykal, Harry Lang, Dan Feldman, and Daniela Rus. Provable filter pruning
for efficient neural networks. arXiv preprint arXiv:1911.07412, 2019.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 3296–3305, 2019.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning Efficient Convolutional Networks through Network Slimming. arXiv e-prints, art.
arXiv:1708.06519, August 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the Value of
Network Pruning. arXiv e-prints, art. arXiv:1810.05270, October 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. ThiNet: A Filter Level Pruning Method for Deep Neural
Network Compression. arXiv e-prints, art. arXiv:1707.06342, July 2017.

Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. Proving the Lottery Ticket
Hypothesis: Pruning is All You Need. arXiv e-prints, art. arXiv:2002.00585, February 2020.

Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one? Advances
in neural information processing systems, 32, 2019.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman. Data-
independent neural pruning via coresets. arXiv preprint arXiv:1907.04018, 2019.

Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and inaccurate
samples. Applied and computational harmonic analysis, 26(3):301–321, 2009.

George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for
maximizing submodular set functions—i. Mathematical programming, 14(1):265–294, 1978.

13

I-SPASP

Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic Pruning is All You Need. arXiv
e-prints, art. arXiv:2006.12156, June 2020.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos.
Optimal lottery tickets via subsetsum: Logarithmic over-parameterization is sufficient. arXiv
preprint arXiv:2006.07990, 2020.

Sebastian Pokutta, Christoph Spiegel, and Max Zimmer. Deep Neural Network Training with
Frank-Wolfe. arXiv e-prints, art. arXiv:2010.07243, October 2020.

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s Hidden in a Randomly Weighted Neural Network? arXiv e-prints, art. arXiv:1911.13299,
November 2019.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4510–4520, 2018.

Xavier Suau, Nicholas Apostoloff, et al. Filter distillation for network compression. In 2020 IEEE
Winter Conference on Applications of Computer Vision (WACV), pages 3129–3138. IEEE, 2020.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking Winning Tickets Before Training by
Preserving Gradient Flow. arXiv e-prints, art. arXiv:2002.07376, February 2020.

Cameron R Wolfe, Qihan Wang, Junhyung Lyle Kim, and Anastasios Kyrillidis. Provably efficient
lottery ticket discovery. arXiv preprint arXiv:2108.00259, 2021.

Mao Ye. Network-pruning-greedy-forward-selection. https://github.com/lushleaf/
Network-Pruning-Greedy-Forward-Selection, 2021.

Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu. Good sub-
networks provably exist: Pruning via greedy forward selection. In International Conference on
Machine Learning, pages 10820–10830. PMLR, 2020.

Mao Ye, Lemeng Wu, and Qiang Liu. Greedy Optimization Provably Wins the Lottery: Logarithmic
Number of Winning Tickets is Enough. arXiv e-prints, art. arXiv:2010.15969, October 2020.

Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G Baraniuk,
Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Towards more efficient training
of deep networks. arXiv preprint arXiv:1909.11957, 2019.

Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu, Xintong Han, Mingfei Gao,
Ching-Yung Lin, and Larry S. Davis. NISP: Pruning Networks using Neuron Importance Score
Propagation. arXiv e-prints, art. arXiv:1711.05908, November 2017.

14

https://github.com/lushleaf/Network-Pruning-Greedy-Forward-Selection
https://github.com/lushleaf/Network-Pruning-Greedy-Forward-Selection

I-SPASP

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Why lottery ticket wins?
a theoretical perspective of sample complexity on pruned neural networks. arXiv preprint
arXiv:2110.05667, 2021.

Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong Guo, Qingyao Wu, Junzhou Huang,
and Jinhui Zhu. Discrimination-aware Channel Pruning for Deep Neural Networks. arXiv e-prints,
art. arXiv:1810.11809, October 2018.

15

	Introduction
	Preliminaries
	Related Work
	Methodology
	Implementation
	Computational Complexity and Runtime Comparisons

	Theoretical Results
	Experiments
	Synthetic Experiments
	Two-Layer Networks
	Deep Convolutional Networks
	Transformer Networks

	Conclusion

