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Abstract
TorchXRayVision is an open source software library for working with chest X-ray datasets
and deep learning models. It provides a common interface and common pre-processing
chain for a wide set of publicly available chest X-ray datasets. In addition, a number of
classification and representation learning models with different architectures, trained on
different data combinations, are available through the library to serve as baselines or feature
extractors.
Keywords: Chest X-ray, CXR, pre-trained models, datasets, representation learning,
generalization, feature extraction, PyTorch

1. Introduction

Chest X-rays are the most common medical imaging test in the world and represent the bulk
of medical computer vision publications and open medical imaging data in the deep learning
community [UK NHS, 2019]. Yet despite the large number of datasets and publications,
it can be difficult for researchers to properly compare previous work and to investigate
generalization across different datasets. Even when data and code are available, small
but important differences in dataset organization, processing, or training procedures can
significantly impact the results. This makes establishing meaningful baselines a strenuous
task for researchers. In addition, constantly re-implementing the same dataloaders is not the
best use of time. There is a need for common software infrastructure.

TorchXRayVision1 (XRV) was created to address this difficulty by establishing a reusable
framework for reproducible research and consistent baseline experiments. A key design
objective is to provide a clear interface and separation between datasets and models. The
library provides a common interface to multiple available chest X-ray datasets, which can
easily be swapped out during model training and evaluation. Common pre- and post-
processing components are provided and the datasets are compatible with torchvision [Paszke
et al., 2019] components for augmentation. We include pre-trained and easily downloadable
models which can be used directly for baseline comparisons or to generate feature vectors for
downstream tasks.

Three specific use cases where the project has already proved useful include:

1. https://github.com/mlmed/torchxrayvision
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• Evaluating models: It is important to rigorously evaluate the robustness of models using
multiple external datasets. However, associated clinical data with each dataset can vary
greatly which makes it difficult to apply methods to multiple datasets. TorchXRayVision
provides access to many datasets in a uniform way so that they can be swapped out with
a single line of code. These datasets can also be merged and filtered to construct specific
distributional shifts for studying generalization.

• Developing models: Making it easier for Deep Learning researchers to work on medical
tasks. Pre-trained models are useful for baseline comparisons as well as feature extractors.
These pre-trained models have already been used for transfer learning to related chest
X-ray tasks such as patient severity scoring [Cohen et al., 2020a; Gomes et al., 2020a]
and predicting aspects about a patients clinical trajectory [Cohen et al., 2020c; Gomes
et al., 2020b; Maurya, 2020]. As illustrated in [Cherti and Jitsev, 2021] TorchXRayVision
pre-trained models are used to study few-shot transfer learning. The pre-trained models
are used as feature extractors of images for multi-modal models [Delbrouck et al., 2021;
Soenksen et al., 2022]. In [Sundaram and Hulkund, 2021] the library is used for baseline
models as well as to explore methods of generative adversarial network-based (GAN) data
augmentation. The pre-trained models and training pipeline were used in [Tetteh et al.,
2021] to study balancing batches while training on multiple datasets.

• Studying model failures and limitations: The many pre-trained models provided
are not perfect and can be studied to determine how they fail, which can inform the
development of better models. Also, the many datasets available in TorchXRayVision
make it possible to study out-of-distribution generalization when covariate and concept
shifts are present. The library was initially developed for this purpose in [Cohen et al.,
2020b]. This library has already been used in work by [Robinson et al., 2021] which
focused on studying shortcut learning caused by covariate shift in chest X-ray models.
Work by [Viviano et al., 2020] explored failures in saliency maps using this library and
special utilities are included to produce datasets with different types of covariate shift and
spurious correlations. Work by [Cohen et al., 2021a] generated counterfactual explanations
for model predictions using the classifiers and autoencoder in the library.

A key design consideration when developing this library was to follow an object-oriented
approach. This turns the various components of an experiment into objects which can
be easily swapped. The primary objects are datasets and models (including pre-trained
weights). A suite of utilities for working with these objects are also included. The library
is available in Python via pip with the package name torchxrayvision and is typically
imported as import torchxrayvision as xrv. It is based on PyTorch [Paszke et al., 2019]
and modeled after the torchvision library (hence the name). TorchXRayVision’s compatibility
and conformity to established convention makes adoption intuitive for practitioners.

2. Models

The library is composed of core and baseline classifiers. Core classifiers are trained specifically
for this library (initially trained for [Cohen et al., 2020b]) and baseline classifiers come
from other papers that have been adapted to provide the same interface and work with
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the same input pixel scaling as our core models (see BENCHMARKS.md on GitHub for current
model performances). All models automatically resize input images (higher or lower using
bilinear interpolation) to match the specified size they were trained on. This allows them
to be easily swapped out for experiments. See §3.1 for details on image pro-processing.
Pre-trained models are hosted on GitHub and automatically downloaded to the user’s local
~/.torchxrayvision directory.

2.1. Core Classifiers

Core pre-trained classifiers are provided as PyTorch Modules which are fully differentiable in
order to work seamlessly with other PyTorch code. Models are specified using the “weights"
parameter which have the general form of:

densenet121︸ ︷︷ ︸
Architecture

-
Resolution︷ ︸︸ ︷
res224- rsna︸︷︷︸

Training dataset

Each pre-trained model aims to have 18 independent output classes as defined in
xrv.datasets.default_pathologies. However, since not all datasets provide each pathol-
ogy class, some will return NaN as the prediction of that pathology. The models indicating
“all" as the dataset have been trained on as many datasets were available at the time. More
details about each set of weights is available at the head of the models.py file. The current
core classifiers were trained with data augmentation to improve generalization. According to
best data augmentation parameters found in Cohen et al. [2019], each image was randomly
rotated up to 45 degrees, translated up to 15% and scaled larger or smaller up to 10%. These
models are trained using binary cross entropy losses, Adam optimizer [Kingma and Ba, 2014],
a batch size of 64, and a learning rate of 0.001.

# DenseNet 224x224 model trained on multiple datasets
model = xrv.models.DenseNet(weights="densenet121-res224-all")
# DenseNet trained on just the RSNA Pneumonia dataset
model = xrv.models.DenseNet(weights="densenet121-res224-rsna")
# ResNet 512x512 model trained on multiple datasets
model = xrv.models.ResNet(weights="resnet50-res512-all")

2.2. Baseline Classifiers

Currently there are two baseline classifiers from other research groups which were added to
make it easier to compare against TorchXRayVision core models. The models adhere to the
same interface as the core models and can be easily swapped out. The first is a JFHealthcare
model [Ye et al., 2020] trained on CheXpert data [Irvin et al., 2019] and the second is an
official CheXpert model [Irvin et al., 2019] trained by the CheXpert team.

# DenseNet121 from JF Healthcare for the CheXpert competition
model = xrv.baseline_models.jfhealthcare.DenseNet()
# Official Stanford CheXpert model
model = xrv.baseline_models.chexpert.DenseNet()

The weights for the CheXpert model are very (6GB) and have been hosted on Academic
Torrents [Cohen and Lo, 2014] as well as the Internet Archive.
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2.3. Classifier Interface

Each classifier provides a field model.pathologies which aligns to the list of predictions that
the model makes. Depending on the weights loaded this list will change. The predictions
can be aligned to pathology names as follows:

predictions = model(img)[0] # 0 is first element of batch
dict(zip(model.pathologies,predictions.detach().numpy()))
# output:
{'Atelectasis': 0.3566849,
'Consolidation': 0.72457345,
'Infiltration': 0.8974177, ...}

Getting a specific output can be achieved as follows. The outputs remain part of the
computation graph and can therefore be embedded in a larger network.

prediction = model(img)[:,model.pathologies.index("Consolidation")]

2.4. Feature Extraction

The pre-trained models can also be used as features extractors for semi-supervised training
or transfer learning tasks. A feature vector can be obtained for each image using the
model.features function. The resulting size will vary depending on the architecture and
the input image size. For some models there is a model.features2 method that will extract
features at a different point of the computation graph. Example UMAP visualizations
[McInnes et al., 2018] of the features from different models is shown in Figure 1.

feats = model.features(img)

Figure 1: UMAP visualizations of the representations from different models. 2048 images,
each containing only one of the 4 pathologies listed, are included in the UMAP.
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2.5. Autoencoders

The library also provides a pre-trained autoencoder that is trained on the PadChest, NIH,
CheXpert, and MIMIC datasets. This model was developed in [Cohen et al., 2021a] and
provides a fixed latent representation. The goal of this model is to provide another represen-
tation extraction model which is not trained using supervised labels and has a decoder to
reconstruct images from the latent representation.

ae = xrv.autoencoders.ResNetAE(weights="101-elastic")
z = ae.encode(image)
image2 = ae.decode(z)
%\end{code}

3. Datasets

The datasets in this library aim to fit a simple interface where the imgpath and csvpath are
specified. Some datasets require more than one metadata file and for some the metadata
files are packaged in the library so only the imgpath needs to be specified.

Documentation for each dataset class provides citation information and download links.
When possible, metadata is included with the library so only the imgpath needs to be
specified. When possible based on the license, datasets have been uploaded to Academic
Torrents [Cohen and Lo, 2014]. Otherwise, the dataset can be downloaded from its origin by
following the links provided in the class documentation.

dataset = xrv.datasets.VinBrain_Dataset(imgpath="./train",
csvpath="./train.csv")

Each dataset object also supports the standard transform argument which takes PyTorch
transforms. While standard transforms will be applied there may be issues in how they deal
with the specific tensor shapes returned by the dataloader ([1,RES,RES] where RES is the
image resolution)

transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(),
xrv.datasets.XRayResizer(224)])

Tables 1 and 2 display the total count of images and labels available per dataset.

3.1. Image pre-processing

Both models and datasets expect the image pixel values to be between [-1024,1024]. The
origin of this is arbitrary. The preprocessing of images used scales from the possible range
of the images and not the min and max of the pixels. For example, if the image is 16-bit
encoded then the possible pixels values are between 0 and 65,536 so this range will be mapped;
not the min and max pixels of the specific image. The idea here is that we don’t want to
arbitrarily increase the contrast of an image because that could be removing information.
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Table 1: Details of datasets that are included in this library. Number of images shows total
images / usable frontal images. Useable frontal means images that are readable,
have all necessary metadata, and are in AP, PA, AP Supine, or AP Erect view.

Name # Images (Total/Frontal) Citation Geographic Region

National Library of Medicine Tuberculosis 800 / 800 Jaeger et al. [2014] USA+China
OpenI (National Library of Medicine) 7,470 / 4,014 Demner-Fushman et al. [2016] USA
ChestX-ray8 (NIH) 112,120 / 112,120 Wang et al. [2017] Northeast USA
RSNA Pneumonia Challenge 26,684 / 26,684 Shih et al. [2019] Northeast USA
CheXpert (Stanford University) 223,414 / 191,010 Irvin et al. [2019] Western USA
Google Labelling of NIH data 4,376 / 4,376 Majkowska et al. [2019] Northeast USA
MIMIC-CXR (MIT) 377,095 / 243,324 Johnson et al. [2019] Northeast USA
PadChest (University of Alicante) 158,626 / 108,722 Bustos et al. [2020] Spain
SIIM-ACR Pneumothorax Challenge 12,954 / 12,954 Filice et al. [2020] Northeast USA
COVID-19 Image Data Collection (CIDC) 866 / 698 Cohen et al. [2020c] Earth
StonyBrook COVID-19 RALO Severity 2,373 / 2,373 Cohen et al. [2021b] Northeast USA
Object-CXR (JF Healthcare) 9,000 / 9,000 - China
VinBrain VinDr-CXR 15,000 / 15,000 Nguyen et al. [2020] Vietnam

3.2. Dataset common fields

Each dataset contains a number of common fields. These fields are maintained when
xrv.datasets.SubsetDataset and xrv.datasets.MergeDataset are used.

• dataset.pathologies a list of strings identifying the pathologies contained in this dataset.
This list corresponds to the columns of the .labels matrix. Although it is called
pathologies, the contents do not have to be pathologies and may simply be attributes of
the patient.

• dataset.labels field is a NumPy matrix [Harris et al., 2020] which contains a 1, 0, or
NaN for each pathology. Each column is a pathology and each row corresponds to an item
in the dataset. A 1 represents that the pathology is present, 0 represents the pathology is
absent, and NaN represents no information.

• dataset.csv field which holds a Pandas DataFrame [McKinney, 2010] of the metadata
.csv file that is included with the data. For some datasets multiple metadata files have
been merged together. It is largely a "catch-all" for associated data and the referenced
publication should explain each field. Each row aligns with the elements of the dataset
so indexing using .iloc will work. Alignment between the DataFrame and the dataset
items will be maintained when using tools from this library.

If possible, each dataset’s .csv will have some common fields of the csv. These will be
aligned when datasets are merged together.

• dataset.csv.patientid is a unique id that will uniquely identify patients in the dataset.
This is useful when trying to prevent patient overlap between train and test sets or in
conjunction with the next field to observe patients over time.

• dataset.csv.offset_day_int is an integer time offset for the image in the unit of days.
This is expected to be for relative times and has no guarantee to be an absolute time
although for some datasets it is and is formatted in unix epoch time.
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• dataset.csv.view is a string indicating the projection/view in which the chest X-ray
was acquired. Most will be “PA”, “AP”, or “AP Supine”. A good discussion of views is
contained in [Bustos et al., 2020].

3.3. Dataset tools

Relabelling datasets Working with dataset objects is a task that the library is designed
to help with. Tasks such as aligning, composing, or taking a subset of a dataset are made
easy using the functions discussed below. The function xrv.datasets.relabel_dataset
will add, remove, and reorder the .labels field to have the same order as the pathologies
argument passed to it. If a pathology is specified but doesn’t exist in the dataset then a NaN
will be put in place of the label.

# Note: dataset is directly changed, no return value
xrv.datasets.relabel_dataset(xrv.datasets.default_pathologies, dataset)

Filtering based on views Specific views can be specified in the constructor to select only
those views. This is only supported on datasets which have view information. Common
views have been standardized to “PA”, “AP”, or “AP Supine”, but other non-standardized
ones may exist. It is best to first load the dataset without filtering based on view and call
dataset.csv.view.unique() to see what is available.

dataset = xrv.datasets.PC_Dataset(..., views=["PA","AP","AP Supine"])

Ensuring one image per patient The unique_patients argument will tell the dataset
to only allow 1 image per patient. This only works on datasets which provide a patientid.

dataset = xrv.datasets.PC_Dataset(..., unique_patients=True)

Obtaining summary statistics on a dataset Simply printing the object will return
counts for the available labels and their classes. This is also returned as a dictionary with
the function dataset.totals().

print(d_chex)
# Output:
CheX_Dataset num_samples=191010 views=['PA', 'AP']
{'Atelectasis': {0.0: 17621, 1.0: 29718},
'Cardiomegaly': {0.0: 22645, 1.0: 23384},
'Consolidation': {0.0: 30463, 1.0: 12982}, ...}

Merging datasets together The class xrv.datasets.MergeDataset can be used to
merge multiple datasets together into a single dataset. This class takes in a list of dataset
objects and assembles the datasets in order. This class will correctly maintain the .labels,
.csv, and .pathologies fields and offer pretty printing.
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dmerge = xrv.datasets.MergeDataset([dataset1, dataset2, ...])
# Output:
MergeDataset num_samples=261583
0 PC_Dataset num_samples=94825 views=['PA', 'AP']
1 RSNA_Pneumonia_Dataset num_samples=26684 views=['PA', 'AP']
2 NIH_Dataset num_samples=112120 views=['PA', 'AP']
3 SIIM_Pneumothorax_Dataset num_samples=12954
4 VinBrain_Dataset num_samples=15000 views=['PA', 'AP']

Taking a subset of a dataset When you only want a subset of a dataset the SubsetDataset
class can be used. A list of indexes can be passed in and only those indexes will be present
in the new dataset. This class will correctly maintain the .labels, .csv, and .pathologies
fields and offer pretty printing.

dsubset = xrv.datasets.SubsetDataset(dataset, [0,5,60])
# Output:
SubsetDataset num_samples=3

of PC_Dataset num_samples=94825 views=['PA', 'AP']

For example this class can be used to create a dataset of only female patients by selecting
that column of the csv file and using np.where to convert this vector into a list of indexes.

idxs = np.where(dataset.csv.PatientSex_DICOM=="F")[0]
dsubset = xrv.datasets.SubsetDataset(dataset, idxs)
# Output:
SubsetDataset num_samples=48308

of PC_Dataset num_samples=94825 views=['PA', 'AP']

3.4. Pathology and semantic masks

Masks for pathologies or semantic regions are also included for some datasets. These are
useful for segmentation or for validating that a model is attributing importance to the correct
area (as explored in [Viviano et al., 2020] and [Cohen et al., 2021a]).

Masks are not returned by the datasets by default; the constructor for the dataset
must specify pathology_masks=True and/or semantic_masks=True for them to be re-
turned. These are treated differently because pathology masks are associated with the
dataset.pathologies while semantic masks are unrelated (such as segmentations of the
lungs). If no pathology masks exist the data will not have those arguments available and won’t
be constructed. If images do not have masks available then the key "pathology_masks" on
the sample will be empty. Example usage:

dataset = xrv.datasets.RSNA_Pneumonia_Dataset(imgpath="stage_2_train_images_jpg",
views=["PA","AP"],
pathology_masks=True)

Each sample will have a pathology_masks dictionary where the index of each pathology
(in dataset.pathologies) will correspond to a mask of that pathology (if it exists). There
may be more than one mask per sample, but only one per pathology. For simplicity, if there

8



are multiple masks for a single pathology they will be merged together using a logical or. The
resulting mask will be values between 0 and 1 of type float. Data augmentations will be
performed to these masks as well using the same seed to ensure an identical transformation
is applied.

sample["pathology_masks"][dataset.pathologies.index("Lung Opacity")]
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Appendix A. Extra Model Information

A.1. Model Calibration

As described in [Cohen et al., 2019] and [Cohen et al., 2020b], Eq. 1 can be applied to
calibrate the output of the model so that they can be compared with a piece-wise linear
transformation. The goal is to make a prediction of 0.5 the estimated decision boundary
based on held out test data. For each disease, we computed the optimal operating point of
the ROC curve by maximizing the difference (True positive rate - False positive rate) on a
hold out test set. It corresponds to the threshold which maximizes the informativeness of the
classifier [Powers, 2011]. This is computed with the held out test subset of the dataset being
used for training, as the model is intended to be evaluated on one of the other datasets. Also
keep in mind that doesn’t change the AUC on the test set, it is just for a nice calibrated
probability output so you can use pred > 0.5 to get a prediction.

fopt(x) =

{
x

2opt x ≤ opt

1− 1−x
2(1−opt) otherwise

(1)
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Appendix B. Extra Dataset Information

Table 2: Labels available for each dataset, the total number of positive examples for each indication
across all datasets, and the total number of example in each dataset, and the sum over each
row in the right column. The COVID-19 datasets are excluded from this table because
they have many unique pathologies.

NIH RSNA NIH Google PadChest CheX MIMIC OpenI NLMTB SIIM VinBrain ObjectCXR
Total Positive

Labels

Air Trapping X 3438

Aortic Atheromatosis X 1728

Aortic Elongation X 8116

Aortic Enlargement X 3067

Atelectasis X X X X X X 96,679

Bronchiectasis X 1547

Calcification X 452

Calcified Granuloma X 193

Cardiomegaly X X X X X X 86,196

Consolidation X X X X 31,203

Costophrenic

Angle Blunting
X 4244

Edema X X X X X 82,689

Effusion X X X X X X 156,156

Emphysema X X X 3708

Enlarged

Cardiomediastinum
X X 16,843

Fibrosis X X X 2717

Flattened Diaphragm X 535

Foreign Object X 4500

Fracture X X X X X 15,499

Granuloma X X 2999

Hemidiaphragm

Elevation
X 1609

Hernia X X X 1881

Hilar Enlargement X 4867

ILD X 386

Infiltration X X X X 34,296

Lung Lesion X X X X 13,676

Lung Opacity X X X X X X 158,919

Mass X X X 6691

Nodule/Mass X X 1431

Nodule X X X X X 10,334

Pleural Other X X 4586

Pleural Thickening X X X X 8764

Pneumonia X X X X X X 34,239

Pneumothorax X X X X X X X X 38,513

Pulmonary Fibrosis X 1617

Scoliosis X 5569

Tuberculosis X X 1165

Tube X 6807

Total Examples 112,120 26,684 4376 108,722 191,010 243,324 4014 800 12,954 15,000 9000 728,004
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Table 3: Counts of pathology and semantic masks available for each dataset.

Task NIH RSNA SIIM-ACR VinBrain CIDC

Pneumothorax (BBox) 98 (Seg) 3,576 (BBox) 96
Lung Opacity (Seg) 6,012 (BBox) 1,322
Atelectasis (BBox) 180 (BBox) 186
Effusion (BBox) 153 (BBox) 1,032
Cardiomegaly (BBox) 146 (BBox) 2,300
Infiltration (BBox) 123 (BBox) 613
Pneumonia (BBox) 120
Mass (BBox) 85
Nodule (BBox) 79
Nodule/Mass (BBox) 826
Aortic enlargement (BBox) 3,067
Pleural_Thickening (BBox) 1,981
Calcification (BBox) 452
Interstitial lung disease (BBox) 386
Consolidation (BBox) 353
Lung (Seg) 425

Figure 2: Example images and corresponding mask information available from multiple
datasets. Some are bounding boxes and some are more exact segmentations.
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Appendix C. Distribution shift tools

A covariate shift between two data distributions arises when some extraneous variable
confounds with the variables of interest in the first dataset differently than in the second
[Moreno-Torres et al., 2012]. Covariate shifts between the training and test distribution in a
machine learning setting can lead to models which generalize poorly, and this phenomenon is
commonly observed in CXR models trained on a small dataset and deployed on another one
[Zhao et al., 2019; DeGrave et al., 2020]. We provide tools to simulate covariate shifts in
these datasets so researchers can evaluate the susceptibility of their models to these shifts, or
explore mitigation strategies.

d = xrv.datasets.CovariateDataset(d1 = # dataset1 with a specific condition.
d1_target = # target label to predict.
d2 = # dataset2 with a specific condition.
d2_target = #target label to predict.
mode="train", # train, valid, or test.
ratio=0.75)

Figure 3: A CovariateDataset example of how the data would be split with a ratio of 0.75
specified. The target label will be balanced 50/50 in each split but the ratio of the
origin dataset will be varied.

The class xrv.datasets.CovariateDataset takes two datasets and two arrays repre-
senting the labels. It returns samples for the output classes with a specified ratio of examples
from each dataset, thereby introducing a correlation between any dataset-specific nuisance
features and the output label. This simulates a covariate shift. The test split can be set up
with a different ratio than the training split; this setup has been shown to both decrease
generalization performance and exacerbate incorrect feature attribution [Viviano et al., 2020].
See Figure 4 for a visualization of the effect the ratio parameter has on the mean class
difference when correlating the view (each dataset) with the target label. The effect seen
with low ratios is due to the majority of the positive labels being drawn from the first dataset,
where in the high ratios, the majority of the positive labels are drawn from the second
dataset. With any ratio, the number of samples returned will be the same in order to provide
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controlled experiments. The dataset has 3 modes, train sampled using the provided ratio
and the valid and test dataset are sampled using 1−ratio.

Figure 4: An example of the mean class difference drawn from the COVID-19 dataset at
different covariate ratios. Here, the first COVID-19 dataset consisted of only AP
images, whereas the second dataset consisted of only PA images. The third row
shows, for each ratio, the difference in the class means, demonstrating the effect of
sampling images from the two views on the perceived class difference. The fourth
row shows the difference between each ratio’s difference image, and the difference
image with a ratio of 0.5 (balanced sampling from all views).
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Appendix D. Transfer Learning Example

This is an example of fine-tuning a pre-trained model on a dataset which is in the TorchXRayVi-
sion format. This code is available online2.

# Use XRV transforms to crop and resize the images
transforms = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop(),

xrv.datasets.XRayResizer(224)])

# Load Google dataset and PyTorch dataloader
dataset = xrv.datasets.NIH_Google_Dataset(imgpath=dataset_dir,

transform=transforms)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=8)

# Load pre-trained model and erase classifier
model = xrv.models.DenseNet(weights="densenet121-res224-all")
model.op_threshs = None # prevent pre-trained model calibration
model.classifier = torch.nn.Linear(1024,1) # reinitialize classifier

optimizer = torch.optim.Adam(model.classifier.parameters()) # only train classifier
criterion = torch.nn.BCEWithLogitsLoss()

# training loop
for batch in dataloader:

outputs = model(batch["img"])
targets = batch["lab"][:, dataset.pathologies.index("Lung Opacity"), None]
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()

2. https://github.com/mlmed/torchxrayvision/blob/master/scripts/transfer_learning.ipynb
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