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Abstract
Motivated by bridging the simulation to reality gap in the context of safety-critical systems, we
consider learning adversarially robust stability certificates for unknown nonlinear dynamical sys-
tems. In line with approaches from robust control, we consider additive and Lipschitz bounded
adversaries that perturb the system dynamics. We show that under suitable assumptions of incre-
mental stability on the underlying system, the statistical cost of learning an adversarial stability
certificate is equivalent, up to constant factors, to that of learning a nominal stability certificate.
Our results hinge on novel bounds for the Rademacher complexity of the resulting adversarial loss
class, which may be of independent interest. To the best of our knowledge, this is the first charac-
terization of sample-complexity bounds when performing adversarial learning over data generated
by a dynamical system. We further provide a practical algorithm for approximating the adversarial
training algorithm, and validate our findings on a damped pendulum example.
Keywords: Stability certificates, adversarial robustness, incremental stability, sim-to-real.

1. Introduction

A challenge to the deployment of modern robotic systems to real-world settings is the overall lack
of formal safety guarantees. While controller design for complex robotic systems has received
much attention, comparatively less effort has been devoted to verifying the safety of the resulting
closed-loop system. Without broadly applicable tools for certifying a-priori guarantees, it is difficult
to justify deploying these methods in applications where safety is paramount, regardless of the
impressive performance that they achieve in simulation or controlled laboratory settings.

An important component of ensuring real-world safety is verifying the stability of a closed-
loop system from trajectory data. While recent work (Boffi et al., 2020a) proposes and analyzes a
learning-based approach to this problem, a fundamental limitation of the prior art is that learning
a stability certificate with failure probability of less than e.g., 1% for high-dimensional systems
requires on the order of tens of thousands of trajectories. Realistically, such a large amount of
trajectory data can only be collected using a simulation environment. Therefore, in order for a
learned certificate to be meaningful for real-world hardware, it is essential for it to be robust to
modeling errors between simulation and reality, i.e., robust to the so-called sim-to-real gap.

While bridging the sim-to-real gap has traditionally been addressed via domain randomization
(Tobin et al., 2017), we take inspiration from the robust control literature, and tackle this challenge
by developing an approach for adversarial learning of stability certificates for dynamical systems.
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We show that under suitable conditions on the underlying system, requiring that a learned certifi-
cate is robust to adversarial perturbations that enter the dynamics carries little additional statistical
overhead. Taking inspiration from Boffi et al. (2020a), we prove our results by converting the robust
stability certification problem into an adversarial learning problem, and subsequently bounding the
Rademacher complexity of the resulting adversarial loss class. To the best of our knowledge, this is
the first characterization of sample-complexity bounds when performing adversarial learning over
data generated by a dynamical system. Our results build upon and extend a line of work which
shows that underlying system-theoretic properties translate into the difficulty (or ease) of learn-
ing over data generated by dynamical systems (see e.g., Tsiamis et al. (2020); Tsiamis and Pappas
(2021); Lee et al. (2021); Tu et al. (2021) and references therein). We further provide a practical
algorithm for approximating the adversarial training algorithm, and show that adversarially trained
certificates are robust to various types of model mis-specification on a damped pendulum example.
All proofs and more details can be found in the full version of the paper (Zhang et al., 2021) [Link].

1.1. Related Work

Our work draws upon and unifies tools from three areas: (i) learning safety certificates from data,
(ii) adversarial robustness, and (iii) statistical learning theory.

Learning safety certificates A wide body of work addresses learning Lyapunov (Giesl et al.,
2020; Kenanian et al., 2019; Chen et al., 2020; Richards et al., 2018; Manek and Kolter, 2019;
Chang et al., 2019; Ravanbakhsh and Sankaranarayanan, 2019) and barrier (Taylor et al., 2019;
Robey et al., 2020; Jin et al., 2020) functions, as well as contraction metrics (Singh et al., 2020;
Manchester and Slotine, 2017; Singh et al., 2017) and contracting vector fields (Sindhwani et al.,
2018; Khadir et al., 2019) from data. While the generality and strength of guarantees provided vary
(see the literature review of Boffi et al. (2020a) for a detailed exposition), all of the aforementioned
works consider nominally specified systems without uncertainty, whereas our approach explicitly
considers perturbations that can capture model uncertainty and process noise.

Adversarial robustness Traditional approaches (Szegedy et al., 2013; Madry et al., 2018; Zhang
et al., 2019; Kurakin et al., 2016) to adversarial learning consider worst-case perturbations to the
data during training, i.e., the data is perturbed after it has been generated. While such a perturbation
model is meaningful in the image classification setting for which adversarial robust training methods
were originally developed, it does not immediately translate to the dynamic setting that we consider,
where the adversary may be used to capture model uncertainty or process noise. In particular, our
adversarial model perturbs the dynamical system which generates the data, a perspective that is
more in line with traditional robust control methods. We further show that under suitable stability
assumptions on the underlying dynamical system, there is no additional statistical cost to adversarial
training, in contrast to results showing that in the traditional setting, adversarial learning algorithms
require more data than their nominal counterparts (Schmidt et al., 2018).

Most directly relevant to our work are adversarial deep reinforcement learning methods which
learn policies that are robust to various classes of disturbances, such as adversarial observations
(Torabi et al., 2019; Gleave et al., 2020), rewards (Fu et al., 2018; Ho and Ermon, 2016), direct
disturbances to the system (Pinto et al., 2017), or combinations thereof (Lutter et al., 2021). Nev-
ertheless, there remains a paucity of theoretical guarantees on the generalization error, and thus
sample-efficiency, of such learned policies.
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Statistical learning theory While such statistical guarantees, to the best of our knowledge, do
not exist for adversarial reinforcement learning, the generalization error of an adversarially trained
classifier has been studied using uniform convergence (Yin et al., 2019; Attias et al., 2019; Mon-
tasser et al., 2019). While our results also rely on uniform convergence, our analysis departs from
this existing line of work by allowing adversaries to influence dynamical systems.

2. Problem Framework

2.1. Nominal Stability Certificates

We begin by reviewing the problem setting and results from Boffi et al. (2020a). We assume that
the underlying dynamical system is a continuous-time, autonomous system of the form ẋ = f(x),
where f is continuous and unknown, and that the state x ∈ Rp is fully observed. Let X ⊂ Rp

be a compact set and T ⊆ R+ be the maximum interval such that a unique solution φt(ξ) exists
for all times t ∈ T and initial conditions ξ ∈ X , where φt(ξ) is the map to the state at time t
given initial condition ξ. We assume that we have access to n trajectories initialized from randomly
sampled initial conditions. That is, we are given {φt(ξi)}i∈[n], t∈T , where ξ1, . . . , ξn

i.i.d.∼ D and D
is a distribution over X . For simplicity, we assume that we can precisely differentiate φt(ξ) with
respect to time (in practice, we can estimate φ̇t(ξ) numerically).

Let V be a class of continuously differentiable candidate Lyapunov functions V : Rp → R⩾0

satisfying V (0) = 0. Fixing a constant η > 0, we define a scalar violation function h : X × V as:

h(ξ, V ) := sup
t∈T

⟨∇V (φt(ξ)), f(φt(ξ))⟩+ ηV (φt(ξ)). (1)

The violation function h(ξ, V ) scans the Lyapunov decrease condition for exponential stability with
rate η over the trajectory initialized at ξ, and returns the maximal value. Observe that if h(ξ, V ) ⩽ 0,
then V certifies exponential stability along the trajectory φt(ξ), t ∈ T . The nominal stability
certification problem is therefore equivalent to the following feasibility problem:

FindV ∈V s.t. h(ξ, V ) ⩽ 0 ∀ξ ∈ X . (2)

In general, various choices of V and h(ξ, V ) can encode different notions of stability and accom-
panying certificates (see Boffi et al. (2020a) for more details). To search for a V that satisfies the
above optimization problem given finite data, we solve the following feasibility problem:

FindV ∈V s.t. h(ξi, V ) ⩽ −τ, i = 1, . . . , n, (3)

where τ > 0 is a margin that ensures generalization of the learned stability certificate V on unseen
trajectories. Let V̂n denote a solution to (3) and define the nominal generalization error of V̂n as

err(V̂n) := Pξ∼D

[
h
(
ξ, V̂n

)
> 0
]
. (4)

The nominal error (4) characterizes the probability that V̂n fails to certify stability along a new
trajectory with initial condition sampled from D. In Boffi et al. (2020a), it is shown that for general
classes of V , err(V̂n) decays at a rate Õ(k/n), where k captures the effective degrees of freedom
of the stability function class V and Õ suppresses polylog dependence on n and fixed problem
parameters.
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2.2. Adversarially Robust Stability Certificates

We now consider the stability certification problem under the presence of adversarial perturbations.
Consider the following two tubes of perturbed trajectories1:

∆u
ε (ξ) :=

{
φ̃ : ˙̃φt = f(φ̃t) + δt, φ̃0 = ξ, ∥δt∥2 ⩽ ε, t 7→ δt is locally integrable

}
, (5)

∆x
ε (ξ) :=

{
φ̃ : ˙̃φt = f(φ̃t) + δ(φ̃t), φ̃0 = ξ, ∥δ(φ̃t)∥2 ⩽ ε ∥φ̃t∥2

}
. (6)

Intuitively, ∆u
ε (ξ) is the tube of perturbed trajectories initialized at ξ for which an additive

adversary has an instantaneous norm budget of ε to perturb the dynamics. Analogously, ∆x
ε (ξ) is

the tube of perturbed trajectories initialized at ξ for which the adversary satisfies ε-linear growth.
We refer adversaries of the form (5) as norm-bounded, and adversaries of the form (6) as Lipschitz
(noting the slight misnomer). Indeed, given δ(0) = 0, δ(x) being ε-Lipschitz implies ε-linear
growth. The norm-bounded adversary can be used to capture small disturbances to the dynamics,
such as process noise, while the Lipschitz adversary can be used to capture model error between the
training and test trajectories. We also define an adversary that is the linear combination of the norm-
bounded and Lipschitz adversaries, which leads to the following tube of perturbed trajectories:

∆x,u
εx,εu(ξ) := {φ̃ : φ̃t = f(φ̃t) + δx(φ̃t) + δut , φ̃0 = ξ, ∥δx(φ̃t)∥2 ⩽ εx ∥φ̃t∥2 , ∥δ

u
t ∥2 ⩽ εu}.

(7)

Here, the δut are additionally assumed to be locally integrable with respect to t. The tube (7) of
perturbed trajectories defines a natural way of capturing the sim-to-real gap through the effects of
both unmodeled dynamics (δx) and process noise (δu).

In order to accommodate additive disturbances in our stability analysis, we modify the violation
function (1) to certify practical stability (Lin et al., 1995), i.e., convergence to a ball about the
origin. To that end, for ν ⩾ 0, define the adversarial violation function:

h̃ν(ξ, V ) := sup
φ̃∈∆ε

sup
t∈T

〈
∇V (φ̃t(ξ)), ˙̃φt(ξ)

〉
+ ηV (φ̃t(ξ))− ν. (8)

With this definition, finding an adversarially robust certificate of practical stability from data can be
posed as solving the following feasibility problem analogous to (3):

FindV ∈V s.t. h̃ν(ξi, V ) ⩽ −τ, i = 1, . . . , n. (9)

Letting Ṽn be the solution to (9), we consider the analogous generalization error to (4):

err(Ṽn) := Pξ∼D

[
h̃ν

(
ξ, Ṽn

)
> 0
]
. (10)

Our goal is to show that the fast rates Õ(k/n) enjoyed in the nominal setting are preserved in the
adversarial setting when the underlying system satisfies certain incremental stability conditions.

1. Existence, uniqueness, and completeness of the perturbed trajectories over the interval [0, T ] can be guaranteed under
various assumptions. As an example, the set (5) is well-defined if f(x) is assumed to be continuous in x and input-
to-state stable such that φ̃t ∈ S for all t ⩾ 0 (Sontag, 2013, Prop. C.3.5). Similarly, the set (6) is well-defined if
we additionally assume that f(x) is globally Lipschitz in x (Sontag, 2013, Prop. C.3.8). We note that alternative
assumptions on f(x) + δ(x) can be used to ensure completenes, e.g., that f(x) + δ(x) is stable in the sense of
Lyapunov for all admissible δ.
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3. Sample Complexity of Learning Adversarially Robust Stability Certificates

We first introduce our main stability assumption on the system dynamics.

Assumption 1 (Stability in the sense of Lyapunov) Fix a perturbation set ∆ε(·). There exists a
compact set S ⊆ Rp such that φ̃t(ξ) ∈ S for all ξ ∈ X , t ∈ T , and φ̃t(·) ∈ ∆ε(ξ).

For norm-bounded adversaries (5), this assumption is satisfied if the underlying nominal dynamics
are input-to-state stable (Lin et al., 1995). For Lipschitz (6) and combined (7) adversaries, additional
care must be taken to ensure that f(x)+δx(x) remains input-to-state stable for all admissible δx(x).

We further make the following regularity assumptions on the certificate function class V .

Assumption 2 (Regularity of V) There exists constants LV , L∇V such that for every V ∈ V , the
maps x 7→ V (x) and x 7→ ⟨∇V (x), f(x)⟩ over x ∈ S are LV and L∇V -Lipschitz, respectively.

Under Assumptions 1 and 2 and the continuity of the nominal dynamics f(x), there exist constants
BV , B∇V , and Bh̃ such that

sup
V ∈V

sup
x∈S

|V (x)| ⩽ BV , sup
V ∈V

sup
x∈S

∥∇V (x)∥2 ⩽ B∇V , sup
V ∈V

sup
ξ∈X

∣∣∣h̃(ξ, V )
∣∣∣ ⩽ Bh̃.

Finally let ∥V ∥V := supx∈S

∥∥∥∥[ V (x)
∇V (x)

]∥∥∥∥
2

denote the supremum norm on the space V .

Borrowing from the key insight in Boffi et al. (2020a), we observe that any feasible solution Ṽn

to (9) achieves zero empirical risk on the loss ℓ̃n(V ) := 1
n

∑n
i=1 1

{
h̃(ξi, V ) > −τ

}
. Therefore,

results from statistical learning theory regarding zero empirical risk minimizers can be applied to
get fast rates for the generalization error. To do so, we define the adversarial loss class H̃ :={
h̃(·, V ), V ∈ V

}
. Lemma 4.1 from Boffi et al. (2020a), which is in turn adapted from Theorem 5

of Srebro et al. (2010), immediately gives the following bound on the generalization error.

Lemma 1 (Generalization error bound) Fix a δ ∈ (0, 1). Let us assume Assumptions 1 and 2.
Suppose that the optimization problem (9) is feasible and Ṽn is a solution. Then the following holds
with probability at least 1− δ over ξ1, . . . , ξn drawn i.i.d. from D:

err
(
Ṽn

)
⩽ K

(
log3(n)

τ2
R2

n(H̃) +
log
(
log
(
Bh̃/τ

)
/δ
)

n

)
, (11)

where K > 0 is a universal constant and

Rn(H̃) := sup
ξ1,...,ξn∈X

Eσ∼Unif{±1}n

[
sup

h̃(·,V )∈H̃

1

n

∣∣∣∣∣
n∑

i=1

σih̃(ξi, V )

∣∣∣∣∣
]

is the Rademacher complexity of the adversarial loss class H̃.

Lemma 1 reduces bounding the generalization error of an adversarially robust stability certificate
to bounding the Rademacher complexity of the adversarial loss class H̃. We note that the nominal
results of Boffi et al. (2020a, Lemma 4.1) are recovered by setting the perturbation budget ε = 0.
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3.1. A Simple Adversary-Agnostic Rademacher Complexity Bound

A standard technique for controlling the Rademacher complexity R(H̃) is appealing to Dudley’s
entropy integral (Wainwright, 2019, Ch 5.). Specifically, if we show that for some Lh̃,∣∣∣h̃(ξ, V1)− h̃(ξ, V2)

∣∣∣ ⩽ Lh̃ ∥V1 − V2∥V ∀ξ ∈ X , V1, V2 ∈ V,

then Dudley’s inequality implies the bound Rn(H̃) ⩽
24Lh̃√

n

∫∞
0

√
logN(ε;V, ∥·∥V) dε. Our first

result shows that our main assumptions are sufficient to ensure that Lh̃ can be controlled with a
uniform boundedness assumption on the adversary.

Lemma 2 (Uniformly bounded adversaries are sufficient) Suppose that (i) Assumptions 1 and
2 hold, (ii) Bδ := supx∈S supt∈T ∥δ(t, x)∥2 is finite, and (iii) the flow φ̃t(ξ) is unique and com-
plete over T for all ξ ∈ X and all admissible δ(x, t). Let Lh denote any constant such that
|h(ξ, V1)− h(ξ, V2)| ⩽ Lh ∥V1 − V2∥V for all ξ ∈ X and V1, V2 ∈ V . Then, Lh̃ ⩽ Lh +Bδ.

Lemma 2 shows that if the nominal system is input-to-state stable and if the adversary is uniformly
bounded over the set S from Assumption 1, then by Dudley’s inequality, the Rademacher complex-
ity Rn(H̃) is on the same order as the nominal complexity Rn(H). Consequently by Lemma 1, the
adversarial generalization bound err(Ṽn) is on the same order as the nominal bound err(V̂n). We
show next that with stronger assumptions on the stability of the dynamics, we can obtain bounds on
Rn(H̃) that are additive, rather than muliplicative, with respect to the nominal complexity Rn(H).
Furthermore, these bounds are also robust to Lipschitz adversarial perturbations.

3.2. Improving the Adversarial Rademacher Complexity via Stability

To improve the bound from Lemma 2, we first adapt a fundamental fact from the calculus of
Rademacher complexities (Bartlett and Mendelson, 2002, Thm. 12, Property 5), along with the
trivial observation that h̃(·, V ) = h(·, V ) +

(
h̃(·, V )− h(·, V )

)
to conclude that:

Rn(H̃) ⩽ Rn(H) + sup
ξ∈X

sup
V ∈V

1√
n

∣∣∣h̃(ξ, V )− h(ξ, V )
∣∣∣. (12)

Therefore, in order to bound Rn(H̃), it suffices to uniformly bound h̃(ξ, V )− h(ξ, V ) over ξ ∈ X
and V ∈ V . To do so, we introduce the notion of (β, ρ, γ)-exponential-incrementally-input-to-state
stability (Angeli, 2002; Boffi et al., 2020b).

Definition 3 ((β, ρ, γ)-E-δISS) Let β, ρ, γ > 0 be positive constants. A continuous-time dynam-
ical system ẋ = f(x, t) is (β, ρ, γ)-exponential-incrementally-input-to-state stable ((β, ρ, γ)-E-
δISS) if, for any pair of initial conditions (x0, y0) and signal u(t) – which can depend causally on
x, y – the trajectories ẋ(t) = f(x(t)) and ẏ(t) = f(y(t)) + u(t) satisfy for all t ⩾ 0:

∥xt − yt∥2 ⩽ β ∥x0 − y0∥2 e
−ρt + γ

∫ t

0
e−ρ(t−s) ∥us∥2 ds.

In short, the dependence of the distance between two trajectories on the initial conditions shrinks
exponentially with time (incremental stability), and is input-to-state stable with respect to the inputs
entering yt. This notion of stability is strongly related to notion of contraction (Lohmiller and
Slotine, 1998), as illustrated by the following lemma.
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Lemma 4 (Contraction implies E-δISS) Let M(x, t) denote a positive definite Riemannian met-
ric and f(x, t) denote a continuous-time dynamical system. Suppose both M and f are continuously
differentable, and that there are constants 0 < µ ⩽ L < ∞ and λ > 0 such that for all x ∈ Rn and
t ∈ R⩾0, the metric M(x, t) satisfies µI ≼ M(x, t) ≼ LI , and the function f(x, t) satisfies:

∂f

∂x
(x, t)⊤M(x, t) +M(x, t)

∂f

∂x
(x, t) + Ṁ(x, t) ≼ −2λM(x, t).

Then, the dynamical system ẋ = f(x, t) is (
√
L/µ, λ,

√
L/µ)-E-δISS.

Lemma 4 is the analogous result of Proposition 5.3 of Boffi et al. (2020b) for continuous-time
systems. We note that this result originally appeared in (Lohmiller and Slotine, 1998, Section
3.7, Remark (vii)) without proof. Leveraging (β, ρ, γ)-E-δISS, we can derive a uniform bound
on |h̃(ξ, V ) − h(ξ, V )| that scales with the stability parameters of the underlying system, which
combined with inequality (12) yields the following bounds on Rn(H̃) for the tubes (5)-(7).

Theorem 5 (E-δISS yields additive bounds) Put BX := supξ∈X ∥ξ∥2, let Assumption 2 hold,
and assume that the nominal system f(x) is (β, ρ, γ)-E-δISS. Then for

• adversarial trajectories drawn from the norm-bounded tube ∆u
ε (ξ) defined in (5), Assump-

tion 1 holds and

Rn(H̃) ⩽ Rn(H) +
[
(L∇V + ηLV )γερ

−1 +B∇V ε+ ν
] 1√

n
, (13)

• adversarial trajectories drawn from the Lipschitz tube ∆x
ε (ξ) defined in (6), if ε > 0 is small

enough such that γε < ρ, then Assumption 1 holds and

Rn(H̃) ⩽ Rn(H) +

[
(L∇V + ηLV +B∇V ε)

γερ−1

1− γερ−1
e−1BXβε

+B∇V BXβε+ ν

]
1√
n
, (14)

• adversarial trajectories drawn from the combined tube ∆x,u
εx,εu defined in (7), if εx > 0 is

small enough such that γεx < ρ, then Assumption 1 holds and

Rn(H̃) ⩽ Rn(H) +

[
(L∇V + ηLV +B∇V εx)

γεuρ
−1 + γεxρ

−1e−1BXβεx
1− γεxρ−1

+B∇V βεxBX +B∇V εu + ν

]
1√
n
. (15)

In particular, Theorem 5 shows that Rn(H̃) ⩽ Rn(H) + O(1) 1√
n

for all the aforementioned
adversary classes. Here, O(1) suppresses all problem specific constants. This demonstrates that
under the assumptions of Theorem 5, the Rademacher complexity of the resulting adversarial loss
class is no more than an additive factor of order O(1/

√
n) greater than the Rademacher complexity

class of the nominal loss class. Because a typical scaling of Rn(H) ≍
√
k/n where k is the

effective degrees of freedom of V , the O(1/
√
n) term is often negligible compared to Rn(H).

The bounds in Theorem 5 involving the Lipschitz adversary are only valid when the denominator
1− γερ−1 is positive, hence the necessary assumption that γε < ρ. This is a necessary assumption;
when the budget for the Lipschitz adversary is too large, then an adversary can cause the system
to diverge exponentially. To illustrate this, consider the scalar system ẋ = −ρx, which we can
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verify is (1, ρ, 1)-E-δISS, perturbed by a ε-Lipschitz adversary that adds εx to the dynamics such
that ẏ = −(ρ− ε)y. If ε > ρ, then the perturbed trajectory will diverge away from 0 exponentially
and we cannot hope to find a uniform bound on h̃(ξ, V )− h(ξ, V ) for all t.

We conclude this section with an important example of a certificate function class and its asso-
ciated Rademacher complexities. This example further highlights that the additive O(1/

√
n) factor

is comparatively negligible for many certificate function classes of interest.

Example 1 (Lipschitz Parametric Function Classes) Consider the parametric function class

V =
{
Vθ(·) = g(·, θ) : θ ∈ Rk, ∥θ∥ ⩽ Bθ

}
, (16)

where we assume g : Rp × Rk → R is twice-continuously differentiable. The description (16)
is very general; for example, feed-forward neural networks with differentiable activation functions
and sum-of-squares polynomials lie in this function class. It is shown in Boffi et al. (2020a) that
Rn(H) = O(

√
k/n). Combining this with Theorem 5, we conclude that

Rn(H̃) ⩽ Rn(H) +O(1/
√
n) = O(

√
k/n).

4. Learning Adversarially Robust Certificates in Practice

In this section, we illustrate the practicality and effectiveness of learning adversarial certificates. We
consider the damped pendulum with dynamics mℓ2θ̈+ bθ̇+mgℓ sin(θ) = 0, where we set m = 1,
ℓ = 1, b = 2, and g = 9.81. The state space is given by x = (θ, θ̇) ∈ R2 with stable equilibrium is
at the origin and we wrap θ to the interval (−π, π]. Consider the following certificate function class

V =
{
Vθ(x) = x⊤

(
Lθ(x)

⊤Lθ(x) + I
)
x, θ ∈ Rp×h×h×p·(2p)

}
, (17)

where Lθ(x) ∈ R2p×p is the re-shaped output of a fully-connected neural network with 2 hidden
layers of width h = 20 and tanh activations.

We first demonstrate the robustness properties of an adversarially trained Lyapunov function
versus a nominal one. We collect n = 1000 trajectories with randomly sampled initial conditions
ξ ∼ Unif

(
[−2, 2]2

)
. Each trajectory is rolled out using scipy.integrate.solve ivp with

horizon T = 8 and dt = 0.05, such the size of the total dataset is 1000× 160× 2. Following Boffi
et al. (2020a), the nominal Lyapunov function Vnom is learned by minimizing the surrogate loss

L(θ; η, λ) =
1000∑
i=1

160∑
k=1

ReLU[⟨∇Vθ(xi(k)), ẋi(k))⟩+ ηVθ(xi(k))] + λ ∥θ∥22 , (18)

where we set the exponential rate η = 0.4 and regularization parameter λ = 0.1. The loss is
minimized for 1000 epochs with Adam (Kingma and Ba, 2015) with cosine decay, initialized at
step size 0.005, and batch size 1000.

Solving for the adversarially robust Lyapunov function is challenging due to the inner max-
imization problem over perturbations entering through the dynamics. As is standard in the ad-
versarial learning literature, we instead approximate the true adversarially robust loss function via
an alternating scheme, summarized in Algorithm 1. We set m = 10, and each inner minimiza-
tion of L(θ; η, λ) runs for 100 epochs. The approximate adversarial computation uses a simple
greedy heuristic: at any x, the maximal direction to increase the Lyapunov decrease condition
⟨∇V (x), f(x) + δ⟩+ηV (x) is δ = c∇V (x), where c > 0 is a normalizing factor to adjust δ for the
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adversarial budget ε. In this experiment, we use the Lipschitz adversary, and thus c = ε
∥x∥2

∥∇V (x)∥2
.

We note that Algorithm 1 does not necessarily compute optimal adversarial perturbations, and there-
fore the output Vadv can only be less robust than the true adversarially robust function Ṽn. Neverthe-
less, Vadv performs well in the face of practically relevant perturbations to the system, highlighting
the benefit of adversarial training.

Algorithm 1: Training adversarially robust Lyapunov function Vadv (Lipschitz adversary)
Input: Initial conditions {ξi}ni=1, rate η > 0, adversarial budget ε > 0, alternations m.

1 Compute nominal trajectories T = {x(ξi)}ni=1.
2 for i = 1, ...,m− 1 do
3 Minimize L(θ; η, λ) with respect to T to get V .

4 Re-compute T using dynamics ẋi(t) = f(xi(t)) + ε
∥xi(t)∥2

∥∇V (xi(t))∥2
∇V (xi(t)), xi(0) = ξi.

5 end
6 Minimize L(θ; η, λ) with respect to T to get V .

Output: Adversarially trained Lyapunov function Vadv = V .

We assess the robustness of the nominal and robust certificates Vnom and Vadv by measuring how
well they certify stability on various classes of perturbed trajectories. We first draw an additional
test set of n = 1000 initial conditions from Unif

(
[−2, 2]2

)
. For each class of perturbation, we vary

the decrease rate parameter η ∈ [0, 1] (recall that the certificates Vnom and Vadv were trained with
decrease rate η = 0.4) and measure both the proportion of whole trajectories as well as the total
proportion of the 1000× 160 states that satisfy the Lyapunov decrease condition with rate η.

0 1 2 3 4 5 6 7 8
Time (s)

10 3

10 2

10 1

100

St
at

e 
no

rm

nominal
greedy perturbation
linearized system
radial perturbation
perturbed parameters

Figure 1: Norm of pendulum state over time starting
at a fixed initial condition, for nominal and perturbed
trajectories perturbed as described in Section 4.

We consider the following four classes of
perturbed trajectories:

1. ẋ = f(x)+ε
∥x∥2

∥∇Vadv(x)∥2
∇Vadv(x), anal-

ogous to the adversarial training process,

2. ẋ = f(x) + εx, which is a Lipschitz ad-
versary that aims to greedily maximize
∥x(t)∥22 at any given time t,

3. the dynamics resulting from using the
linearization of the damped pendulum at
the origin to generate the trajectories, and

4. the dynamics resulting from setting m̃ =
ℓ̃ = 1.1 instead of m = ℓ = 1.

The perturbation class 1 acts in the direction ∇Vadv, and thus the perturbed trajectories are tuned
to degrade the performance of Vadv. Additionally, the perturbation classes 3 and 4 can be viewed as
instances of the sim-to-real gap, where there are model discrepancies between training and test.

Figure 2 plots the resulting Lyapunov decrease satisfaction rates for each type of perturbation.
We observe that for each type of perturbation, the nominal certificate Vnom fails to certify a signif-
icant proportion of trajectories when η = 0.4. In contrast, the robust certificate Vadv certifies all
trajectories for decrease rate η = 0.4. We further observe that the robust certificate is also able to
certify faster decrease rates as well. Finally, we note that the trajectories resulting from perturbed

9
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Figure 2: Satisfaction rate of the Lyapunov decrease condition versus the exponential rate parameter η of
nominal and adversarially trained certificates Vnom and Vadv for four classes of perturbed trajectories. The
percentage of trajectories and of total points satisfying the Lyapunov decrease condition for Vnom and Vadv

are shown. Both Vnom and Vadv were trained with η = 0.4. Trajectories were generated by rolling out a fixed
set of 1000 initial conditions sampled from Unif

(
[−2, 2]2

)
. Upper left: dynamics generated from gradient

ascent on the adversarial certificate Vadv, ẋ = f(x) + ε ∥x∥
∥∇Vadv∥∇Vadv. Upper right: dynamics generated

from a radial perturbation, ẋ = f(x)+ εx. Lower left: dynamics generated from system linearized at origin,
ẋ = J(0,0)x. Lower right: dynamics generated from perturbing the pendulum parameters, m̃ = 1.1, ℓ̃ = 1.1.

pendulum parameters (perturbation class 4) actually cause the system to be more unstable than the
greedy perturbations (perturbation class 1) used during training (see Figure 1). Nevertheless, the
robust certificate Vadv is able to certify stability for a large range of η.

5. Conclusion

Motivated by bridging the sim-to-real gap, we proposed and analyzed an approach to learning ad-
versarially robust Lyapunov certificates. We showed that for systems that enjoy exponential incre-
mental input-to-state stability, stability certificate functions that are robust to norm-bounded and
Lipschitz adversarial perturbations to the system dynamics can be learned with negligible statis-
tical overhead as compared to the nominal case. Future research directions include exploring the
statistical tradeoffs occurring from progressively weaker notions of stability (e.g., incremental gain
stability as defined in Tu et al. (2021)), providing approximation guarantees for the adversarial train-
ing algorithm proposed in Section 4, and extending our results to provide statistical guarantees for
policies synthesized from robust certificate functions (Lindemann et al., 2021; Taylor et al., 2021).
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