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Abstract

Lesion localization is a component of prostate magnetic resonance imaging (MRI) evalua-
tion and is essential for targeted biopsy by enabling registration with real-time ultrasound.
Most previous work on prostate cancer localization has focused on classification or seg-
mentation assuming the availability of radiology annotations. In this work, we propose to
use an unsupervised attention-based multiple instance learning (MIL) method in an ap-
plication for the classification and localization of clinically significant prostate cancer. We
train our model end-to-end with only image-level labels instead of relying on voxel-level
annotations. We extend MIL method by operating both on patches and the whole size
images to learn local and global features, which improves classification and localization
performance. To better leverage the relationships between multi-modal data, we use an
architecture with multiple encoding paths, where each path processes one image modality.
The model was developed on a dataset containing 986 multiparametric prostate MRIs and
achieved 0.75± 0.03 AUROC using 3-fold cross-validation in prostate cancer Grade Group
classification. Lesion localization analysis showed 70-80% sensitivity for GG ≥ 3 at less
than one false positive (FP) per patient and 65% of GG2 at one FP per patient.

Keywords: Multiparametric prostate MRI, Multiple instance learning, Image classifica-
tion prostate cancer.

1. Introduction

Prostate cancer (PCa) is the most common internal malignancy in men (Sung et al., 2021).
The diagnosis of prostate cancer entails the use of digital rectal examination (DRE) and
prostate specific antigen (PSA) testing. For men with palpable lesions and/or high PSA
values, biopsy may be indicated and is typically performed transrectally using ultrasound
guidance with sampling corresponding to a pre-defined grid in order to uniformally sample
the prostate. Pathological grading is used to assess biopsied tissue, with lesion aggressive-
ness rated via the Gleason score (GS), which is assigned based on a pathologist’s visual
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review of histological morphology (Epstein et al., 2016). The ISUP Grade Group sys-
tem has been adopted to further categorize Gleason scores based on risk stratification into
five categories (1-5), with increasing risk of cancer mortality corresponding to increasing
Grade Group number (GG). Unfortunately, grid-based (i.e., systematic/sextant) biopsies
demonstrate clinically significant under-grading of cancer due to incomplete sampling. To
improve the diagnostic accuracy of prostate biopsy, multiparametric magnetic resonance
imaging (mpMRI) can be used to target areas of the prostate deemed suspicious by a radi-
ologist by fusing MRI data with real-time ultrasound (US) data for needle guidance during
the biopsy procedure. MRI has been proven to be the most accurate noninvasive technique
for early detection and staging of prostate cancer (Turkbey and Choyke, 2012).

Computer-aided diagnosis (CAD) systems have been developed for prostate cancer de-
tection and localization using mpMRI. With recent advances in deep learning, many CADs
are based on convolutional neural networks (CNNs), which have shown promise in detect-
ing cancerous regions on mpMRI (Kiraly et al., 2017; Sumathipala et al., 2018). Cao et
al. (Cao et al., 2019b) developed a CNN to jointly detect prostate cancer lesions and ac-
curately segment lesion contours and achieved 75.1% sensitivity at the cost of one false
positive (FP) per patient. In other work, Cao et al. proposed a multi-class CNN to jointly
detect PCa lesions and predict their aggressiveness using Gleason GG (Cao et al., 2019a).
The described framework achieved 87.9% sensitivity at one FP per patient for clinically
significant lesion detection task (GG ≥ 2) and area under the curve of 0.81 for classification
of clinically significant cancer. These works rely on the availability of tumor segmentation
masks manually drawn by expert radiologists, which is a time-consuming and subjective
task.

The challenges in obtaining voxel-level ground truth masks have led to a growing interest
in developing semi- or weakly-supervised approaches. Multiple instance learning (MIL) is a
weakly-supervised approach where each labelled sample is represented as a set (or ’bag’) of
instances. The objective of MIL is then to classify the bag of instances rather than the in-
dividual instances. MIL has shown high performance on prostate biopsy whole slide images
(WSIs) which have enormous size and are typically divided into smaller patches for analysis
based on only slide-level labels (Campanella et al., 2019; Lu et al., 2021). Recently Ilse et
al. presented an attention-based MIL model which leverages trainable attention module to
visualize the relative contribution of instances for final prediction without sacrificing bag-
level prediction performances (Ilse et al., 2018). Attention maps learned with the proposed
approach were consistent with cancerous regions identified by pathologists during diagnosis
(Li et al., 2021).

The main contributions of this paper are summarized as follows. First, in our work
we explore the effectiveness of an MIL approach applied to prostate MRI and compare its
performance to a method where attentions are learned based on the whole size images. We
argue that dividing images into smaller patches for training an attention-based MIL model
provides better localization and reduces the number of false positive lesions. Second, to
better leverage the multi-channel nature of MRI data, we explore the influence of early and
late fusion strategies to improve lesion classification and localization quality. Third, local
and global features are learned in two separate branches of the network to further improve
classification and lesion localization with high sensitivity and low per-patient false positive.
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Figure 1: Overview of the proposed prostate mpMRI classification and lesion localization
framework. The model consists of two branches, both containing a CNN feature
extractor. The local branch is trained on patches in the attention-based MIL
framework, while the global branch is trained on whole size images.

2. Method

The general pipeline of the proposed approach is presented in Figure 1 and consists of
two branches: a global branch that operates on the entire image, and a local branch that
operates on image patches (see Section 2.4 for details). Each of the branches can process
3D multiparametric data using different fusion strategies (see Section 2.3 for details). 3D
MRI is passed through the global branch to obtain an image-level feature vector. Patches,
extracted from the image used to generate the global feature vector, form a bag and the bag
is passed through the local branch, which is essentially an attention-based MIL framework
(see Section 2.2 for details). Bag-level feature vectors, obtained from the output of the local
branch, is added to the image-level vector (output from global branch) and the classification
prediction is made. Each patch is associated with a learned attention weight. Given the
stride length, each pixel occurs in multiple patches and may thus be associated with different
attentions. A localization map can be obtained by averaging these attentions, resulting in
pixel-level attention specificity. For comparison, in Section 2.1 we describe alternative
attention-based localization methods based on the whole size image analysis.

2.1. Attention-guided localization based on the whole image

To locate the discriminative regions for whole size image classification we follow ideas pre-
sented in previous work (Guan et al., 2018; Chen et al., 2021). Given an input image, let
F ∈ RC×H×W×D represent the activation outputs of the last convolutional layer, which
are then fed into a global average pooling (GAP) layer, followed by a fully-connected (FC)
layer. We denote the weight matrix of the FC layer as W ∈ RC×K , where K is the number
of classes in the classification model. Finally, for each class k we define an attention map
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Ak ∈ R×H×W×D as,

Ak(x, y, z) =

C−1∑
c=0

WckFcxyz (1)

The obtained attention heat map Ak is resized to the original image size, and the most
discriminative regions Mk of the given image are calculated as

Mk(x, y, z) =

{
1, Ak(x, y, z) ≥ τ

0, ifAk(x, y, z) < τ,
(2)

where τ is a threshold that determines the size of the discriminative region and larger τ
leads to a smaller region and vice versa.

2.2. Attention-based MIL

In this work, we utilize an attention-based MIL framework (Ilse et al., 2018) that is designed
to learn localization information from a classification neural network. Images are regarded
as bags composed of their constituent image patches. In our work, the MIL bags with
Grade Group 2 (GG2) or higher are called positive bags and others are negative. The GG2
threshold was selected as these tumors are generally considered to be treatment worthy.
We note that in our problem context, some instances (patches) inside each bag represent
lesion regions, but that this information is not used during model training. A CNN is
utilized to extract the feature embedding hk of each instance xk, where hk ∈ RM , M is the
dimensionality of instance features, K - number of instances in the bag. An embedding for
the whole bag can thus be calculated using attention-based MIL pooling as proposed by
Ilse et al. (Ilse et al., 2018):

Z =
K∑
k=1

αkhk, (3)

where

αk =
exp(wT tanh(V hTk ))∑K
j=1 exp(w

T tanh(V hTj ))
, (4)

w ∈ RL, V ∈ RL×M - learnable parameters. Image-level prediction can now be obtained by
applying a fully connected layer to the bag-level features. Having an attention value αk for
each instance in the bag, we may combine them into an attention map with size equal to
initial image size. The most discriminative regions Mk can be calculated according to (2).

2.3. Fusion strategies for multi-modal images

Each MRI channel plays a different diagnostic role in prostate tumor classification and
localization. One of the most typical approaches to process multi-channel data is early
fusion, where different channels are stacked together and passed through the network as
multi-channel image. The main disadvantage of this approach is that it is based on the
assumption that relation between different modalities is simple, which is not true (Srivastava
et al., 2014). To better learn the multi-channel relationships, a late fusion strategy can be
applied, where each modality is merged with others in a deep layer after an independent
CNN (Xu et al., 2019).
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2.4. Local-global attention-based MIL

In order to increase patch-based model performance by adding high-level information, we
follow ideas presented Jose et al. (Jose and Oza, 2021) in which the MIL model is a local
branch that operates on patches of the image and focuses on finer detail and the classification
CNN is a global branch that works on the entire image volume and focuses on high-level
information. Feature maps from both branches are added and passed through the final
classifier that consists of a fully connected layer.

(a) (b) (c)

Figure 2: Attention-based lesion localization based on the proposed approach: (a) TP based
on IOU and distance criteria; (b) FP based on both criteria; (c) FP based on
distance criterion, but TP based on IOU criterion. Localized lesions are indicated
with red contour and ground truth lesions with a blue contour.

3. Experiment

3.1. Dataset

Our dataset contains 986 studies collected from patients who underwent transrectal ultra-
sound - MRI fusion biopsy (TRUS biopsy) using the Artemis guided biopsy system (Eigen
Systems) between 2010 and 2018 at our institution using a standardized protocol and 3T
magnet (Trio, Verio, or Skyra, Siemens Healthcare). As part of this clinical process, a radi-
ologist contours a prostate and any regions of interest (ROIs) for targeted biopsy sampling.
3D T2-weighted (T2W) images, apparent diffusion coefficient (ADC) maps, high b-value
diffusion weighted images (DWI), and prostate and lesion contour sets were available for
this study. MRI preprocessing included bias field correction and interquartile range (IQR)-
based intra-image normalization to address the relative nature of MRI intensity values.
Each image was normalized to the image-level IQR calculated inside the prostate gland and
then values were clipped between two IQRs below the first quartile and five IQRs above
the third quartile in order to eliminate outlying values created by imaging artifacts. All
images in the dataset have the same voxel spacing and therefore no resampling was needed.
We then extracted patches of size 8x8x8 from the grid with 50% overlap. Patches that
contained less than 50% prostate gland were discarded from analysis.

In this work, we assume that a prostate mask is available for each MRI (see Figure 4
in the Appendix). Each image is then cropped to the prostate region to reduce input size
and improve model convergence. If the gland volume masks are not provided initially, they
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Figure 3: (a) ROC analysis for Gleason Grade Group classification. (b) FROC analysis for
WI and MIL comparison. (c) FROC analysis for attention-based lesion detection
sensitivity for each specific Gleason Grade Group. The transparent areas are 95%
confidence intervals estimated by two times of the standard deviation

can be obtained using existing prostate segmentation models, which have achieved high
performance (overall Dice 0.916) (Sarma et al., 2021).

We randomly divided the dataset into 70% for training and 30% for validation, stratify-
ing by patient-level GG determined by the highest GG in each patient’s corresponding set
of biopsy cores. Overall, dataset consisted of 492 GG1 lesions, 264 GG2 lesions, 110 GG3
lesions, 55 GG4 lesions and 65 GG5 lesions.

3.2. Implementation details

We used a 3D version of the LeNet5 model (LeCun et al., 1998) as a backbone for the
feature extractor in both the MIL model (local branch) and the whole image classifier (global
branch).Taking into account the size of the input patches, we adapted the parameters of
convolution and pooling layers (see Table 2 and Table 3 in the Appendix for detailed model
architectures). To accommodate the anisotropic nature of our data, the first 3D convolution
uses a kernel size of 1 (what makes them effectively 2D convolutions) in the out of plane
axis to prevent aggregation of information across distant slices. Sizes of input patches to
the MIL model are 8× 8× 8, therefore the sizes of feature maps from the last convolutional
layer are 64×4×2×2. Feature maps were flattened and fed into a FC layer with 256 nodes
to produce a M × 256 instance embedding matrix, which was forwarded into the attention
module (4). The attention module generated an K × n attention matrix, where K stands
for the number of instances in the bag and n stands for number of classes and is equal to
one in our case. The instance embedding matrix with size K×256 can be multiplied by the
K × 1 attention vector, which results in 1× 256 bag-level representation that is forwarded
into a final classifier consisting of a FC layer.

The initial learning rate was set at 1× 10−4 and was decreased by a factor of 10 if the
validation loss did not improve for the last 5 epochs. We used the Adam optimizer and a
batch size of one. Random flipping, rotation, and elastic transformations were utilized for
data augmentation.
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3.3. Evaluation metrics

False positive tumor detection is an important metric in prostate cancer diagnosis as they
can result in unnecessary biopsies. Thus, a primary goal is to reduce the number of false
positive predictions while maintaining sufficient sensitivity. Previous work has found that
true positive detections are localized points in or within 5mm of a lesion’s center since PCa
lesion diameters on corresponding surgical pathology specimens are roughly 10mm larger
than the suspicious region in MRI (Litjens et al., 2014). At the same time, as mentioned
by Litjens et al., false positives can also arise from large lesions where the distance between
the center of the radiologist contour and the predicated lesion exceeds a pre-determined
criterion. In this study, the distance criterion was defined as 5mm based on previous
literature. When the ground truth lesion is quite large, the distance between the center
of mass of predicted and ground truth lesions can be more than 10mm. We observe the
same phenomenon in our data, where a localized lesion can be clearly inside the lesion
drawn by a radiologist on several 2D slices, but its center of mass calculated using the
entire volume is displaced along the y-axis (see Figure 2(c)). We found that intersection
over union (IOU) calculated between detected and ground truth lesions is resistant to such
cases. The detection is a true positive if it has intersection with one of the ground truth
lesions and IOU is higher than 0.01, e.g., IOU is equal to 0.015 for localization result on
Figure 2(a). False positive are all detections that are not true positive (see Figure 2(b)).

4. Results

We used the area under the receiver operating characteristic curve AUROC and average
precision AP computed from ROC and precision and recall (PR) curves, respectively. Fig-
ure 3 (a) shows the ROC analysis for GG ≥ 2 vs. GG < 2 classification. We compared
the performance of the MIL framework with early fusion (EF MIL) and late fusion (LF
MIL) using only the local branch (see Section 2.3 for details) for prostate Grade Group
classification. Three-fold cross validation results are presented in Table 1. Late fusion MIL
showed slightly better performance than early fusion in both AUC and AP values. We
therefore used LF for both branches of the local-global approach (LF LoGo), which allows
to further increase both metrics and achieve 0.75 ± 0.03 AUC. Attention-guided localization
based on the whole image (WI) analysis showed lower performance than each of three MIL
experiments. We also observe that the WI approach results in less localized lesions (see
Figure 5 in the Appendix.)

Lesion localization performance is evaluated using free-response receiver operating char-
acteristics (FROC) analysis. FROC measures the lesion detection sensitivity versus the
number of false positive per patient. Comparison of FROC curves for the best-performing
MIL and WI models shows that the WI approach achieves higher localization sensitivity
when per patient FP is less than 0.7. However, the corresponding sensitivity is less than
0.4, minimizing potential clinical. The overall maximum achieved sensitivity of the MIL
framework is higher than the WI approach and is equal to 64% at two FP per patient.
FROC analysis for the MIL framework for each specific GG is shown in Figure 3 (c). The
model detects 70%-80% of GG ≥ 3 lesions at less than one false positive per patient and
65% of GG2 at one FP per patient. For GG1 lesions, sensitivity is low even when FP lesions
are largest. This finding is explained by the fact that this particular group contains not only
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GG1, but also negative-biopsy lesions (i.e., lesions outlined by the radiologist that produced
negative biopsies). Visualization of successful and failed localization cases for each Gleason
Grade Group is shown in Figure 5 in the Appendix.

Direct comparison with previous work on prostate mpMRI Gleason Grade Group clas-
sification is not possible because the used datasets are different. However, 75.1% sensitivity
at one FP per patient reported in the work by Cao et al. (Cao et al., 2019b) was achieved
under the assumption that at least one lesion with GG ≥ 2 was identified in histologic
examinations for each volume. In the other work, Cao et al. reported 87.9% sensitivity at
one FP for clinically significant lesions (GG ≥ 2), but for all lesions the achieved sensitiv-
ity was slightly higher than 60% at one FP (Cao et al., 2019a). In our work we achieved
77.4% sensitivity at less than one FP for clinically significant lesions and 60% at 1.5 FP for
all lesions. Unlike other methods, lesion masks provided by radiologists were not used in
training our model.

Table 1: Model performance of prostate GG ≥ 2 vs. GG < 2 classification. EF MIL and LF
MIL - feature extraction in local branch only (MIL framework) using early and late
fusion strategies correspondingly. LF LoGo - feature extraction in both local and
global branches with late fusion strategy. WI - attention-guided localization based
on the whole image. AUROC - area under the receiver operating characteristic
curve, AP - average precision.

EF MIL LF MIL LF LoGo WI

AUROC 0.73± 0.04 0.74± 0.05 0.75± 0.03 0.73± 0.03

AP 0.73± 0.04 0.74± 0.05 0.75± 0.03 0.71± 0.02

5. Conclusion

In this work we applied an attention-based MIL framework to the task of prostate cancer
Grade Group classification with lesion localization. We found that a late fusion strategy
better leveraged relationships between data modalities and resulted in higher performance
compared to early fusion. Extending the model to operate on both patches and the whole
image using two separate network branches in combination with late fusion strategy showed
the best performance and produced 0.75 ± 0.03 AUC in classification of GG ≥ 2 vs. GG
< 2. FROC analysis shows that the model is able to localize cancerous regions with GG ≥
2 with 77.4% sensitivity at less than one false positive per patient. Our model outperforms
attention-guided localization based on the whole image according to both ROC and FROC
analysis.

Our model is trained with weak supervision using only image-level labels with lesion
masks used only for visualization and the calculation of false positives. This paradigm
allows us to easily accommodate clinically-generated data and is thus more general than
approaches requiring pixel level annotations. A limitation of our work, and any work that
includes patients with only biopsy results, is that we do not have surgical resection specimens
to provide a ground truth.
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6. Appendix

Table 2: Local branch architecture. Input shape K × 3× 8× 8× 8.

Layer Type Output shape
1 conv((1,3,3),1,0)-32+ReLU K x 32 x 8 x 6 x 6
2 maxpool(2, 1) K x 32 x 7 x 5 x 5
3 conv((3,3,3),1,0)-64+ReLU K x 64 x 5 x 3 x 3
4 maxpool(2, 1) K x 64 x 4 x 2 x 2
5 fc-256 + ReLU K x 256
7 mil-attention-128 K x 1
8 fc-1 + sigm 1
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(a) (b) (c)

Figure 4: Example slices from a dataset sample (T2W) with parts of the prostate: (a) apex
(lower part) (b) midgland (c) and base (upper part)

Table 3: Global branch architecture. Input shape 1 × 3 × 32 × 64 × 64 (median shape of
the cropped prostate region).

Layer Type Output shape
1 conv((1,3,3),1,0)-32+ReLU 1 x 32 x 32 x 62 x 62
2 maxpool(2, 2) 1 x 32 x 16 x 31 x 31
3 conv((3,3,3),1,0)-64+ReLU 1 x 64 x 14 x 29 x 29
4 maxpool(2, 2) 1 x 64 x 7 x 14 x 14
5 conv((3,3,3),1,0)-128+ReLU 1 x 128 x 5 x 12 x 12
6 maxpool(2, 2) 1 x 128 x 2 x 6 x 6
7 fc-256 + ReLU 1 x 256
8 fc-1 + sigm 1
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Figure 5: Localization maps obtained by proposed approach (MIL) and whole image based
approach (WI) for different GG and different Sensitivity/False Positives number.
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Additional experiments Accuracies on the individual Gleason Grade Groups (GG)
are presented in Table 4. The model is least accurate for samples from class ’1’ (GG ≥ 2)
which were assigned with GG2. This can be explained by the fact that dominant pattern
(Gleason 3) in GG2 (Gleason 3+4) is the same as GG1 (Gleason 3+3).

Table 4: Accuracy evaluation on the individual Gleason Grade Group.

GG1 GG2 GG3 GG4 GG5
mean samples

number 164 88 36 18 22

Acc EF MIL 0.7± 0.05 0.6± 0.06 0.72± 0.1 0.67± 0.01 0.84± 0.03
LF MM 0.71± 0.07 0.6± 0.02 0.7± 0.1 0.68± 0.02 0.84± 0.03
LF LoGo 0.71± 0.05 0.6± 0.05 0.72± 0.09 0.7± 0.01 0.84± 0.02
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