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Abstract
The electrocardiogram (ECG) is an affordable, non-invasive and quick method to gain
essential information about the electrical activity of the heart. Interpreting ECGs is a time-
consuming process even for experienced cardiologists, which motivates the current usage
of rule-based methods in clinical practice to automatically describe ECGs. However, in
comparison to descriptions created by experts, ECG-descriptions generated by such rule-
based methods show considerable limitations. Inspired by image captioning methods, we
instead propose a data-driven approach for ECG description generation. We introduce a
label-guided Transformer model, and show that it is possible to automatically generate
relevant and readable ECG descriptions with a data-driven captioning model. We incor-
porate prior ECG labels into our model design, and show this improves the overall quality
of generated descriptions. We find that training these models on free-text annotations of
ECGs - instead of the clinically-used computer generated ECG descriptions - greatly im-
proves performance. Moreover, we perform a human expert evaluation study of our best
system, which shows that our data-driven approach improves upon existing rule-based
methods.
Keywords: Transformer, Encoder-Decoder, ECG, Signal processing, ResNet, Captioning

1. Introduction

Computer vision methods have shown great improvements in image captioning, where
a model is tasked to describe the content of an image using natural sentences (Vinyals
et al., 2014). Such methods have also been successfully applied in the field of medical
imaging, for example to obtain diagnoses from chest X-rays (Li et al., 2018; Chen et al.,
2020; Najdenkoska et al., 2021; Hou et al., 2021) and histopathological scans (Ayesha et al.,
2021). However, many other medical modalities, such as ECGs, are yet unexplored for
captioning purposes.

Automated classification of ECG abnormalities using data-driven methods has recently
reached expert levels (Ribeiro et al., 2019; Strodthoff et al., 2020). The next challenge in the
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automation of ECG diagnosis is the more challenging captioning task. A caption is directly
interpretable, as it contains information that would aid experts in efficiently making a
nuanced diagnosis, whereas a classification does not yield detailed insights for a certain
diagnosis. Currently, descriptions generated by the rule-based Marquette system are used
in clinical practise. This method requires improvements, as the generated descriptions
are often incomplete (Schläpfer and Wellens, 2017). A good ECG description captures a
variety of characteristics of the heart, like rhythm, axis and time intervals (De Jong et al.,
2011). This implies that in contrast with free-text image captioning, where many different
captions may be associated to any given natural image, an ECG caption is restricted in the
range of plausible textual interpretations. Therefore, captioning of ECGs might be more
feasible than for the other modalities. Recent approaches to medical image captioning have
attempted to incorporate prior knowledge about the problem into the model design, aiding
the model generalisation by explicitly including domain-specific human expert knowledge
(Jing et al., 2018).

In this paper we aim to leverage the restricted domain of viable ECG captions, by con-
straining the captioning model through a prior based on human expert ECG descriptions.
In doing so, we transfer medical image captioning methods to the yet unexplored domain
of ECG captioning, by combining state-of-the-art (SOTA) image captioning architectures
with SOTA architectures for classifying ECGs to generate cardiologist-level descriptions.
To this end, we combine ECGnet (van de Leur et al., 2020) with a Transformer-based model
(Vaswani et al., 2017), which takes into account ECG labels as prior knowledge.

This paper contains three contributions. First, our proposed data-driven approach is
shown to significantly improve upon currently used rule-based methods. Second, we
show that incorporating prior knowledge improves the quality of generated ECG cap-
tions. Third, we show that it is feasible to use the fully free-text annotations, instead of the
corrected computer generated annotations, to train a captioning model.

1.1. Related Work

As we aim to generalize image captioning to ECGs we first review general image caption-
ing methods, and from there medical report generation, followed by ECG classification
and finally ECG captioning research.

Image Captioning Image captioning is the task of describing visual contents with natural
language. Successful image captioning models follow neural encoder-decoder architecture
(Vinyals et al., 2014; Xu et al., 2015), where a convolutional neural network (CNN) is used
as the encoder to learn meaningful image representations and a simple RNN as a decoder
to generate a natural language description conditioned on the image. In other words, they
are trained to maximise the likelihood p(S|I) where S is the sentence and I is an image.

To enhance this architecture, additional techniques are incorporated. For instance, Xu
et al. (2015) extends the model by attending on the visual features at each timestep of the
generation process. Anderson et al. (2017) propose to use region-based visual encoding
of the images. More recent approaches use Transformers as a more powerful language
models for text generation (Cornia et al., 2020). In our ECG captioning approach, we follow
neural encoder-decoder architecture by treating the ECG as a multi-channel signal.
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Medical report generation Medical report generation is regarded as translating a med-
ical image into a textual report, fundamentally based on image captioning models. For
instance, Jing et al. (2018) propose an approach for generating medical reports for chest
X-rays. They propose a multi-task learning approach, to learn chest X-rays labels and
generate a report with the same model. Their method allows to localise relevant image-
regions and keep track of the overall topic of the report. For ECG captioning this approach
may help confine the already limited generation space. Similarly to the improvement of
image captioning models, medical report generation architectures are also enhanced with
attention and Transformer-based models (Lovelace and Mortazavi, 2020; Chen et al., 2020;
Najdenkoska et al., 2021; Hou et al., 2021; Wang et al., 2018). Existing work on medical re-
port generation is focused on radiology reports, due to the availability of relevant datasets.
Nevertheless, they represent a good example of text generation based on complex medical
data with specific medial vocabulary, which is also applicable in ECG captioning.

Classification of ECGs Current research combining ECGs and deep learning models, is
mostly focused on classification of ECG findings. Recently, different signal encoders were
tested on their ability to extract diagnostic information from an ECG (Strodthoff et al., 2020;
Ribeiro et al., 2019; Hannun et al., 2019), also needed to interpret an ECG. This research
suggests that the Resnet1d101 and Inception1d architectures scored best in classification
tasks. The Resnet1d101 was used to classify a number of abnormalities, that compared to
a cardiologist works at least as well. However, they do not have enough confidence that
a deep neural net (DNN) outperforms humans. They state that DNNs cannot perform the
same risk assessment as doctors do; are not good at handling rare diseases; and would
not perform on unseen classes. These shortcomings also apply to ECG captioning. By
generating ECG descriptions we try to improve the interpretabillity of automated ECG
diagnoses, a focus in deep learning ECG methods (Vessies et al., 2021; Van De Leur et al.,
2021).

ECG captioning ECG captioning recently emerged as a promising direction in the quest
of automating the report generation. However, no public dataset of sufficient quality ECG
descriptions exist to benchmark. An existing work that approaches physician corrected
descriptions using deep learning methods is Kashou et al. (2021), which uses a 1dRes-
Net as an encoder and a Transformer as a decoder. Unfortunately, they do not mention a
publicly available dataset for model comparison. Their research focuses on human evalu-
ation of captions, originating from a rule-based, a data-driven method and a by physician-
corrected. The authors validate their approach using expert evaluation. Since this metric
is arguably most accurate, we employ expert evaluation to a limited extent as well. How-
ever, this is not a scalable solution to model evaluation; we would like to gain insight on
model performance over a larger dataset. Therefore, we use the standard language and
image captioning metrics like BLEU, METEOR, ROUGE and CIDEr (Papineni et al., 2002),
(Denkowski and Lavie, 2014), (Lin, 2004), (Vedantam et al., 2014). Their approach refined
66 possible tokens that describe an ECG, and see a description as a series of those tokens.
This contrasts with our approach which uses free text with a much larger vocabulary size.
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2. Methods

2.1. Problem formulation

Our approach is inspired by neural encoder-decoder architectures for image captioning.
We choose to employ this framework as we hypothesize it generalises well to the current
problem setting; our input data bears great similarity to image data in that we can treat the
ECG as a multi-channel bounded signal with spatial locality containing regions of interest.

Our model takes as input a raw ECG signal and encodes it into feature representation
of fixed dimensions. Then, the decoder uses this representation to generate the ECG de-
scription in an auto-regressive manner. Thus, the objective function that maximizes the
probability of generating a certain caption given an ECG is formulated as follows:

θ∗ = arg max
θ

∑
E,S

log(p(S|E, θ)), (1)

where θ are the parameters of the model, E is the ECG, and S is the correct ECG cap-
tion with a predefined maximum length of 50 tokens. The probability of the caption S is
factorised using the chain-rule, as the product of the probability of the individual words
S1, . . . Sn where n is the length of the current caption, shown in Equation 2:

log(p(S|E, Θ)) = ∑
n

log p(sn|E, θ, s1, s2, . . . , sn−1) (2)

To solve this formulation, we use appropriate neural networks to define the encoder and
decoder in the next section.

2.2. Models definition

Although our problem bears similarity to image captioning, we argue there is a distinction
which we aim to leverage to improve viability of the generated ECG captions. Whereas
in image captioning the goal is to generate free textual descriptions for images in a wide
variety of settings, our work only aims to generate clinically accurate textual descriptions
of ECGs. As described in section 1, an accurate ECG description contains information on
a number of characteristics of the input signal. Intuitively, this greatly restricts the range
of plausible realistic textual descriptions that may be associated to any single ECG. We
assume that embedding such information specific to this problem into our model may
greatly improve the generated ECG descriptions.

Prior-Knowledge-ECGnet-LSTM To this end, we introduce our baseline model, denoted
as Prior-Knowledge-ECGnet-LSTM (PKEL), illustrated in Figure 1(a). This model contains
the ECGnet (van de Leur et al., 2020), a 37-layer 1D Residual CNN as an encoder and
a top-down attention LSTM (Anderson et al., 2017) as a decoder. This model has an in-
termediate classification step, by using a simple classification layer on the encoded ECG
representation. This classification step yields the labels, which are encoded with a learn-
able embedding layer. The addition of the classification step adds an extra term to the
objective function shown in Equation 3. The λ terms are weighting hyperparameters that
sum to one. In our experiments, we set these hyperparameters to λ1 = 0.7, λ2 = 0.3 where
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λ1 is set to be larger than λ2.

L(E, S) = −λ1

N

∑
t=1

log(pt(st)) + λ2ltag (3)

Inspired by Jing et al. (2018) we apply co-attention layer to combine the ECG representation
and the learned semantic labels. The output of the co-attention is denoted as a context
vector and is used to initialise the decoder part. The decoder consists of two LSTMs and
a so-called signal attention module which learns to focus on a relevant part of the ECG
representation when generating the t-th word.

Prior-Knowledge-Transformer We improve the baseline by relying on Transformers
(Vaswani et al., 2017) as a more powerful model to capture long-term dependencies in
sequences. Firstly, we add a Transformer encoder to learn a revised representation of the
ECG, similarly as in Najdenkoska et al. (2021). The classification module to obtain the la-
bels stays the same as in the PKEL model. Secondly, the context vector produced by the
co-attention module, is used together with the encoded ECG representation to initialise
the Transformer decoder, which generates the ECG caption word-by-word. The resulting
model is named Prior-Knowledge-Transformer (PKTransformer), illustrated in Figure 1(b).

(a) Prior-Knowledge ECGnet-LSTM (b) Prior-Knowledge Transformer

Figure 1: Architecture design using the prior-knowledge modules
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3. Experiments and Results

3.1. Data description

The datasets used for this research are two private datasets obtained by the University
Medical Center Utrecht (UMCU). The study was conducted under a protocol approved by
the UMCU Institutional Review Board using a waiver of written informed consent. The
first, the physician-corrected dataset, contains 368.430 ECGs with Dutch descriptions as
they are used in the clinic, first generated by the Marquette system and then corrected by
a physician. The second dataset, the physician-annotated dataset, includes 68.208 ECGs
with Dutch descriptions fully made by physicians as part of their clinical routine, not
being biased by seeing rule-based descriptions first, making them the golden standard.
The two datasets are split into training, validation and test set in a 70/20/10 split, if a
patient had multiple ECGs they only appear in one split. For the pre-processing of the
physician-corrected dataset, textual references to previous ECGs are removed, although
the references have diagnostic value, our approach only aims to describe a single ECG.
The physician-annotated is more heterogeneous as it is free-text created by humans. More-
over, it contains an extensive range of numbers that individually sparsely occur. When
tokenized, the numbers lose their ordinal properties, complicating the learning of good
representations. There are sophisticated methods to deal with numbers in text genera-
tion. However, the pragmatic approach used for this paper was to tokenize the numbers
and use a rule-based system to replace these tokens afterwards. The tokens are identified
using regex on the words surrounding the numbers. Five tokens are introduced, 1) the
ventricular rate, 2) the heart axis in degrees, 3) the PQ-interval, 4) the QRS-interval, and 5)
the QTc-time. This approach reduced the vocabulary size while maintaining meaningful
generations.

The different topics and gathering of the labels are described in the paper by van de
Leur et al. (2020). They tokenized the ECG descriptions and unified the tokens with the
same meaning. The topic are extracted from the physician-corrected labels and are not
available for the annotated dataset.

3.2. Quantitative Evaluation

The two architectures described in Section 2 are evaluated with commonly used evalua-
tion metrics for natural language generation (NLG); BLEU, METEOR, ROUGE and CIDEr.
During the decoding process, the best word sampling method was empirically found to be
greedy sampling and is used for all the experiments. The performance is shown in Table 1
together with the evaluation scores of the rule-based method. For the physician-annotated
dataset, the encoder was pre-trained on the physician-corrected dataset and frozen for the
first five epochs.

We find three major results in this experiment shown in Table 1. Firstly, using the prior
knowledge in the PKEL and PKTransformer models increases performance on the metrics.
Secondly, enriching the representational capacities of the encoder using either the prior
labels or a Transformer encoder, improves performance in the current ECG captioning
task. Thirdly, the rule-based system outperforms our models on the physician-corrected
dataset, but is not close to our models on the physician-annotated dataset.
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Table 1: Quantitative evaluation of the different architectures on the physician-corrected
and physician-annotated dataset. The Prior knowledge column indicates whether the Prior
knowledge is module is used or ablated.

Dataset Source Prior labels BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE L CIDEr
physician-corrected PKEL ✓ 0.458 0.391 0.343 0.304 0.264 0.639 2.535

✗ 0.436 0.360 0.308 0.266 0.247 0.615 2.275
PKTransformer ✓ 0.454 0.388 0.341 0.304 0.265 0.639 2.546

✗ 0.418 0.353 0.308 0.271 0.244 0.624 2.418
Rule-Based N/A 0.670 0.620 0.585 0.555 0.402 0.717 3.825

physician-annotated PKEL ✓ 0.375 0.284 0.225 0.174 0.213 0.373 0.618
✗ 0.290 0.214 0.167 0.125 0.182 0.328 0.324

PKTransformer ✓ 0.382 0.291 0.231 0.179 0.220 0.373 0.640
✗ 0.373 0.287 0.228 0.178 0.216 0.372 0.581

Rule-Based N/A 0.022 0.007 0.002 0.001 0.019 0.050 0.045

The first finding confirms our hypothesis that adding prior knowledge helps genera-
tions. The second finding shows the power of the Transformer architecture. We conjecture
possible reasons for this finding are: 1) The usage of multiple attention heads allows to
encode multiple relationships and nuances for each word that is generated; 2) The Trans-
former model is used in many multi-modal tasks to achieve SOTA results (Lu et al., 2019;
Tsai et al., 2019), thus it is expected that the Transformer model achieves good results on
this task as well. The third finding, can be explained when looking at the origin of the
dataset, the ground-truth is the caption used in the clinic, which is made by a doctor
who first reads the generation made by the rule-based system and adjusts it to an im-
proved ground-truth caption, heavily correlating the two descriptions. For the physician-
annotated dataset, the rule-based method performed poorly, since the expert descriptions
are more eleborate than the rule-based method.

3.3. Qualitative Evaluation

In the qualitative experiment, two cardiologists, working in the cardiology outpatient
clinic, were asked to evaluate ECG descriptions. They evaluated 30 ECGs randomly se-
lected from the test set. Each of these ECGs were interpreted by a expert, the PKEL model
trained on the physician-annotated dataset, the PKEL model trained on the physician-
corrected dataset, and the rule-based system. The ECG-description pairs were shown in
a random order to prevent bias. Experts rated the description with the following labels:
1) good, 2) small adjustments needed, 3) large adjustments needed, and 4) unusable. Re-
sults, visualised in figure Figure 2, show that the PKEL model outperforms the rule-based
approach in the qualitative evaluation. The cardiologist interpretations are superior to
our model. The cardiologist interpretations are good in only 61% of the cases, showing a
large inter observer variance. We additionally show a number of generated descriptions
in Table 2. In conclusion, these results show that our data-driven approach generally out-
performs rule-based systems in generating expert-level ECG descriptions.

4. Conclusion

This paper showed that it is possible to automatically generate accurate ECG descriptions
with a data-driven model, allowing for better interpretability. Our design choices, such
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Figure 2: Expert evaluation of the ECG descriptions. The height of the bar represents
what percentage of labels was assigned to the class displayed on the x-axis. From left to
right the descriptions originate from: cardiologist description, PKEL model trained on the
physician-annotated dataset, PKEL model trained on the physician-corrected dataset and
the rule-based system

Table 2: ECG descriptions by an physician, our model and the rule-based system. The
columns contain: the source of the generation and the translated generations, the ECGs
and original Dutch generations are found in Figure 5, 6, 7 and Table 3

ECG Source English translation

Figure 5
physician-annotated sinus rhythm 52 /min, left axis deviation, left bundle branch block
PKEL generated sinus rhythm 52.0 /min left axis deviation left bundle branch block qrs 146.0 ms
Rule-Based sinus bradycardia, left axis deviation, left bundle branch block

Figure 6

physician-annotated
sinus rhythm 75 /min normal QRS axis normal conduction normal R wave progression
normal repolarisation

PKEL generated
sinus rhythm 72.0 /min normal QRS axis and normal conduction no pathological Q waves
no ST deviation, normal repolarisation

Rule-Based sinus rhythm

Figure 7

physician-annotated
sinus bradycardia 54 /min, normal QRS axis PQ 0.23 sec QRS 0.10 sec QS complexes
V1-V3 persisting ST elevation V1-V4 normal T-waves QTc 0.40 sec

PKEL generated
sinus rhythm 54.0 /min, normal QRS axis, PQ 0.230 sec, QRS 94 ms, QS complexes
V1-V3, QTc 0.396 sec

Rule-Based
sinus bradycardia with first-degree AV block anterior wall infarction of which
the age is unknown

as incorporating labels as prior knowledge and enriching the encoder, show to improve
the overall quality of generated descriptions. Our findings show that training on free-text
annotations of ECG descriptions improves model performance, compared to training on a
set of clinically-used ECG descriptions. Moreover, we perform a human evaluation study
on one of the systems by consulting cardiologists, indicating that it is possible to use the
ECG descriptions generated by data-driven models over the rule-based ones. Lastly, these
results may prove relevant to the field of image captioning; our findings show that we can
greatly improve the quality of generated captions by incorporating prior knowledge on
the semantic content of natural texts relevant to the problem setting.
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Appendix A.

Figure 3: Layout of the qualitative experiment. On the left side the participant can select
what they think of the ECG description that is displayed above the ECG. Any imperfection
in the description can be selected on the bottom-left.

Figure 4: In this figure the two experts express what is wrong with the ECG description
when it doesn’t receive a good score
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Figure 5: ECG images that accompanies Table 2, row 1-3. Sinus rhythm 52.0/min, left axis
deviation, left bundle branch block, qrs 146.0 ms

Table 3: ECG descriptions by an physician, our model and the rule-based system. The
columns contain: the source of the generation and the original Dutch generations, the
corresponding ECGs are found in Figure 5, 6 7, This table complements Table 2

Source Dutch
Expert sr 52 /min linkeras lbtb
PKEL generated sr 52.0 /min linker as lbtb qrs 146.0 ms
Rule-Based sinusbradycardie linker asdeviatie linker bundeltakblock

Expert
sr 75 /min intermediaire hartas normale \\geleiding normale r progressie
normale repolarisatie

PKEL generated
sr 72.0 /min normale as en geleiding geen pathologische q s geen
st deviatie normale repolarisatie

Rule-Based sinusritme

Expert
sb 54 /min int as pq 0.23 sec qrs 0.10 sec qs v1-v3 persisterend
st elevatie v1-v4 normale t-toppen qtc 0.40 sec

PKEL generated sr 54.0 /min int as pq 0.230 sec qrs 94 ms qs v1-v3 qtc 0.396 sec
Rule-Based sinusbradycardie met 1e graads av-block voorwandinfarct onbepaalde leeftijd
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Figure 6: ECG images that accompanies Table 2, row 3-6. Sinus rhythm 72.0/min, nor-
mal QRS axis and normal conduction, no pathological Q waves, no ST deviation, normal
repolarisation
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Figure 7: ECG images that accompanies Table 2, row 6-9. sinus rhythm 54.0/min, normal
QRS axis, PQ 0.230 sec, QRS 94 ms, QS complexes V1-V3, QTc 0.396 sec
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Figure 8: Example ECG with description: atriumflutter met wisselende volgfrequentie
intermediaire hartas qrs 0.07 sec qtc niet verlengd geen pathologische q s geen st-segment
afwijkingen normale t-toppen
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Table 4: This table shows the inter-rater variability between the two experts for each of
the generation sources. The higher the Pearson R, Cohen’s kappa and Krippendorff’s al-
pha values, the more agreement the two experts had on the quality of the description in
Figure 2.

metric / generation source Pearson R Pearson R p-value Cohen’s kappa Krippendorff’s alpha
physician-annotated 0.563 0.003 0.315 0.419
physician-annotated generated 0.436 0.01 0.37 0.41
physician-corrected generated 0.323 0.054 0.045 0.304
Rule-Based 0.225 0.25 0.118 0.27
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