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Supplementary Material
Here we provide complete proofs of our hardness results stated in the main body of

the paper. We use a technique from (Kearns and Li, 1993) called the method of induced
distributions. The idea is to construct two distributions that are sufficiently different, yet
can be made indistinguishable by the adversary. Then no learner can “guess” the underlying
distribution with high probability and so any learner will incur high loss and/or exhibit high
unfairness on at least one of the two distributions, regardless of the amount of available
data. The proofs of the four results use the same technique and are structured in a similar
way, with the key challenge being to design the corresponding constructions of the learning
problem, that is, of the hypothesis space, the distributions and the adversaries. These
constructions are in each case tailored to the fairness measure and the type of bound we
want to show.

Appendix A. Pareto lower bounds proofs

Theorem 1 Let 0 ≤ α < 0.5, 0 < P0 ≤ 0.5. For any input set X with at least four
distinct points, there exists a finite hypothesis space H, such that for any learning algorithm
L : ∪n∈N(X × A × Y)n → H, there exists a distribution P for which P(A = 0) = P0, a
malicious adversary A of power α and a hypothesis h∗ ∈ H, such that with probability at
least 0.5

L(L(Sp),P)− L(h∗,P) ≥ min

{
α

1− α
, 2P0(1− P0)

}
and

Dpar(L(Sp),P)−Dpar(h∗,P) ≥ min

{
α

2P0(1− P0)(1− α)
, 1

}
≥ min

{
α

2P0
, 1

}
.

Proof Let η = α
1−α , so that α = η

1+η .

Case 1 First assume that η = α
1−α ≤ 2P0(1−P0). Take 4 distinct points {x1, x2, x3, x4} ∈

X . We consider 2 distributions P0 and P1, where each Pi is defined as

Pi(x, a, y) =



1− P0 − η/2 if x = x1, a = 1, y = 1

P0 − η/2 if x = x2, a = 0, y = 0

η/2 if x = x3, a = i, y = ¬i
η/2 if x = x4, a = ¬i, y = i

0 otherwise

Here we use the ¬ notation to denote negation, so that ¬i = 1 if i = 0 and ¬i = 0 if
i = 1. Note that these are valid distributions, since η ≤ 2P0(1− P0) ≤ 2P0 ≤ 2(1− P0) by
assumption and also that P0 = Pi(A = 0) for both i ∈ {0, 1}. Consider the hypothesis space
H = {h0, h1}, with

h0(x1) = 1 h0(x2) = 0 h0(x3) = 1 h0(x4) = 0
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and

h1(x1) = 1 h1(x2) = 0 h1(x3) = 0 h1(x4) = 1.

Note that L(hi,Pi) = 0 for both i = 0, 1. Moreover,

Dpar(h0,P0) =
∣∣P(X,A,Y )∼P0

(h0(X) = 1|A = 0)− P(X,A,Y )∼P0
(h0(X) = 1|A = 1)

∣∣
=

∣∣∣∣ η/2

P0 − η/2 + η/2
− 1− P0 − η/2

1− P0 − η/2 + η/2

∣∣∣∣
=

∣∣∣∣ η

2P0
− 2− 2P0 − η

2(1− P0)

∣∣∣∣
=

∣∣∣∣ η

2P0(1− P0)
− 1

∣∣∣∣
= 1− η

2P0(1− P0)
,

since η ≤ 2P0(1− P0) by assumption. Furthermore,

Dpar(h1,P0) =
∣∣P(X,A,Y )∼P0

(h1(X) = 1|A = 0)− P(X,A,Y )∼P0
(h1(X) = 1|A = 1)

∣∣
= |0− 1|
= 1

Therefore, Dpar(h1,P0)−Dpar(h0,P0) =
η

2P0(1−P0)
. Similarly,

Dpar(h1,P1) =
∣∣P(X,A,Y )∼P1

(h1(X) = 1|A = 0)− P(X,A,Y )∼P1
(h1(X) = 1|A = 1)

∣∣
=

∣∣∣∣ η/2

P0 − η/2 + η/2
− 1− P0 − η/2

1− P0 − η/2 + η/2

∣∣∣∣
= 1− η

2P0(1− P0)

and

Dpar(h0,P1) =
∣∣P(X,A,Y )∼P1

(h0(X) = 1|A = 0)− P(X,A,Y )∼P1
(h0(X) = 1|A = 1)

∣∣
= |0− 1|
= 1,

so that Dpar(h0,P1)−Dpar(h1,P1) =
η

2P0(1−P0)
.

Consider a (randomized) malicious adversary Ai of power α, that given a clean distri-
bution Pi, changes every marked point to (x3,¬i, i) with probability 0.5 and to (x4, i,¬i)
otherwise. Under a distribution Pi and an adversary Ai, the probability of seeing a point
(x3, i,¬i) is η

2 (1 − α) = η
2

1
1+η = α/2, which is equal to the probability of seeing a point

(x3,¬i, i). Therefore, denoting the probability distribution of the corrupted dataset, under a
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clean distribution Pi and an adversary Ai, by P′
i (as a shorthand for PAi

i ), we have

P′
i(x, a, y) =



(1− α)(1− P0 − η/2) if x = x1, a = 1, y = 1

(1− α)(P0 − η/2) if x = x2, a = 0, y = 0

α/2 if x = x3, a = i, y = ¬i
α/2 if x = x3, a = ¬i, y = i

α/2 if x = x4, a = ¬i, y = i

α/2 if x = x4, a = i, y = ¬i
0 otherwise

In particular, P′
0 = P′

1, so the two initial distributions P0 and P1 become indistinguishable
under the adversarial manipulation.

Fix an arbitrary learner L : ∪n∈N(X × A × Y)n → {h0, h1}. Note that, if the clean
distribution is P0, the events (in the probability space defined by the sampling of the poisoned
train data)

{L(L(Sp),P0)− L(h0,P0) ≥ η} = {L(Sp) = h1}

=

{
Dpar(L(Sp),P0)−Dpar(h0,P0) ≥

η

2P0(1− P0)

}
are all the same. Similarly, if the clean distribution is P1

{L(L(Sp),P1)− L(h1,P1) ≥ η} = {L(Sp) = h0}

=

{
Dpar(L(Sp),P1)−Dpar(h1,P1) ≥

η

2P0(1− P0)

}
.

Therefore, depending on whether we choose P0 or P1 as a clean distribution, we have

PSp∼P′
0

(
(L(L(Sp),P0)− L(h0,P0) ≥ η) ∧

(
Dpar(L(Sp),P0)−Dpar(h0,P0) ≥

η

2P0(1− P0)

))
= PSp∼P′

0
(L(Sp) = h1)

and

PSp∼P′
1

(
(L(L(Sp),P1)− L(h1,P1) ≥ η) ∧

(
Dpar(L(Sp),P1)−Dpar(h1,P1) ≥

η

2P0(1− P0)

))
= PSp∼P′

1
(L(Sp) = h0)

Finally, note that P′
0 = P′

1, so that either PSp∼P′
0
(L(Sp) = h1) ≥ 1/2 or PSp∼P′

1
(L(Sp) = h0) ≥

1/2. Therefore, for at least one of i = 0, 1, both

L(L(Sp),Pi)− L(hi,Pi) ≥ η =
α

1− α

and
Dpar(L(Sp),Pi)−Dpar(hi,Pi) ≥

η

2P0(1− P0)
=

α

2P0(1− P0)(1− α)

both hold with probability at least 1/2 when the choice of distribution and adversary is Pi

and Ai respectively. This concludes the proof in the first case.
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Case 2 Now suppose that η = α
1−α > 2P0(1 − P0). Let α1 ∈ (0, 0.5) be such that

α1
1−α1

= 2P0(1− P0). Note that since f(x) = x
1−x is monotonically increasing in (0,1), α1 is

unique and α1 < α.

Now repeat the same construction as in Case 1, but with η1 = α1
1−α1

= 2P0(1 − P0).
For every marked point, the adversary does the same as in Case 1 with probability α1/α
and does not change the point otherwise. Then the same argument as in Case 1 shows that
for one i ∈ {0, 1}, both

L(L(Sp),Pi)− L(hi,Pi) ≥ η1 =
α1

1− α1
= 2P0(1− P0)

and
Dpar(L(Sp),Pi)−Dpar(hi,Pi) ≥

η1
2P0(1− P0)

= 1

both hold with probability at least 1/2. This concludes the proof of Theorem 1.

Theorem 2 Let 0 ≤ α < 0.5, P10 ≤ P11 < 1 be such that P10 + P11 < 1. For any input set
X with at least five distinct points, there exists a finite hypothesis space H, such that for
any learning algorithm L : ∪n∈N(X ×A× Y)n → H, there exists a distribution P for which
P(A = a, Y = 1) = P1a for a ∈ {0, 1}, a malicious adversary A of power α and a hypothesis
h∗ ∈ H, such that with probability at least 0.5

L(L(Sp),P)− L(h∗,P) > min

{
α

1− α
, 2P10, 2(1− P10 − P11)

}
and

Dopp(L(Sp),P)−Dopp(h∗,P) ≥ min

{
α

2(1− α)P10
, 1,

1− P10 − P11

P10

}
.

Proof Let η = α
1−α , so that α = η

1+η .

Case 1 Assume that η = α
1−α ≤ 2min{P10, 1 − P10 − P11}. Take 5 distinct points

{x1, x2, x3, x4, x5} ∈ X . We consider 2 distributions P0 and P1, where each Pi is defined as

Pi(x, a, y) =



P11 if x = x1, a = 1, y = 1

P10 − η/2 if x = x2, a = 0, y = 1

η/2 if x = x3, a = i, y = ¬i
η/2 if x = x4, a = ¬i, y = i

1− P10 − P11 − η/2 if x = x5, a = 0, y = 0

0 otherwise

Note that these are valid distributions, since η ≤ 2P10, η ≤ 2(1− P10 − P11) by assumption,
and that P1a = Pi(A = a, Y = 1) for both a ∈ {0, 1}, i ∈ {0, 1}. Consider the hypothesis
space H = {h0, h1}, with

h0(x1) = 1 h0(x2) = 1 h0(x3) = 1 h0(x4) = 0 h0(x5) = 0
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and
h1(x1) = 1 h1(x2) = 1 h1(x3) = 0 h1(x4) = 1 h1(x5) = 0

Note that L(hi,Pi) = 0 and Dopp(hi,Pi) = 0 for both i = 0, 1. Note also that L(h1,P0) =
L(h0,P1) = η. Moreover,

Dopp(h1,P0) =
∣∣P(X,A,Y )∼P0

(h1(X) = 1|A = 0, Y = 1)− P(X,A,Y )∼P0
(h1(X) = 1|A = 1, Y = 1)

∣∣
=

∣∣∣∣ P10 − η/2

P10 − η/2 + η/2
− 1

∣∣∣∣
=

η

2P10

and similarly Dopp(h0,P1) =
η

2P10
.

Consider a (randomized) malicious adversary Ai of power α, that given a clean distri-
bution Pi, changes every marked point to (x3,¬i, i) with probability 0.5 and to (x4, i,¬i)
otherwise. Under a distribution Pi and an adversary Ai, the probability of seeing a point
(x3, i,¬i) is η

2 (1 − α) = η
2

1
1+η = α/2, which is equal to the probability of seeing a point

(x3,¬i, i). Therefore, denoting the probability distribution of the corrupted dataset, under a
clean distribution Pi and an adversary Ai, by P′

i, we have

P′
i(x, a, y) =



(1− α)P11 if x = x1, a = 1, y = 1

(1− α)(P10 − η/2) if x = x2, a = 0, y = 1

α/2 if x = x3, a = i, y = ¬i
α/2 if x = x3, a = ¬i, y = i

α/2 if x = x4, a = ¬i, y = i

α/2 if x = x4, a = i, y = ¬i
(1− α)(1− P10 − P11 − η/2) if x = x5, a = 0, y = 0

0 otherwise

In particular, P′
0 = P′

1, so the two initial distributions P0 and P1 become indistinguishable
under the adversarial manipulation.

Fix an arbitrary learner L : ∪n∈N(X × A × Y)n → {h0, h1}. Note that, if the clean
distribution is P0, the events (in the probability space defined by the sampling of the
poisoned train data)

{L(L(Sp),P0)− L(h0,P0) ≥ η} = {L(Sp) = h1} =

{
Dopp(L(Sp),P0)−Dopp(h0,P0) ≥

η

2P10

}
are all the same. Similarly, if the clean distribution is P1

{L(L(Sp),P1)− L(h1,P1) ≥ η} = {L(Sp) = h0} =

{
Dopp(L(Sp),P1)−Dopp(h1,P1) ≥

η

2P10

}
.

Therefore, depending on whether we choose P0 or P1 as a clean distribution, we have

PSp∼P′
0

(
L(L(Sp),P0)− L(h0,P0) ≥ η ∧ Dopp(L(Sp),P0)−Dopp(h0,P0) ≥

η

2P10

)
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= PSp∼P′
0
(L(Sp) = h1)

and

PSp∼P′
1

(
L(L(Sp),P1)− L(h1,P1) ≥ η ∧ Dopp(L(Sp),P1)−Dopp(h1,P1) ≥

η

2P10

)
= PSp∼P′

1
(L(Sp) = h0)

Finally, note that P′
0 = P′

1, so that either PSp∼P′
0
(L(Sp) = h1) ≥ 1/2 or PSp∼P′

1
(L(Sp) = h0) ≥

1/2. Therefore, for at least one of i = 0, 1, both

L(L(Sp),Pi)− L(hi,Pi) ≥ η =
α

1− α

and
Dopp(L(Sp),Pi)−Dopp(hi,Pi) ≥

η

2P10
=

α

2P10(1− α)

both hold with probability at least 1/2. This concludes the proof of the first case.

Case 2 Now assume that α
1−α > 2min {P10, 1− P10 − P11}. We distinguish two cases:

Case 2.1 Suppose that P10 ≤ 1− P10 − P11. We have that α
1−α > 2P10. Then, denote by

α1 the unique number between (0, 0.5), such that α1
1−α1

= 2P10 = 2min {P10, 1− P10 − P11},
and note that α1 < α. Then repeat the same construction as in Case 1, but with η1 = α1

1−α1

and an adversary that with probability α1/α does the same as in Case 1 and leaves a marked
point untouched otherwise.

Then the same argument as in Case 1 gives that for some i ∈ {0, 1}, with probability at
least 0.5, both of the following hold

L(L(Sp),Pi)− L(hi,Pi) ≥
α1

1− α1
= 2P10

and
Dopp(L(Sp),Pi)−Dopp(hi,Pi) ≥

η1
2P10

= 1.

Case 2.2 In the case when 1−P10−P11 < P10 we have that α
1−α > 2(1−P10−P11). Then,

denote by α2 the unique number between (0, 0.5), such that α2
1−α2

= 2(1 − P10 − P11) =
2min {P10, 1− P10 − P11}, and note that α2 < α. Then repeat the same construction as in
Case 1, but with η2 =

α2
1−α2

and an adversary that with probability α2/α does the same as
in Case 1 and leaves a marked point untouched otherwise.

Then the same argument as in Case 1 gives that for some i ∈ {0, 1}, with probability at
least 0.5, both of the following hold

L(L(Sp),Pi)− L(hi,Pi) ≥
α2

1− α2
= 2(1− P10 − P11)

and

Dopp(L(Sp),Pi)−Dopp(hi,Pi) ≥
η2

2P10
=

1− P10 − P11

P10
.

This concludes the proof of Theorem 2.
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Appendix B. Hurting fairness without affecting accuracy - proofs

Theorem 3 Let 0 ≤ α < 0.5, 0 < P0 ≤ 0.5. For any input set X with at least four
distinct points, there exists a finite hypothesis space H, such that for any learning algorithm
L : ∪n∈N(X × A × Y)n → H, there exists a distribution P for which P(A = 0) = P0, a
malicious adversary A of power α and a hypothesis h∗ ∈ H, such that with probability at
least 0.5

L(L(Sp),P) = L(h∗,P) = min
h∈H

L(h,P)

and

Dpar(L(Sp),P)−Dpar(h∗,P) ≥ min

{
α

2P0(1− P0)(1− α)
, 1

}
≥ min

{
α

2P0
, 1

}
.

Proof Let η = α
1−α , so that α = η

1+η .

Case 1 First assume that η = α
1−α ≤ 2P0(1−P0). Take 4 distinct points {x1, x2, x3, x4} ∈

X . We consider 2 distributions P0 and P1, where each Pi is defined as

Pi(x, a, y) =



1− P0 − η/2 if x = x1, a = 1, y = 1

P0 − η/2 if x = x2, a = 0, y = 0

η/2 if x = x3, a = i, y = 1

η/2 if x = x4, a = ¬i, y = 1

0 otherwise

Note that these are valid distributions, since η ≤ 2P0(1 − P0) ≤ 2P0 ≤ 2(1 − P0) by
assumption and also that P0 = Pi(A = 0) for both i ∈ {0, 1}. Consider the hypothesis space
H = {h0, h1}, with

h0(x1) = 1 h0(x2) = 0 h0(x3) = 1 h0(x4) = 0

and

h1(x1) = 1 h1(x2) = 0 h1(x3) = 0 h1(x4) = 1.

Note that L(hi,Pi) = L(h¬i,Pi) = η/2 for both i = 0, 1. Moreover,

Dpar(h0,P0) =
∣∣P(X,A,Y )∼P0

(h0(X) = 1|A = 0)− P(X,A,Y )∼P0
(h0(X) = 1|A = 1)

∣∣
=

∣∣∣∣ η/2

P0 − η/2 + η/2
− 1− P0 − η/2

1− P0 − η/2 + η/2

∣∣∣∣
=

∣∣∣∣ η

2P0
− 2− 2P0 − η

2(1− P0)

∣∣∣∣
=

∣∣∣∣ η

2P0(1− P0)
− 1

∣∣∣∣
= 1− η

2P0(1− P0)
,
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since η ≤ 2P0(1−P0) by assumption. Furthermore, Dpar(h1,P0) = 1, so that Dpar(h1,P0)−
Dpar(h0,P0) =

η
2P0(1−P0)

. Similarly,

Dpar(h1,P1) =
∣∣P(X,A,Y )∼P1

(h1(X) = 1|A = 0)− P(X,A,Y )∼P1
(h1(X) = 1|A = 1)

∣∣
=

∣∣∣∣ η/2

P0 − η/2 + η/2
− 1− P0 − η/2

1− P0 − η/2 + η/2

∣∣∣∣
= 1− η

2P0(1− P0)

and Dpar(h0,P1) = 1.

Consider a (randomized) malicious adversary Ai of power α, that given a clean distri-
bution Pi, changes every marked point to (x3,¬i, 1) with probability 0.5 and to (x4, i, 1)
otherwise. Under a distribution Pi and an adversary Ai, the probability of seeing a point
(x3, i, 1) is η

2 (1 − α) = η
2

1
1+η = α/2, which is equal to the probability of seeing a point

(x3,¬i, 1). Therefore, denoting the probability distribution of the corrupted dataset, under
a clean distribution Pi and an adversary Ai, by P′

i, we have

P′
i(x, a, y) =



(1− α)(1− P0 − η/2) if x = x1, a = 1, y = 1

(1− α)(P0 − η/2) if x = x2, a = 0, y = 0

α/2 if x = x3, a = i, y = 1

α/2 if x = x3, a = ¬i, y = 1

α/2 if x = x4, a = ¬i, y = 1

α/2 if x = x4, a = i, y = 1

0 otherwise

In particular, P′
0 = P′

1, so the two initial distributions P0 and P1 become indistinguishable
under the adversarial manipulation.

Fix an arbitrary learner L : ∪n∈N(X × A × Y)n → {h0, h1}. Note that, if the clean
distribution is P0, the events (in the probability space defined by the sampling of the poisoned
train data)

{L(Sp) = h1} =

{
Dpar(L(Sp),P0)−Dpar(h0,P0) ≥

η

2P0(1− P0)

}
are all the same. Similarly, if the clean distribution is P1

{L(Sp) = h0} =

{
Dpar(L(Sp),P1)−Dpar(h1,P1) ≥

η

2P0(1− P0)

}
.

Therefore, depending on whether we choose P0 or P1 as a clean distribution, we have

PSp∼P′
0

(
Dpar(L(Sp),P0)−Dpar(h0,P0) ≥

η

2P0(1− P0)

)
= PSp∼P′

0
(L(Sp) = h1)

and

PSp∼P′
1

(
Dpar(L(Sp),P1)−Dpar(h1,P1) ≥

η

2P0(1− P0)

)
= PSp∼P′

1
(L(Sp) = h0)
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Finally, note that P′
0 = P′

1, so that either PSp∼P′
0
(L(Sp) = h1) ≥ 1/2 or PSp∼P′

1
(L(Sp) = h0) ≥

1/2. Furthermore, L(L(Sp),Pi) = η/2 holds for both i ∈ {0, 1}, for any realization of the
randomness. Therefore, for at least one of i = 0, 1, both

L(L(Sp),Pi) = L(hi,Pi) =
η

2

and
Dpar(L(Sp),Pi)−Dpar(hi,Pi) ≥

η

2P0(1− P0)
=

α

2P0(1− P0)(1− α)

both hold with probability at least 1/2. This concludes the proof in the first case.

Case 2 Now suppose that η = α
1−α > 2P0(1 − P0). Let α1 ∈ (0, 0.5) be such that

α1
1−α1

= 2P0(1− P0). Note that since f(x) = x
1−x is monotonically increasing in (0,1), α1 is

unique and α1 < α.
Now repeat the same construction as in Case 1, but with η1 = α1

1−α1
= 2P0(1− P0). For

every marked point, the adversary does the same as in Case 1 with probability α1/α and
does not change the point otherwise. Then the same argument as in Case 1 shows that for
one i ∈ {0, 1}, both

L(L(Sp),Pi) = L(hi,Pi) =
η1
2

= P0(1− P0)

and
Dpar(L(Sp),Pi)−Dpar(hi,Pi) ≥

η1
2P0(1− P0)

= 1

both hold with probability at least 1/2. This concludes the proof of Theorem 3.

Theorem 4 Let 0 ≤ α < 0.5, P10 ≤ P11 < 1 be such that P10 + P11 < 1. For any input set
X with at least five distinct points, there exists a finite hypothesis space H, such that for
any learning algorithm L : ∪n∈N(X ×A× Y)n → H, there exists a distribution P for which
P(A = a, Y = 1) = P1a for a ∈ {0, 1}, a malicious adversary A of power α and a hypothesis
h∗ ∈ H, such that with probability at least 0.5

L(L(Sp),P) = L(h∗,P) = min
h∈H

L(h,P)

and

Dopp(L(Sp),P)−Dopp(h∗,P) ≥ min

{
α

2(1− α)P10

(
1− P10

P11

)
, 1− P10

P11

}
.

Proof Let η = α
1−α , so that α = η

1+η .

Case 1 First assume that η ≤ 2P10. Take 5 distinct points {x1, x2, x3, x4, x5} ∈ X . We
consider 2 distributions P0 and P1, where each Pi is defined as

Pi(x, a, y) =



P11 − η/2 if x = x1, a = 1, y = 1

P10 − η/2 if x = x2, a = 0, y = 1

η/2 if x = x3, a = i, y = 1

η/2 if x = x4, a = ¬i, y = 1

1− P10 − P11 if x = x5, a = 0, y = 0

0 otherwise
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Note that these are valid distributions, since η ≤ 2P10 ≤ 2P11 by assumption, and that
P1a = Pi(A = a, Y = 1) for both a ∈ {0, 1}, i ∈ {0, 1}. Consider the hypothesis space
H = {h0, h1}, with

h0(x1) = 1 h0(x2) = 1 h0(x3) = 1 h0(x4) = 0 h0(x5) = 0

and

h1(x1) = 1 h1(x2) = 1 h1(x3) = 0 h1(x4) = 1 h1(x5) = 0

Note that L(hi,Pi) = L(h¬i,Pi) = η/2. Moreover,

Dopp(h0,P0) =
∣∣P(X,A,Y )∼P0

(h1(X) = 1|A = 0, Y = 1)− P(X,A,Y )∼P0
(h1(X) = 1|A = 1, Y = 1)

∣∣
=

∣∣∣∣1− P11 − η/2

P11 − η/2 + η/2

∣∣∣∣
=

η

2P11

and similarly Dopp(h1,P0) =
η

2P10
. Since P10 ≤ P11, Dopp(h0,P0) ≤ Dopp(h1,P0) and

Dopp(h1,P0)−Dopp(h0,P0) =
η

2P10

(
1− P10

P11

)
.

SimilarlyDopp(h0,P1) =
η

2P10
andDopp(h1,P1) =

η
2P11

, so thatDopp(h1,P1) ≤ Dopp(h0,P1)
and

Dopp(h0,P1)−Dopp(h1,P1) =
η

2P10

(
1− P10

P11

)
.

Consider a (randomized) malicious adversary Ai of power α, that given a clean distribution
Pi, changes every marked point to (x3,¬i, 1) with probability 0.5 and to (x4, i, 1) otherwise.
Under a distribution Pi and an adversary Ai, the probability of seeing a point (x3, i, 1)
is η

2 (1 − α) = η
2

1
1+η = α/2, which is equal to the probability of seeing a point (x3,¬i, 1).

Therefore, denoting the probability distribution of the corrupted dataset, under a clean
distribution Pi and an adversary Ai, by P′

i, we have

P′
i(x, a, y) =



(1− α)(P11 − η/2) if x = x1, a = 1, y = 1

(1− α)(P10 − η/2) if x = x2, a = 0, y = 1

α/2 if x = x3, a = i, y = 1

α/2 if x = x3, a = ¬i, y = 1

α/2 if x = x4, a = ¬i, y = 1

α/2 if x = x4, a = i, y = 1

(1− α)(1− P10 − P11) if x = x5, a = 0, y = 0

0 otherwise

In particular, P′
0 = P′

1, so the two initial distributions P0 and P1 become indistinguishable
under the adversarial manipulation.
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Fix an arbitrary learner L : ∪n∈N(X × A × Y)n → {h0, h1}. Note that, if the clean
distribution is P0, the events (in the probability space defined by the sampling of the poisoned
train data)

{L(Sp) = h1} =

{
Dopp(L(Sp),P0)−Dopp(h0,P0) ≥

η

2P10

(
1− P10

P11

)}
are all the same. Similarly, if the clean distribution is P1

{L(Sp) = h0} =

{
Dopp(L(Sp),P1)−Dopp(h1,P1) ≥

η

2P10

(
1− P10

P11

)}
.

Therefore, depending on whether we choose P0 or P1 as a clean distribution, we have

PSp∼P′
0

(
Dopp(L(Sp),P0)−Dopp(h0,P0) ≥

η

2P10

(
1− P10

P11

))
= PSp∼P′

0
(L(Sp) = h1)

and

PSp∼P′
1

(
Dopp(L(Sp),P1)−Dopp(h1,P1) ≥

η

2P10

(
1− P10

P11

))
= PSp∼P′

1
(L(Sp) = h0)

Finally, note that P′
0 = P′

1, so that either PSp∼P′
0
(L(Sp) = h1) ≥ 1/2 or PSp∼P′

1
(L(Sp) = h0) ≥

1/2. Moreover, L(L(Sp),Pi) = L(hi,Pi) = η/2 holds for both i ∈ {0, 1}, for any realization
of the randomness. Therefore, for at least one of i = 0, 1, both

L(L(Sp),Pi) = L(hi,Pi) =
η

2

and

Dopp(L(Sp),Pi)−Dopp(hi,Pi) ≥
η

2P10

(
1− P10

P11

)
=

α

2P10(1− α)

(
1− P10

P11

)
both hold with probability at least 1/2. This concludes the proof in the first case.

Case 2 Now assume that α
1−α > 2P10. Then denote by α1 the unique number between

(0, 0.5), such that α1
1−α1

= 2P10, and note that α1 < α. Then repeat the same construction
as in Case 1, but with η1 = α1

1−α1
and an adversary that with probability α1/α does the

same as in Case 1 and leaves a marked point untouched otherwise.
Then the same argument as in Case 1 gives that for some i ∈ {0, 1}, with probability at

least 0.5, both of the following hold

L(L(Sp),Pi) = L(hi,Pi) =
η1
2

= P10

and

Dopp(L(Sp),Pi)−Dopp(hi,Pi) ≥
η1

2P10
=

η1
2P10

(
1− P10

P11

)
= 1− P10

P11
.

This concludes the proof of Theorem 4.
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