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Abstract
Partially observable Markov decision process (POMDP) is a principled framework for sequential
decision making and control under uncertainty. Classical POMDP methods assume known system
models, while in real-world applications, the true models are usually unknown. Recent researches
propose learning POMDP models from the observation sequences rolled out by the true system
using maximum likelihood estimation (MLE). However, we find that such methods usually fail
to find a desirable solution. This paper makes a profound study of the POMDP model learning
problem, focusing on the linear Gaussian case. We show the objective of MLE is a high-order
polynomial function, which makes it easy to get stuck in local optima. We then prove that the
global optimal models are not unique and constitute a similarity space of the true model. Based
on this view, we propose Similarity Space Regularization (SimReg), an algorithm that smooths out
the local optima but keeps all the global optima. Experiments show that given only a biased prior
model, our algorithm achieves a higher log-likelihood, more accurate observation reconstruction
and state estimation compared with the MLE-based method.
Keywords: partially observable Markov decision process, model learning, maximum likelihood
estimation, similarity space

1. Introduction

Many sequential decision making and control problems are faced with uncertainty, such as robotics
Thrun (2002), computer games Vinyals et al. (2019) and autonomous driving Brechtel et al. (2014).
These problems can be formulated as partially observable Markov decision process (POMDP) Kael-
bling et al. (1998), which is composed of a stochastic state transition model and a stochastic obser-
vation model. In POMDP, the system model plays an important role in finding a good policy,
which can be used for state estimation, belief state inference, as well as obtaining the optimal policy
through planning Silver and Veness (2010); Somani et al. (2013); Kurniawati and Yadav (2016).
Classical POMDP methods assume known models Smallwood and Sondik (1973); Kaelbling et al.
(1998); Pineau et al. (2003); Smith and Simmons (2004). However, an accurate model is often
unknown in real-world problems.
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Recent advances in machine learning enable learning the POMDP models from only the obser-
vation sequences rolled out by the true systems. In problems with simple models, such as linear
Gaussian models and low-dimensional discrete state space models, the posterior distribution of
the state has closed-form solutions. In these cases, the expectation-maximization (EM) algorithm
Dempster et al. (1977) can be used for model learning Roweis and Ghahramani (1999); Ghahra-
mani (2001); Schön et al. (2011), which iteratively computes the expectation of the log-likelihood
and calculates parameters that maximize the expectation. In problems with high-dimensional non-
linear models, the posterior distribution of the state is intractable and Variational inference (VI)
Kingma and Welling (2013) is usually adopted to learn the posterior distribution of the state and
the parameters of the POMDP models Bayer and Osendorfer (2014); Chung et al. (2015); Krishnan
et al. (2015); Karl et al. (2017); Krishnan et al. (2017); Ha and Schmidhuber (2018).

Both EM algorithm and VI-based algorithms follow the maximum likelihood estimation (MLE)
framework, which tries to find the optimal model by maximizing the likelihood of observation
sequences. However, as we discover in our experiments, such methods often fail to learn a desirable
model. Figure 1 shows some example experiment results for learning a vehicle model using MLE
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Figure 1: Evaluations of the learned models using MLE.

(More details can be found in Section 4). Figure 1(a) shows the mean of observation distribution
reconstructed by the learned model (in blue), compared with that rolled out by the true system (in
black). The reconstructed observations are very noisy, indicating that the model does not learn
reasonable system dynamics to filter out the noises. Figure 1(b) shows the state estimation results
of the learned models (blue and red) compared with the true state (black). The two estimated curves
are generated by models trained on the same data set but under two different random seeds. The
state estimations significantly diverge from the true values and behave totally differently. The above
phenomenons motivate us to raise the following questions:

1. Why is MLE unable to learn a good model?

2. How to formally define a good model? Is it uniquely defined by the true system that generates
the data?

3. How can we design an algorithm for learning a good model?

To answer the above questions, we make a profound study of the model learning problem in
POMDP. We focus on linear Gaussian systems in this paper for clearer intuitions and more tractable
theoretical analysis. Our contributions are listed as follows:

• We point out that MLE is very likely to learn a local optimal model even in linear Gaussian
systems. We explain this by deriving the objective function in analytical form, which turns
out to be a high-order polynomial of the model parameters.
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• We show that the global optimal models are not unique and they constitute a similarity space
containing the true model. This indicates that the goal for learning is not necessarily to find
the true model, but to find an arbitrary model in this similarity space.

• We propose an algorithm called Similarity Space Regularization (SimReg), which smooths
out the local optima but keeps the global optima. Experiments show that given only a biased
prior model, our algorithm achieves a higher likelihood, more accurate observation recon-
struction and state estimation compared with MLE.

2. Preliminary

2.1. Linear Gaussian system

A linear Gaussian system is described by the following equations,

xt+1 = Axt +But + wt,

yt = Cxt + vt,
(1)

where xt ∈ Rn, ut ∈ Rp and yt ∈ Rq are the state, control and observation of the system at time step
t. wt ∈ Rn and vt ∈ Rq are the state noise and observation noise at time step t. We assume that wt

and vt are i.i.d. and follow zero-mean Gaussian distributions N (0,W ) and N (0, V ), respectively.
A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are state matrix, control matrix and observation matrix. We
denote θ = {A,B,C,W, V } as unknown parameters to be learned.

2.2. Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a method for estimating the parameters of a probabilistic
model given observation data. In the POMDP model learning problem, the objective of MLE is to
find the optimal parameter θ∗ that maximizes the log-likelihood of observation sequences,

θ∗ = argmax
θ

E[log p(y0:T ; θ)], (2)

where y0:T = {y0, y1, . . . , yT } is the observation sequence from time step 0 to T . In the rest of this
paper, we omit the parameter θ in the log-probability for simplicity.

2.3. Kalman filter

Kalman filter is widely used for state estimation in linear Gaussian systems with known model. It
has two steps, predict and update. In the predict step, the state estimate and estimate covariance are
predicted using the estimation in the last time step,

x̂t|t−1 = Ax̂t−1 +But−1, (3)

Σt|t−1 = AΣt−1A
T +W, (4)

where x̂t|t−1 and Σt|t−1 are the predicted state estimate and estimate covariance. x̂t−1 is the esti-
mation of time step t− 1. In the update step, the state estimate and estimate covariance are updated
using the new observation yt,

x̂t = x̂t|t−1 + Lt(yt − Cx̂t|t−1), (5)
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Σt = (I − LtC)Σt|t−1, (6)

where
Lt = Σt|t−1C

T (CΣt|t−1C
T + V )−1 (7)

is the Kalman gain.
Under certain conditions, the Kalman filter converges to a linear time-invariant filter as time goes

infinity. In this case, the estimate covariance and the Kalman gain converge to constant matrices Σ
and L. The steady-state estimate covariance Σ can be obtained by solving the Discrete Algebraic
Riccati Equation (DARE):

Σ = A(Σ− ΣCT (CΣCT + V )−1CΣ)AT +W. (8)

The steady-state Kalman gain is:

L = ΣCT (CΣCT + V )−1. (9)

3. Method

3.1. Local optima of maximum likelihood estimation

In a linear Gaussian system, we can derive the analytical form of the log-probability in (2). Use the
sequential property of the observation sequence, we can write the log-probability in a summation
form,

log p(y0:T ) =
T∑
t=0

log p(yt|y0:t−1). (10)

According to Kalman filter,

p(yt|y0:t−1) = N (yt|Cx̂t|t−1, CΣt|t−1C
T + V ). (11)

For simplicity of the following derivations, we consider the case where the steady-state Kalman
filter is used. Then the estimation covariance and Kalman gain are both constant matrices. Further-
more, we consider the case where the state and observation are single-dimensional. Note that the
derivations can be extended straightforwardly to the generic cases. We have

p(yt|y0:t−1) = N (yt|Cx̂t|t−1, C
2Σ+ V ). (12)

According to the probability density function of Gaussian distribution,

log p(yt|y0:t−1) = −1

2
log 2π(C2Σ+ V )−

(yt − Cx̂t|t−1)
2

2(C2Σ+ V )
. (13)

According to Kalman filter,

x̂t|t−1 = Ax̂t−1 +But−1

= A
(
x̂t−1|t−2 + L(yt−1 − Cx̂t−1|t−2)

)
+But−1

= A(I − LC)x̂t−1|t−2 +ALyt−1 +But−1

= At(I − LC)tx̂0|−1 +
t−1∑
τ=0

Aτ (I − LC)τ (ALyt−1−τ +But−1−τ ).

(14)
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(14) is a high-order polynomial of model parameters. Take the state matrix A as an example. (14)
is a tth order polynomial of A. Then (13) is a 2tth order polynomial of A. When gradient-based
algorithm is used to maximize (10), it finds the parameters where the gradient is zero. This results
in a root finding problem of (2T − 1)th order polynomial, which has 2T − 1 solutions in the
complex field. Among these solutions, some might be the global optima of the objective function
and correspond to the optimal model(s) including the true model, while others are local optima or
saddle points corresponding to sub-optimal models, as shown in Figure 2(a). When T is large, there
are multiple such local optima and MLE is likely to get stuck in one of them.
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Figure 2: Loss functions of MLE and SimReg. (a) The loss function of MLE has multiple local
optima. (b) SimReg smooths out local optima near all global optima.

In particular, we discover in our experiments that the state estimation of the learned model tends
to be very noisy (as in Figure 1(a)). This is because it learns a small observation noise and large
state noise. By doing so, the model simply ‘trust’ the observation data to increase the log-likelihood.
This makes the model easier to get stuck in a local optimum.

3.2. Optimal solutions in similarity space

To avoid bad local optima and obtain the global optima, we need to first answer how many global
optima does the MLE objective have and what properties do they have. Clearly, the global optimal
solution should maximize the likelihood of observations. When the number of observation data
approaches infinity, the global optimal model(s) will generate the same observation distributions as
the true system. The following theorem tells us that the global optimal model is not uniquely the
true model, but instead the entire similarity space containing the true model.

Theorem 1 Consider two observable linear Gaussian system models M and M̃ with parameters
θ = {A,B,C,W, V } and θ̃ = {Ã, B̃, C̃, W̃ , Ṽ }, respectively. If ∀x0 and control sequence, ∃x̃0,
s.t. the observation sequence generated by M̃ from initial state x̃0 follows the same distribution
as that generated by M from initial state x0, then there exists an invertible matrix P , s.t. A =
PÃP−1, B = PB̃, C = C̃P−1.

Proof Let the controls be zero. The mean of observation at time step t

µy,t = Cµx,t = CAtx0. (15)
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Since the distributions of observations generated by the two systems are the same,

CAtx0 = C̃Ãtx̃0,∀t ≥ 0. (16)

When t = 0, 1, . . . , n− 1, write (16) in matrix form,

Uox0 = Ũox̃0, (17)

where

Uo =


C
CA
· · ·

CAn−1

 (18)

is the observability matrix of the system. Since the two systems are both observable, the ranks of
Uo and Ũo are both n. Thus, we can select n linearly independent rows from Uo and obtain an n×n
invertible matrix, which we denote as Qi. The corresponding rows in Ũo also forms an n×n matrix,
which we denote as Q̃. Then we have

Qix0 = Q̃x̃0

x0 = Q−1
i Q̃x̃0.

(19)

Similarly,
x̃0 = Q̃−1

i Qx0. (20)

Thus,
x0 = Q−1

i Q̃Q̃−1
i Qx0. (21)

The above equation holds ∀x0. Thus, Q−1
i Q̃Q̃−1

i Q = I . Q−1
i Q̃ and Q̃−1

i Q are invertible matrices.
Let Q−1

i Q̃ = P , then x0 = Px̃0, x̃0 = P−1x0.
Consider (16) when t = 0,

Cx0 = C̃x̃0

Cx0 = C̃P−1x0

C = C̃P−1.

(22)

When t = 1, 2, . . . , n, write (16) in matrix form,

UoAx0 = ŨoÃx̃0

UoAx0 = ŨoÃP
−1x0

UoA = ŨoÃP
−1

A = PÃP−1.

(23)

Consider a control sequence in which u0 ̸= 0 and ut = 0,∀t ≥ 1. Let the initial state x0 = 0,
then the mean of observation at time step t

µy,t = Cµx,t = CAt−1Bu0. (24)

Thus,
CAt−1Bu0 = C̃Ãt−1B̃u0,∀t ≥ 1 (25)
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When t = 1, 2, . . . , n, write (25) in matrix form,

UoBu0 = ŨoB̃u0. (26)

The above equation holds ∀u0. Thus,
UoB = ŨoB̃

B = PB̃.
(27)

Theorem 1 shows that the global optimal models are similar to the true model and they constitute
a similarity space. The following Corollary tells us that these global optimal models are also optimal
in respect to control and state estimation.

Corollary 2 If the learned model is similar to the true model, then it gives the optimal solution for
state estimation and control in linear quadratic Gaussian (LQG) case.

In fact, the invertible matrix P is a linear mapping from the learned state to the true state. Thus, the
optimal state estimate

x̂t = P ˆ̃xt, (28)

where ˆ̃xt is the state estimate of the learned model. The optimal control of LQG

u∗t = −Ktx̂t = −KtP ˆ̃xt, (29)

where Kt is the feedback gain.

3.3. Learning POMDP model with similarity space regularization

Based on the above analysis, our learning objective should be to find a solution in the similarity
space containing the true model. However, without further information about the true model, there
is no way for us to find such a solution. Fortunately, we can provide reasonable prior models for a
lot of problems. For example, most physical and mechanical systems (including cars, robots, etc.)
have well-studied structures of their dynamic models. The downside is that these prior models are
usually inaccurate with potentially large bias.

Assuming access to only a biased prior model, we propose the Similarity Space Regularization
(SimReg) algorithm, which smooths the local optima but keeps the global optima and learns a
model in the vicinity of the similarity space of the true model. Assume that we have a biased prior
knowledge of the state matrix,

A0 = A+ δA, (30)

where A is the true state matrix and δA is a deviation. We then try to find a solution close to the
similarity space of the prior model. Assume that

∥Ãx̃− P−1A0Px̃∥ ≤ ε, ∀x̃, (31)

where Ã is the learned state matrix, P is an invertible matrix, x̃ is a state in the learned state space
and ε is a small constant. According to the definition of operate norm we have:

∥Ã− P−1A0P∥ = max
∥x̃∥=1

∥(Ã− P−1A0P )x̃∥ ≤ ε (32)

7



LEARNING POMDP MODELS WITH SIMILARITY SPACE REGULARIZATION

According to the triangular inequality,

∥Ã− P−1AP∥ ≤ ∥Ã− P−1A0P∥+ ∥P−1δAP∥
≤ ε+ ∥P−1∥∥δA∥∥P∥
= ε+ cond(P )∥δA∥.

(33)

(33) shows that if the deviation of prior model ∥δA∥ and the condition number of P are small
enough, the learned model will be close to the similarity space of the true model, which is an
optimal solution according to Corollary 2. Note that

∥Ãx̃− P−1A0Px̃∥
∥P−1∥

=
∥P−1(PÃx̃−A0Px̃)∥

∥P−1∥
≤ ∥PÃx̃−A0Px̃∥. (34)

Thus,
∥PÃx̃−A0Px̃∥ ≤ ε

∥P−1∥
⇒ ∥Ãx̃− P−1A0Px̃∥ ≤ ε. (35)

Thus, we can make ∥PÃx̃ − A0Px̃∥ small in order to make ∥Ãx̃ − P−1A0Px̃∥ small. Based on
this view, we propose the following objective function:

J(Θ)SimReg = E

[
− log p(y0:T ; θ̃) + α

T∑
t=0

∥PÃx̂t −A0Px̂t∥22

]
, (36)

where Θ = {θ̃, P} is the parameters to be learned. The first term in the expectation is the original
MLE loss. The second term is a regularization that makes the learned model close to the similarity
space of the prior model. α is a weight for balancing these two terms. x̂t is computed using Kalman
filter with the learned model. The optimal parameters are solved by minimize (36) using gradient-
based optimization algorithms.

An intuitive illustration of SimReg is shown in Figure 2(b). The loss function of MLE has
multiple global optima and local optima. The models corresponding to global optima are similar to
the true model A. The regularization term is small near all global optima and large elsewhere. It
thus smooths out local optima near all global optima and helps the algorithm find a better solution.

4. Experiments

We evaluate SimReg on a vehicle lateral dynamics model. The state is composed of lateral position
y, heading angle φ, lateral velocity v and yaw rate ω. The control is front wheel angle δ. The
observation includes y and φ. The system model can be written as the following equations,

ẏ
φ̇
v̇
ω̇

 =


0 u 1 0
0 0 0 1

0 0 k1+k2
mu

ak1−bk2
mu − u

0 0 ak1−bk2
Izzu

a2k1+b2k2
Izzu



y
φ
v
ω

+


0
0

−k1
m

−ak1
Izz

 δ + w, (37)

[
y
φ

]
=

[
1 0 0 0
0 1 0 0

]
y
φ
v
ω

+ v. (38)
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where u is the longitudinal velocity, k1 and k2 are lateral stiffness of the front and rear axles, a and b
are distances from the center of gravity to the front and rear axles, Izz is the yaw moment of inertia.
w and v are noises that follow zero-mean diagonal Gaussian distributions. We discretize (37) using
forward Euler method with time step 0.1s.

The training data are collected by applying actions generated using Gaussian processes with
Radial basis function (RBF) kernel. The length scales of RBF kernels are randomly selected from
[5, 20] for each sequence. The actions are multiplied by 0.01 as the amplitude. The prior model A0 is
generated by randomly perturbing the diagonal elements of the true model A. We use Adam Kingma
and Ba (2015) as the optimization algorithm for learning the parameters. We compare SimReg with
MLE. The training curves of log-likelihood are shown in Figure 3(a). SimReg outperforms MLE
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Figure 3: Training curves of log-likelihood. The solid lines correspond to the mean and the shaded
regions correspond to 95% confidence interval over three runs.

on both sample efficiency and asymptotic performance. This indicates that MLE gets stuck in
local optima while SimReg finds a better solution. The training curve of SimReg is also smoother,
indicating that the regularization stabilizes the learning process.

We compare the reconstructed observations of different models, as shown in Figure 4. The
reconstruction of the prior model is biased since it deviates from the true model. The reconstruction
of MLE is very noisy, indicating that the model is a bad local optimum. The reconstruction of
SimReg is unbiased and smooth, indicating that the algorithm finds a near-optimal solution. Here
the SimReg model is trained with regularization weight α = 1 and deviation rate of 0.0049, which
is the L2-norm of δA divided by the L2-norm of A.

We then compare the state estimation performances of the models, as shown in Figure 5. The
estimation of SimReg is multiplied by P , which is explicitly learned. The state estimation of MLE
diverges from the true state, indicating that the model learned an irrelevant state space and is not
capable of state estimation. The state estimation of SimReg is close to the true state, indicating that
the learned model is close to the similarity space of the true model.

Finally, we compare the training log-likelihood under different values of α, as shown in Fig-
ure 3(b). We also compare the mean squared error (MSE) of the mean of reconstructed observation
distribution, as shown in Table 1. α = 0 corresponds to MLE. Results show that either too small or
too large values of α lead to low log-likelihood and large observation reconstruction error. When α
is too small, the regularization term has little effect on the objective function thus cannot smooth out
the local optima. When α is too large, the penalty of the deviation from the prior model becomes
too large, which causes the learned model to deviate from optimal solutions.
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Figure 4: Mean of reconstructed observation distribution.
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Figure 5: State Estimation.

Table 1: Observation reconstruction error under different values of α.
α 0 0.01 0.1 1 10 100

MSE
(
10−4

)
14.121 5.587 4.161 1.255 0.627 2.901

5. Conclusion

In this paper, we study the POMDP model learning problem in the case of linear Gaussian systems.
We show that MLE is likely to get stuck in local optima because its objective function is a high-order
polynomial. We then prove that the optimal solutions of the problem are not unique and they con-
stitute a similarity space of the true system model. Based on this view, we propose Similarity Space
Regularization (SimReg), an algorithm that learns a near-optimal solution by regularizing the model
to the vicinity of the similarity space corresponding to the global optimal models. Finally, we eval-
uate our algorithm on a vehicle lateral dynamics model. Results show that our algorithm achieves
a higher log-likelihood, more accurate observation reconstruction and state estimation compared
with the MLE-based method. In the future, we will extend our analysis and algorithm to general
high-dimensional non-linear systems.
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