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1. Introduction

Trustworthy machine learning (ML) encompasses multiple fields of research, including (but
not limited to) robustness, algorithmic fairness, interpretability and privacy. Recently,
relationships between techniques and metrics used across different fields of trustworthy
ML have emerged, leading to interesting work at the intersection of algorithmic fairness,
robustness, and causality.

On one hand, causality has been proposed as a powerful tool to address the limitations
of initial statistical definitions of fairness (Kusner et al., 2017; Chiappa, 2019; Khademi
et al., 2019; Wu et al., 2019). However, questions have emerged regarding 1) the applica-
bility of such approaches due to strong assumptions inherent to causal questions (Kilbertus
et al., 2019) and 2) the suitability of a causal framing for studies of bias and discrimi-
nation (Kohler-Hausmann, 2019; Hu and Kohler-Hausmann, 2020; Kasirzadeh and Smart,
2021).

On the other hand, the robustness literature has surfaced promising approaches to im-
prove fairness in ML models. For instance, parallels can be shown between individual
fairness and local robustness guarantees (Yurochkin et al., 2019; Nanda et al., 2021; Xu
et al., 2021; Yeom and Fredrikson, 2020) or between group fairness metrics and robustness
to distribution shift (Veitch et al., 2021). Beyond similarities, the interactions between
fairness and robustness can help us understand how fairness guarantees hold under dis-
tribution shift (Singh et al., 2021; Subbaswamy and Saria, 2020) or adversarial/poisoning
attacks (Solans et al., 2020; Liu et al., 2021), leading to fair and robust ML models.

To encourage further work at the intersection of these fields, we organized The Algorith-
mic Fairness through the Lens of Causality and Robustness workshop (AFCR∗) as part of

∗https://www.afciworkshop.org/
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the Neural Information Processing Systems (NeurIPS†) conference in December 2021. Our
aim was to investigate how these different topics relate, but also how they can augment each
other to provide better or more suited definitions and mitigation strategies for algorithmic
fairness. Examples of questions we were interested in addressing at the workshop include:

• How can causally grounded fairness methods help develop more robust fairness algo-
rithms in practice?

• What is an appropriate causal framing in studies of discrimination?

• How do approaches for adversarial/poisoning attacks target algorithmic fairness?

• How do fairness guarantees hold under distribution shift?

2. Workshop

The AFCR workshop was held as a NeurIPS workshop on December 13th, 2021. In ac-
cordance with the virtual format of the conference, the program consisted in a mix of
pre-recorded and live events.

2.1. Program

AFCR 2021 featured invited talks by Elias Bareinboim (Columbia University), Rumi Chu-
nara (New York University), Silvia Chiappa (DeepMind), Isabel Valera (Saarland Uni-
versity), Aditi Raghunathan (UC Berkeley) and Hima Lakkaraju (Harvard University),
six spotlight talks from authors of papers accepted at the venue, a panel discussion with
Been Kim (Google Research), Ricardo Silva (University College London), Solon Barocas
(Microsoft Research) and Rich Zemel (University of Toronto), two poster sessions and
roundtable discussions. The latter consisted in live discussions between invited researchers
of mixed seniority and workshop attendees, held virtually. They engaged more than 50
researchers and covered the following themes:

• Causality for fairness. Invited researchers: Issa Kohler-Haussman (Yale University),
Matt Kusner (University College London), Maggie Makar (University of Michigan)
and Ioana Bica (University of Oxford).

• Robustness for fairness. Invited researchers: Silvia Chiappa (DeepMind), Alexander
D’Amour (Google Research) and Elliot Creager (University of Toronto).

• General fairness. Invited researchers: Isabel Valera (Saarland University), Ulrich
Aı̈vodji (ETS Montréal), Keziah Naggita (Toyota Technological Institute at Chicago)
and Stephen Pfohl (Stanford University).

• Ethics. Invited researchers: Luke Stark (University of Western Ontario), Irene Chen
(Massachusetts Institute of Technology) and Lizzie Kumar (Brown University).

†https://neurips.cc/
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2.2. Contributed papers

AFCR received 25 viable submissions, which were sent for peer reviewing. All papers re-
ceived at least 3 reviews, which led to the acceptance of 16 works (acceptance rate: 64%).
Among them, 5 papers were related to the use of causal methods for fairness, 4 works dis-
cussed the intersection of fairness and robustness, and 7 described applications, mitigation
techniques or metrics for fairness. Among the selected works, 8 papers were considered for
inclusion in the Proceedings, with the authors of 4 works choosing to do so. All contributed
works were presented as posters during the conference, and were included in the live stream
through pre-recorded 3 minutes video summaries. A 1-page abstract submission was also
implemented on a rolling deadline, leading to 1 additional poster presented at the conference
(out of 3 submissions).

3. Themes and open questions

Among the common themes during the workshop, the attendees discussed how sensitive
attributes represent social constructs and the difficulties related to obtaining good proxies to
assess the impact of machine learning on different subgroups of the population. In addition,
the attendees questioned how the field can move beyond fairness metrics and audits, towards
societal interventions that would lead to fair and/or equitable outcomes. The attendees also
discussed at length how more effort needs to happen before we can see a practical impact
of causal methods. Finally, they discussed different definitions of ‘robustness’ and how
evaluation and mitigation techniques with regards to robustness depended on the data that
was available. We leave with a set of open questions, that we hope to address in future
editions:

• How should we model sensitive attributes?

• How can the ML community contribute to societal remedies of unfairness?

• How can we bring causal advances with its assumptions to practice?

• How can we ensure reliable models, decisions, explanations?
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