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Abstract

Precision medicine for chronic diseases such as multiple sclerosis (MS) involves choosing a
treatment which best balances efficacy and side effects/preferences for individual patients.
Making this choice as early as possible is important, as delays in finding an effective therapy
can lead to irreversible disability accrual. To this end, we present the first deep neural
network model for individualized treatment decisions from baseline magnetic resonance
imaging (MRI) (with clinical information if available) for MS patients. Our model (a)
predicts future new and enlarging T2 weighted (NE-T2) lesion counts on follow-up MRI on
multiple treatments and (b) estimates the conditional average treatment effect (CATE), as
defined by the predicted future suppression of NE-T2 lesions, between different treatment
options relative to placebo. Our model is validated on a proprietary federated dataset of
1817 multi-sequence MRIs acquired from MS patients during four multi-centre randomized
clinical trials. Our framework achieves high average precision in the binarized regression
of future NE-T2 lesions on five different treatments, identifies heterogeneous treatment
effects, and provides a personalized treatment recommendation that accounts for treatment-
associated risk (e.g. side effects, patient preference, administration difficulties).

Keywords: treatment effect, causal inference, CATE, neuroimaging, precision medicine,
multiple sclerosis, new and enlarging lesions, MRI, predicting future outcomes

1. Introduction

Precision medicine involves choosing a treatment that best balances efficacy against side
effects/personal preference for the individual. In many clinical contexts, delays in finding
an effective treatment can lead to significant morbidity and irreversible disability accrual.
Such is the case for multiple sclerosis, a chronic neurological disease of the central nervous
system. Although numerous treatments are available, each has a different efficacy and risk
profile, complicating the task of choosing the optimal treatment for a particular patient.
One hallmark of MS is the appearance of lesions visible on T2-weighted MRI sequences
of the brain and spinal cord (Rudick et al., 2006). The appearance of new or enlarging,
NE-T2, lesions on sequential MRI indicates new disease activity. Suppression of NE-T2
lesions constitutes a surrogate outcome used to measure treatment efficacy. Predicting the
future effect of a treatments on NE-T2 lesions counts using brain MRI prior to treatment
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initiation would therefore have the potential to be an early and non-invasive mechanism to
significantly improve patient outcomes.

Predicting future treatment effects first requires accurate prognostic models for future
disease evolution. Deep learning has been used to predict prognostic outcomes in a variety
of medical imaging domains (González et al., 2018; Nielsen et al., 2018; Lin et al., 2018;
Sun et al., 2019). In the context of MS, research has mainly focused on the related tasks
of lesion segmentation (Valverde et al., 2017; Roy et al., 2018; Nair et al., 2020; Nichy-
poruk et al., 2021) and NE-T2 lesion detection (Doyle et al., 2018; Sepahvand et al., 2020).
Recently, deep learning models have been developed for the binary prediction of future
disability progression (Tousignant et al., 2019) and the binary prediction of future lesion
activity (Sepahvand et al., 2019), as defined by the presence of more than one NE-T2 or
Gadolinium enhancing lesions. The prediction of more granular outcomes, such as future
NE-T2 lesion counts, remains an open research topic. Furthermore, models are typically
built as prognostic models for untreated patients. Predicting prognosis on treatment re-
quires addressing the additional challenge of learning the effect each treatment will have on
a particular patient based on their MRI, and thus potentially subtle MRI markers predictive
of future treatment response. Machine learning models that have been devised to predict
treatment response when it is directly measurable on the image (e.g. shrinking tumour) (Xu
et al., 2019; Ha et al., 2018), are insufficient for the context of MS and for other diseases
where treatment response must be evaluated relative to placebo or other treatments. Pre-
vious work by (Doyle et al., 2017) examined the ability of classical machine learning models
to perform binary activity prediction for patients on MS treatments and identify potential
treatment responders.

Several machine learning methods have been developed to estimate treatment effects
for single treatment-control comparisons (Louizos et al., 2017; Shalit et al., 2017; Shi et al.,
2019), with extensions to multiple treatments (Zhao et al., 2017; Zhao and Harinen, 2020).
Zhao and Harinen (2020) also integrate the notion of value and cost (or risk) associated
with a treatment, crucial elements for making sound recommendations, particularly when
higher efficacy medications may be associated with more severe side effects. However, ap-
plications to precision medicine have largely focused on using clinical data as input (Katz-
man et al., 2018; Fotso, 2018; Ching et al., 2018; Jaroszewicz, 2014). Existing MS models
(Sormani et al., 2013; Ŕıo et al., 2008; Prosperini et al., 2009) are also limited to clini-
cal features (e.g. demographics), and established group-level MRI-derived features (e.g.
contrast-enhancing lesion counts, brain volume). Deep learning models would permit learn-
ing individual, data-driven features of treatment effect directly from MRI sequences and
should provide improvement on existing strategies.

This paper introduces the first image-based treatment recommendation framework for
MS that combines prognosis prediction, treatment effect estimation, and treatment-associated
risk (Figure 1) evaluation. Our models takes multi-sequence MRI at baseline, along with
available clinical information, as input to a multi-head deep neural network that learns
shared latent features in a common ResNet encoder (He et al., 2015). It then learns
treatment-specific latent features in each output head for predicting future potential out-
comes on multiple treatments. Predictions, effect estimates, and treatment risk are then
supplied to a Clinical Decision Support Tool that outputs a treatment recommendation.
This framework is evaluated on a proprietary multi-trial, multi-scanner dataset of MS pa-
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Figure 1: System overview illustrating the overall approach.

tients exposed to five different treatment options. The multi-head model not only accurately
predicts, from baseline, future NE-T2 lesion counts that will develop 1-2 years ahead on all
treatments, but it is able to reliably identify subgroups with heterogeneous treatment effects
(groups for which the treatment is more or less effective) as measured by causal inference
metrics. Finally, this framework shows that improved lesion suppression can be achieved
using the support tool, especially when treatment risk is being considered.

2. Method

2.1. Estimating Treatment Effect

LetX ∈ Rd be the input features (multi-sequence MRI and available clinical data), Y ∈ R be
the outcome of interest, and W ∈ {0, 1, ...,m} be the treatment allocation in the case where
w = 0 is a control (e.g. placebo) and the remaining are m treatment options. Given an
observational dataset D = {(xi, yi, wi)}ni=1, the individual treatment effect (ITE) for patient
i can be defined using the Neyman/Rubin Potential Outcome Framework (Rubin, 1974) as
ITEi = Yi(t) − Yi(0), where Yi(t) and Yi(0) represents potential outcomes on treatment
t ∈ {1, ...,m} and control, respectively. The ITE is therefore a fundamentally unobservable
causal quantity because only one of these potential outcomes is realized. Treatment effect
estimation in machine learning therefore relies on a related causal estimand, the conditional
average treatment effect (CATE)

τt(x) = E[Y (t)|X = x]− E[Y (0)|X = x]. (1)

The causal expectations can be recovered from the observational data as follows

τt(x) = E[Y |X = x,W = t]− E[Y |X = x,W = 0] = µt(x)− µ0(x) (2)

which can be estimated in an unbiased fashion using randomized control trial data (as in our
case), where {(Y (0), Y (1))} ⊥⊥ W |X (Gutierrez and Gérardy, 2017). Further assumptions
are needed in the context of non-randomized data (Guelman, 2015).

2.2. Network Architecture

Our network is based on TARNET (Shalit et al., 2017) and its multi-treatment extension
(Zhao and Harinen, 2020). Specifically, we employ a single multi-head neural network
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composed of m different CATE estimators,

τ̂t(x) = µ̂t(x)− µ̂0(x), t ∈ {1, ...,m} (3)

where each µ̂t(x) is parametrized by a neural network trained on the corresponding treat-
ment distribution, and all share parameters in the earlier layers. A ResNet encoder is used
as the shared trunk, and after a global max pooling layer, the encoded features are concate-
nated with any available clinical information before being processed by treatment-specific
multilayer perceptrons (MLPs). The model architecture is depicted in Figure 2.

During training, mini-batches are randomly sampled from D and fed through the net-
work, outputting a prediction for each treatment head. Losses are computed at each head
t for the set of prediction-target pairs where ground truth is available for that treatment,
{(ŷi,t, yi)}i:wi=t. Shared parameters are learned in the common layers, which receive gra-
dients for each sample irrespective of treatment allocation, while treatment-specific pa-
rameters are learned in the treatment heads from samples allocated to the corresponding
treatment. At inference, predictions from all output heads are used for every patient. Full
implementation details can be seen in Appendix A.
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Figure 2: Network Diagram. Common ResNet encoder followed by treatment-specific out-
put MLPs for predicting potential outcomes on multiple treatments.

The tasks of regression and classification are examined. Regressing future NE-T2 lesion
counts offers the most intuitive interpretation of treatment effect τ̂t(x) (i.e. differences
in lesion count), but is sensitive to outliers in the count distribution (e.g. patients with
50 lesions). On the other hand, MS guidelines (Freedman et al., 2020) report a cutoff
of (≥ 3) new/enlarging T2 lesions after which a treatment should be changed to a more
effective one. We therefore also consider the binary classification task of predicting minimal
evidence of disease activity on future T2 sequences, referred to as MEDA-T2, as having
< 3 NE-T2 lesions. Unfortunately, the treatment effect τ̂t(x) at the binary scale would not
capture the true range of effects, and using the softmax outputs to compute τ̂t(x) has a less
informative interpretation as compared to regressed counts. For the regression loss, we use
Mean Squared Error (MSE) on the log-transformed count, ln(yi + 1), to reduce the weight
of outliers. For the classification loss, we use binary cross entropy (BCE) on the binary
MEDA-T2 outcome, I(yi < 3), where I(·) is the indicator function.
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2.3. Clinical Decision Support Tool

Based on Zhao and Harinen (2020), we define rt to be the risk associated with treatment t ∈
{1, 2, ...,m}. This can be set by a clinician and patient based on their experience/preference,
or could be extrapolated from long-term drug safety data. In the case of MS, drugs can
be grouped into lower efficacy (LE), moderate efficacy (ME), and high efficacy (HE). An
escalation strategy (starting with LE and escalating if necessary) is often used to avoid
unnecessarily exposing patients to side effects attributed to higher efficacy drugs (Le Page
and Edan, 2018). We therefore set rt = ctλ, where λ is the constant incremental risk
associated with moving up the ladder of efficacy (which is set by the user). ct takes on a
value of 0 for placebo, 1 for LE, 2 for ME, and 3 for HE. We define risk-adjusted CATE, as

τ̂∗t (x) = τ̂t(x) + rt. (4)

Assuming negative CATE indicates benefit, here a reduction in NE-T2 lesions, the tool then
recommends treatment j such that j = argmint τ̂

∗
t (x).

3. Experiments and Results

3.1. Dataset

The dataset is composed of patients from four randomized clinical trials: BRAVO (Vollmer
et al., 2014), OPERA 1 (Hauser et al., 2017), OPERA 2 (Hauser et al., 2017), and DEFINE
(Havrdova et al., 2013). Each trial enrolled patients with relapsing-remitting MS (the most
common form) and had similar recruitment criteria. We excluded patients who did not
complete all required MRI timepoints, or were missing MRI sequences/clinical features at
baseline, resulting in a dataset with n = 1817. Treatments for these trials are categorized
based on their efficacy at the group level: placebo (n = 362), no efficacy (NE, n = 261),
lower efficacy (LE, n = 295), moderate efficacy (ME, n = 431), and high efficacy (HE,
n = 468) with each level representing one treatment. Pre-trial statistics and treatment
distributions can be seen in Appendix F.

All trials acquired MRIs at 1 x 1 x 3 mm resolution at the following timepoints: base-
line (prior to treatment initiation), one year, and two years. Each contains 5 sequences:
T1-weighted, T1-weighted with gadolinium contrast agent, T2-weighted, Fluid Attenuated
Inverse Recovery, and Proton Density weighted. In addition, expert-annotated gadolinium-
enhancing (Gad) lesion masks and T2 lesion labels are provided. The baseline MRIs and
lesion masks were used as input to our model, while the NE-T2 lesion counts occurring
between year one and two were used to compute count target and the binarized MEDA-T2
outcome. Patient’s who did not complete all the required MRIs were excluded as they would
not have a NE-T2 count. Percentage of MEDA-T2 in our dataset for placebo, NE, LE, ME,
and HE are is 45.7%, 54.4%, 63.8%, 77.4%, 99.6%, respectively. In addition, baseline age,
sex, and Expanded Disabillity Status Scale (Kurtzke, 1983), a clinical disability score, were
used as additional clinical features as inputs to our model. The dataset was divided into a
4x4 nested cross validation scheme for model evaluation (Krstajic et al., 2014). Following
Soltys et al. (2014)’s use of ensembling, the 4 inner-fold models are used as members of an
ensemble whose prediction on the outer fold’s test set is the average of its members.
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3.2. Predicting Future Lesion Suppression

We conduct three experiments to determine the best performing framework for predicting
the observed future MEDA-T2 given different combinations of inputs, targets, and loss
functions. The first compares the performance of the proposed single multi-head architec-
ture with the performance of m independently trained networks. The second assesses the
benefit of using both imaging and clinical features. The third compares binary classification
of MEDA-T2 with binarization of the output of a regression model trained directly on the
NE-T2 lesion counts.

Table 1: Average precision scores for the binary MEDA-T2 outcome.

Model Type + Clinical Multi-Head Placebo AP NE AP LE AP ME AP HE AP

Random Baseline 0.457 0.544 0.638 0.774 0.996

Clinical Only ✓ 0.72 +/- .08 0.76 +/- .02 0.82 +/- .06 0.90 +/- .03 0.995 +/- .01

Binary Classification ✓ 0.78 +/- .04 0.76 +/- .06 0.79+/-.03 0.916+/-.02 0.997 +/- 0.01

Binary Classification ✓ 0.71 +/-.09 0.70 +/-.01 0.82 +/-.05 0.9 +/-.01 0.995 +/-.01

Binary Classification ✓ ✓ 0.78 +/-.08 0.79 +/-.03 0.86+/-.04 0.9 +/-.04 0.995 +/-.01

Binarized Regression ✓ ✓ 0.80 +/- .08 0.79+/- .01 0.87 +/- .04 0.913+/- .03 0.996 +/-.01

Table 2: MSE for log lesion count regression against baseline (mean log lesion count).

Model Placebo NE LE ME HE

Baseline 1.273 1.311 1.0432 0.904 0.0443

Regression 0.669 1.062 0.849 0.701 0.0433

Model performance is evaluated using average precision (AP) due to class imbalances in
some of the treatment arms, particularly on HE. The random baseline reflects the positive
MEDA-T2 label fraction on each arm. For an improved estimate of the generalization error,
metrics are computed from the aggregated outer fold test set predictions. Results are shown
in Table 1. The multi-head architecture improves APs across most treatment arms, and the
concatenation of clinical features provides an additional boost in performance. Finally, the
multi-head binarized regression model with clinical data concatenation outperformed the
binary classification equivalent.

Given its strong performance, we performed the following evaluations using the regres-
sion model. We evaluated the MSE on the non-binarized output of the regression model
(the log-lesion count), which demonstrates an improvement over the random baseline (mean
log lesion count) for all treatments except HE (see Table 2). The failure to regress lesion
counts on HE can be explained by the extremely small variance in the target distribution,
with only 5% of all test patients having > 0 future NE-T2 lesion counts.

3.3. Estimating Treatment Effects

Given that the regression model outperforms alternatives on MEDA-T2 classification, and
because it provides added granularity and a more intuitive interpretation, we used this model
for CATE estimation. CATE estimates are computed for each treatment arm relative to
placebo.

To evaluate the quality of the CATE estimation, we report uplift bins (Ascarza, 2018)
at three thresholds of predicted effect. Response (τ̂t) values are binned into tertiles, and the
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(a) (b)

Figure 3: Treatment Effect Analysis. (a) Average lesion count differences between
treatment-placebo pairs, binned according to tertiles of predicted treatment effect
size. P-values for differences between groups are shown in Appendix G. (b) Aver-
age risk-adjusted lesion count for individuals who did (blue) or did not (orange)
receive the recommended treatment, compared to random treatment assignment
(green). Incremental risk values (λ) are varied on the x-axis.

average difference between the ground truth lesion count for patients who factually received
the treatment t and those who factually received placebo is computed for each treatment
t. The result, shown in Figure 3(a), demonstrates individuals predicted to respond most
(top 33%) have a significantly greater reduction in lesion count over the entire group, and
the ones predicted to respond least (bottom 33%) have a smaller reduction than the entire
group. This suggests the model correctly identifies heterogeneous treatment effects. Uplift
bins at different resolutions can be seen in Appendix D.

3.4. Clinical Decision Support Tool In Action

We now illustrate how the tool could be used in practice. Assuming each drug is associated
with a different risk profile (see Section 2.3), Figure 4 illustrates examples of potential
outcomes for two patients. Patient (a) might opt for either a HE efficacy option if they are
not worried about greater risk of side effects or cost, or might select a ME option if they are
more risk-averse. Patient (b), in turn, might opt for a drug that is NE at the group level
but that is predicted to be of comparable efficacy to other options in their particular case.

Individual potential outcome predictions cannot be evaluated due to the lack of ground
truth, but we can evaluate the group outcomes for those who received the recommended
treatment. To do so, we adjust the ground-truth future NE-T2 lesion count for each indi-
vidual who received the recommended treatment by adding the risk associated with that
treatment, y∗i = yi + rt, and compare their average risk-adjusted lesion count to the group
who received a non-recommended treatment (Figure 3(b)). Patients who were factually
assigned treatment based on the system’s recommendation had a reduction in expected ad-
justed lesion count for any value of the incremental cost λ (varied along the x-axis) which
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indicates the tool provides better treatment recommendations when minimizing treatment-
associated risk.

(a) (b)

Figure 4: Predicted future lesion count on each treatment for two different test patients.
Error bars indicate the standard deviation of the ensemble prediction.The MEDA-
T2 threshold (3 lesions) is depicted by the dashed line.

4. Conclusions

In this paper, we introduce the first medical imaging-based deep learning model for recom-
mending optimal treatments in MS. The model predicts future NE-T2 counts and MEDA-T2
with high precision on 5 different treatments, and finds sub-groups with heterogeneous treat-
ment effects. However, highly effective suppression of new lesion formation may have only
a modest effect on long term disability progression. Current work is focused on predicting
stronger markers of disability progression, so as to improve the value of the decision sup-
port tool. Additionally, the model’s recommendations have the potential to balance efficacy
against treatment associated risks and patient preference. However, our current support
tool uses linear scaling of risk between treatments. A comprehensive risk adjustment model
that incorporates patient preferences, side effects, cost and other inconveniences would pro-
vide a more holistic clinical support tool but is beyond the scope of this paper. Future
improvements could also be made by estimating treatment effect uncertainty (Jesson et al.,
2020) and explicitly optimizing adjusted CATE (Zhao and Harinen, 2020).
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data, Sridar Narayanan. Maria-Pia Sormani for their MS expertise, and Behrooz Mahasseni
for many helpful discussions during model development.

References

Abien Fred Agarap. Deep learning using rectified linear units (relu). CoRR, abs/1803.08375,
2018. URL http://arxiv.org/abs/1803.08375.

Eva Ascarza. Retention futility: Targeting high-risk customers might be ineffective. Journal
of Marketing Research, 55(1):80–98, 2018. doi: 10.1509/jmr.16.0163. URL https://doi.

org/10.1509/jmr.16.0163.

Travers Ching, Xun Zhu, and Lana X. Garmire. Cox-nnet: An artificial neural network
method for prognosis prediction of high-throughput omics data. PLoS Computational
Biology, 14, 2018.

D. L. Collins, P. Neelin, T. M. Peters, and A. Evans. Automatic 3D intersubject registration
of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr, 18(2):
192–205, 1994.

Louis Collins and A. C. Evans. Animal: Validation and applications of nonlinear
registration-based segmentation. International Journal of Pattern Recognition and Arti-
ficial Intelligence, 11, 11 2011. doi: 10.1142/S0218001497000597.

Andrew Doyle, Doina Precup, Douglas L. Arnold, and Tal Arbel. Predicting future disease
activity and treatment responders for multiple sclerosis patients using a bag-of-lesions
brain representation. In MICCAI, 2017.

Andrew Doyle, Colm Elliott, Zahra Karimaghaloo, Nagesh Subbanna, Douglas L. Arnold,
and Tal Arbel. Lesion detection, segmentation and prediction in multiple sclerosis clinical
trials. In Alessandro Crimi, Spyridon Bakas, Hugo Kuijf, Bjoern Menze, and Mauricio
Reyes, editors, Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain In-
juries, pages 15–28, Cham, 2018. Springer International Publishing. ISBN 978-3-319-
75238-9.

9

http://arxiv.org/abs/1803.08375
https://doi.org/10.1509/jmr.16.0163
https://doi.org/10.1509/jmr.16.0163


Durso-Finley Falet Nichyporuk Arnold Arbel

V. Fonov, A. C. Evans, K. Botteron, C. R. Almli, R. C. McKinstry, D. L. Collins, W. S.
Ball, A. W. Byars, M. Schapiro, W. Bommer, A. Carr, A. German, S. Dunn, M. J.
Rivkin, D. Waber, R. Mulkern, S. Vajapeyam, A. Chiverton, P. Davis, J. Koo, J. Mar-
mor, C. Mrakotsky, R. Robertson, G. McAnulty, M. E. Brandt, J. M. Fletcher, L. A.
Kramer, G. Yang, C. McCormack, K. M. Hebert, H. Volero, K. Botteron, R. C. McK-
instry, W. Warren, T. Nishino, C. R. Almli, R. Todd, J. Constantino, J. T. McCracken,
J. Levitt, J. Alger, J. O’Neil, A. Toga, R. Asarnow, D. Fadale, L. Heinichen, C. Ire-
land, D. J. Wang, E. Moss, R. A. Zimmerman, B. Bintliff, R. Bradford, J. Newman,
A. C. Evans, R. Arnaoutelis, G. B. Pike, D. L. Collins, G. Leonard, T. Paus, A. Zij-
denbos, S. Das, V. Fonov, L. Fu, J. Harlap, I. Leppert, D. Milovan, D. Vins, T. Zeffiro,
J. Van Meter, N. Lange, M. P. Froimowitz, K. Botteron, C. R. Almli, C. Rainey, S. Hen-
derson, T. Nishino, W. Warren, J. L. Edwards, D. Dubois, K. Smith, T. Singer, A. A.
Wilber, C. Pierpaoli, P. J. Basser, L. C. Chang, C. G. Koay, L. Walker, L. Freund,
J. Rumsey, L. Baskir, L. Stanford, K. Sirocco, K. Gwinn-Hardy, G. Spinella, J. T. Mc-
Cracken, J. R. Alger, J. Levitt, and J. O’Neill. Unbiased average age-appropriate atlases
for pediatric studies. Neuroimage, 54(1):313–327, Jan 2011.

Stephane Fotso. Deep neural networks for survival analysis based on a multi-task framework.
ArXiv, abs/1801.05512, 2018.

Mark Freedman, Virginia devonshire, Pierre Duquette, Paul Giacomini, Fabrizio Giuliani,
Michael Levin, Xavier Montalban, Sarah Morrow, Jiwon Oh, Dalia Rotstein, and E. Yeh.
Treatment optimization in multiple sclerosis: Canadian ms working group recommen-
dations. Canadian Journal of Neurological Sciences / Journal Canadien des Sciences
Neurologiques, 47:1–76, 04 2020. doi: 10.1017/cjn.2020.66.
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Ross, A. Dı́az, R. San José Estépar, and G. R. Washko. Disease Staging and Prognosis in
Smokers Using Deep Learning in Chest Computed Tomography. Am J Respir Crit Care
Med, 197(2):193–203, 01 2018.

Leandro Axel Guelman. Optimal personalized treatment learning models with insurance
applications. 2015.

Pierre Gutierrez and Jean-Yves Gérardy. Causal inference and uplift modelling: A review
of the literature. volume 67, pages 1–13. PMLR, 12 2017. URL https://proceedings.

mlr.press/v67/gutierrez17a.html.

Richard Ha, Christine Chin, Jenika Karcich, Michael Liu, Peter Chang, Simukayi Mutasa,
Eduardo Sant, Ralph Wynn, Eileen Connolly, and Sachin Jambawalikar. Prior to initia-
tion of chemotherapy, can we predict breast tumor response? deep learning convolutional
neural networks approach using a breast mri tumor dataset. Journal of Digital Imaging,
32, 10 2018. doi: 10.1007/s10278-018-0144-1.

Stephen L. Hauser, Amit Bar-Or, Giancarlo Comi, Gavin Giovannoni, Hans-Peter Hartung,
Bernhard Hemmer, Fred Lublin, Xavier Montalban, Kottil W. Rammohan, Krzysztof Sel-
maj, Anthony Traboulsee, Jerry S. Wolinsky, Douglas L. Arnold, Gaelle Klingelschmitt,
Donna Masterman, Paulo Fontoura, Shibeshih Belachew, Peter Chin, Nicole Mairon,

10

https://proceedings.mlr.press/v67/gutierrez17a.html
https://proceedings.mlr.press/v67/gutierrez17a.html


Personalized Treatment Using MRI

Hideki Garren, and Ludwig Kappos. Ocrelizumab versus interferon beta-1a in relaps-
ing multiple sclerosis. New England Journal of Medicine, 376(3):221–234, 2017. doi:
10.1056/NEJMoa1601277. URL https://doi.org/10.1056/NEJMoa1601277. PMID:
28002679.

E. Havrdova, M. Hutchinson, N. C. Kurukulasuriya, K. Raghupathi, M. T. Sweetser, K. T.
Dawson, and R. Gold. Oral BG-12 (dimethyl fumarate) for relapsing-remitting multiple
sclerosis: a review of DEFINE and CONFIRM. Evaluation of: Gold R, Kappos L, Arnold
D, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis.
N Engl J Med 2012;367:1098-107; and Fox RJ, Miller DH, Phillips JT, et al. Placebo-
controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. N Engl J Med
2012;367:1087-97. Expert Opin Pharmacother, 14(15):2145–2156, Oct 2013.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Szymon Jaroszewicz. Uplift modeling with survival data. 2014.
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Appendix A. Implementation Details

The MRI sequences are first clipped between +/−3 standard deviations and then normalized
to N(0, 1) per sequence. The MRI sequences are then resampled to 2x2x2 resolution and
cropped for a final dimension of 72x76x52. The clinical data is normalized to N(0, 1).

As mentioned in the Network Architecture section, the trunk of the model consists of
three ResNet blocks followed by several MLPs. Each ResNet block contains two convolu-
tional blocks followed by a residual addition. Each convolutional block contains a convo-
lution (kernel size 3, stride 1), Instance Normalization (Ulyanov et al., 2017), a dropout
layer (Srivastava et al., 2014) with p = 0.3, and a LeakyReLU activation (Maas, 2013).
Each ResNet block, with the exception of the last, is followed by an max pooling operation
with kernel size 2. In the three ResNet blocks, the number of kernels for each convolution
is [32, 64, 128] respectively. After the three ResNet blocks, the latents are flattened using
a global average pool before concatenating the features with the clinical information and
inputting the combined latent space to the MLPs. Each of the 5 MLPs in the network
consist of three hidden layers which have dimensions [128,32,16] and use ReLU activations
(Agarap, 2018) with no dropout. For training, we used the AdamW optimizer(Loshchilov
and Hutter, 2019) with a learning rate of .0001 and a batch size of 8.

For models using imaging data and clinical data, the clinical data included age, gender
and baseline EDSS. For the models using clinical data only, the clinical data included age,
gender, baseline EDSS, baseline T2 lesion volume, and baseline Gad lesion count.
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Appendix B. Lesion Counts

Figure B.1: Future NE-T2 Lesion Count Histogram.
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Figure B.2: Future NE-T2 Lesion Counts by Treatment

(a) (b)

(c) (d)

(e)

Appendix C. Treatment Effect Analysis with the binary MEDA-T2
outcome
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(f ) (g)

Figure C.1: Treatment Effect Analysis. (a) Average difference in frequency of MEDA-
T2 between treatment-placebo pairs, binned according to tertiles of predicted
treatment effect size. (b) Frequency of risk-adjusted MEDA-T2 for individuals
who did (blue) or did not (orange) receive the recommended treatment, com-
pared to random treatment assignment (green). Incremental risk values (λ) are
varied on the x-axis.

Appendix D. Additional Uplift Bins

(a) (b)

Figure D.1: Average difference in NE-T2 lesion count between treatment-placebo pairs,
binned according to quintiles (a) and deciles (b) of predicted treatment effect
size.
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Appendix E. Additional Results

Table E.1: ROC-AUC for the binary MEDA-T2 outcome.

Model Type + Clinical Multi-Head Placebo NE LE ME HE

Baseline 0.5 0.5 0.5 0.5 0.5

Clinical Only ✓ 0.76 + .03 0.719+/-.02 0.745+/-.05 0.73+/-.03 0.46+/- .07

Binary Classification ✓ 0.77 + .03 0.69+/-.05 0.68+/-.06 0.759+/-.03 0.5 +/- .11

Binary Classification ✓ ✓ 0.818 +/- .01 0.738 +/- .071 0.770 +/- .001 0.753 +/- .014 0.488 +/- .0017

Binary Classification ✓ 0.772 +/- .04 0.682 +/- .04 0.73 +/- .01 0.751+/- .04 0.497+/- .04

Binarized Regression ✓ ✓ 0.836 +/- .01 0.749 +/- .0021 0.783 +/- .001 0.769 +/- .014 0.488 +/- .0017

Table E.2: MAE for log lesion count regression against baseline

Model Placebo NE LE ME HE

Baseline 0.94 0.98 0.89 0.789 0.072

MAE 0.658 +/- .08 0.839 +/- .059 0.70 +/-.052 0.64 +/- .07 0.07+/- .01

Appendix F. Pretrial Patient Statistics.

Table F.1: Baseline clinical and scalar MRI metrics for our dataset. Standard deviations
are in parentheses.

Trial/Treatment BRAVO/Placebo DEFINE/Placebo BRAVO/NE BRAVO/LE OPERA 1/ME OPERA 2/ME OPERA 1/HE OPERA 2/HE

N 278 94 261 295 223 208 236 232

Age 37.95 (9.27) 37.8 (9.51) 37.03 (9.2) 38.29 (9.45) 37.2 (9.25) 37.3 (8.95) 37.1 (9.27) 37.5 (8.85)

Gender(Male Fraction) 0.29 0.25 0.29 0.31 0.33 0.34 0.34 0.37

Baseline EDSS 2.71 (1.16) 2.46 (1.23) 2.67 (1.23) 2.64 (1.14) 2.7 (1.27) 2.68 (1.37) 2.77 (1.21) 2.68 (1.27)

T2 Lesion Volume 7.82 (8.714) 6.67 (8.2) 9.28 (9.8) 8.4 (9.2) 9.28 (11.1) 10.0 (12.3) 10.96 (14.21) 10.83 (14.25)

Gad Count 1.12 (3.24) 1.84 (3.91) 1.61 (4.40) 1.48 (3.5) 1.535 (4.75) 1.87 (4.47) 1.73 (4.35) 1.85 (4.8)
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Table F.2: Treatments used for the model by trial.

Trial High Efficacy Treatment Moderate Efficacy Treatment Lower Efficacy Treatment No Efficacy Treatment Placebo

OPERA 1 Ocrelizumab INFb-1a SC

OPERA 2 Ocrelizumab INFb-1a SC

BRAVO Avonex Laquinimod Placebo

DEFINE Placebo

Appendix G. Significance Values

Table G.1: P values for group differences between response groups for the regression task
shown in figure Figure 3(a). Column headers indicate the two responder groups
(tertiles) that are being compared.

Grouping NE LE ME HE

Top 33%-Middle 33% .0043 <.001 <.001 <.001

Top 33%-Bottom 33% .0028 <.001 <.001 <.001

Top 33% -Group 33% .031 <.001 <.001 <.001

Middle 33%-Bottom 33% .89 .03 <.001 <.001

Middle 33%-Group 33% .70 .19 .97 .43

Bottom 33%-Group 33% .78 <.001 <.001 <.001

Appendix H. MRI Preprocessing

Scans were first denoised (Manjón et al., 2010), corrected for intensity heterogeneity (Sled
et al., 2002), and normalized into the range 0-100. Second, for each patient, the T2w, PD,
and FLAIR scans were co-registered to the structural T1w scan using a 6-parameter rigid
registration and a mutual information objective function (Collins et al., 1994). The T1w
scans were then registered to an average template defining stereotaxic space (Collins and
C. Evans, 2011; Fonov et al., 2011). All volumes are resampled onto a 1 mm isotropic grid
using the T1-to-stx space transformation (for the T1w data) or the transformation that
results from concatenating the contrast-to-T1 and T1-to-stx transformation (for the other
contrasts).
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