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Abstract

Glioblastoma is a common brain malignancy that tends to occur in older adults and
is almost always lethal. The effectiveness of chemotherapy, being the standard treatment
for most cancer types, can be improved if a particular genetic sequence in the tumor
known as MGMT promoter is methylated. However, to identify the state of the MGMT
promoter, the conventional approach is to perform a biopsy for genetic analysis, which is
time and effort consuming. A couple of recent publications proposed a connection between
the MGMT promoter state and the MRI scans of the tumor and hence suggested the use
of deep learning models for this purpose. Therefore, in this work, we use one of the most
extensive datasets, BraTS 2021, to study the potency of employing deep learning solutions,
including 2D and 3D CNN models and vision transformers. After conducting a thorough
analysis of the models’ performance, we concluded that there seems to be no connection
between the MRI scans and the state of the MGMT promoter.
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1. Introduction

Glioblastoma multiforme is the most malignant and aggressive brain tumor, constituting
60% of adult brain tumors (?). O%-Methylguanine-DNA methyltransferase (MGMT) is a
DNA repair enzyme that reduces the effects of alkylating chemotherapeutic agents on tumor
cells, leading to a poor response to temozolomide (7). MGMT promoter methylation, or
MGMT gene silencing, is a key prognostic factor in predicting the patient’s chemotherapy
response. Since temozolomide increases the patient’s survival rate, the methylation status
could contribute to clinical decision (?). Patients whose MGMT promoter is methylated
report a median survival rate of 21.7, compared to 12.7 months for patients with unmethy-
lated MGMT. The information concerning molecular and genetic alterations of gliomas is
usually obtained via invasive procedures, such as biopsy or open surgical resection. This is
time and effort consuming from the care provider level and increases the infection risk from
a patient level.

The field of radiomics aims to analyze the relationship between clinical diagnoses and
genetic characteristics. Identification of genetic properties of tumors could be more effective
in creating a personalized treatment plan for each patient (7). Radiomics derives features
from medical images to quantify the brain tumor phenotype. Thus, novel non-invasive
approaches are being proposed in order to predict the methylation status from magnetic
resonance images (MRI).
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There are several studies that showcased the ability of predicting the MGMT promoter
status through deep-learning solutions (??). However, based on other studies, MGMT
promoter is not a reliable prognostic factor for the temozolomide response (?), and cannot
be predicted from MRI scans (77?).

In this study, we investigate the ability of state-of-the-art machine learning models to
classify the MGMT promoter methylation status. First, we pre-process the MRI scans and
then use them to implement three different approaches: applying 2D and 3D convolutional
neural networks (CNN), a self-supervised learning (SSL) technique, and vision transformers
(ViT). Then, we follow our implementation results with a discussion on the efficacy of these
models to predict the MGMT promoter methylation status.

2. Related Work

Many attempts involving deep learning methods have recently reported appealing results
in classifying MGMT promoter methylation status. Authors in (?) have trained a CNN
with residual connections to classify the methylation status using T2, FLAIR, T1-weighted
pre-and postcontrast MRI scans and achieved a mean accuracy score of 83% on 5-fold
cross-validation. MRIs of either low or high-grade gliomas and their corresponding genetic
information were obtained from The Cancer Imaging Archives (TCIA) (?) and The Cancer
Genome Atlas (TCGA) (?). In another work by (?), they introduced an MGMT-net,
T2WI-only network based on 3D-Dense-UNets, for determining MGMT methylation status
alongside segmenting tumors. They report a mean cross-validation accuracy of 94.73%
across 3 folds with sensitivity and specificity scores of 96.31% and 91.66%, respectively.
The data were from TCIA and TCGA databases. Similar to (?), but by using full T2
images performed at Mayo Clinic with recorded MGMT methylation information, Korfiatis
et al. (?7) used ResNet50 and demonstrated an accuracy of 94.90% on a test set.

Despite the success of conventional CNNs in the discussed context above, recent stud-
ies raise some concerns regarding MGMT methylation’s predictive value and the feasibility
of solving this problem using deep learning techniques. Han et al. (?) have used a re-
current CNN model that produced a test accuracy of 62% with precision and recall of
0.67. In the Brain Tumor Radiogenomic Classification challenge (?7?), which was hosted
by the Radiological Society of North America (RSNA) and the Medical Image Computing
and Computer-Assisted Interventions (MICCAI) conference, participants were not able to
achieve more than 0.62 AUC score, even though the most extensive dataset for this task
was provided. In a recent clinical study (?), epigenetic silencing of MGMT promoter did
not help predict response to TMZ in a cohort of 334 patients diagnosed with glioblastoma
or high-grade glioma. The study indicates no relationship between methylation of MGMT
promoters and overall survival rates. The authors in (?) investigated from a clinical per-
spective the associations between this predictive biomarker and several radiological and
histopathological features in patients with dehydrogenase (IDH) wild-type glioblastomas.
There were no associations between investigated features, including MRI scans character-
istics, overall survival, and MGMT status. Authors suggest that the methylation status of
MGMT cannot be non-invasively predicted from MRI features.
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Figure 1: A sample of four random slices from different MRI modalities.

3. Dataset

The dataset used in this study is from the Brain Tumor Radiogenomic Classification chal-
lenge (?) that includes multi-parametric MRI (mpMRI) scans for 585 glioblastoma patients
having 348,641 scans. It was split to 80% training data and 20% testing data. Patients
with IDs [00109, 00123, 00709] were removed from the dataset due to issues present in
their images. The patients belong to two classes: methylated MGMT and unmethylated
MGMT. The dataset is balanced, containing 307 methylated cases and 278 unmethylated
cases. Images are in DICOM format that comes with an associated header including clinical
information such as modality, orientation, and MRI machine-specific details. Each patient
has images in four different modalities: T1-weighted pre-contrast (T1), T1-weighted post-
contrast (T1wCE (Gadolinium)), T2-weighted (T2), and T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR). The number of slices for each patient differ. MRI images come in
three orientations, including coronal, axial, and sagittal. In all the experiments in this
manuscript, we use FLAIR or T1wCE type images as the tumor appears bright and easier
to distinguish; tumor is thought to encode the information concerning the MGMT promoter
state. Figure 1 shows four random slices displaying the four modalities and the existence
of different orientations for the same patient. The brain images provided are already pre-
processed by being co-registered to the same anatomical template (SRI24), resampled to
a uniform isotropic resolution, and skull stripped. The Brain Tumor Radiogenomic Clas-
sification challenge dataset includes images from various collections such as the TCIA (?)
public collection of TCGA-GBM, ACRIN-FMISO-Brain collection (ACRIN 6684)(??), and
other public and private datasets. The following preprocessing steps were performed in this
study for all the experiments: 1) Resampling the scans to the axial plane for consistency.
2) For 3D experiments, extracting the same number of slices for each patient. If any further
preprocessing steps were performed for an experiment, they would be mentioned in the
relevant sections.

4. Experiments
4.1. Are 2D and 3D CNNs capable of predicting the MGMT promoter status?

CNNs have proven to be effective in various medical imaging applications, including classi-
fication. In the first experiment, variations of 2D CNN architecture based on deep residual
learning network (ResNet) (?) with 18, 34, 50 layers, and dense connections (DenseNet)
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(?) with 121, 161 layers were used to train the models. Such networks allow to train deeper
models without accuracy degradation and address the issue of vanishing gradients. For the
3D CNN model experiment, we implemented 3D EfficientNet to utilize its ability to capture
the information along the depth dimension of the MRI scans. Furthermore, an ensemble net-
work was designed to combine FLAIR and T1wCE modalities: inputs were passed through
two branches of the network (ResNetl8 without fully connected (FC) layers), and feature
maps were either stacked or added before the FC layer. The figure and other details about
this experiment can be found in Appendix A. The MRI scans were further preprocessed:
1) cropping the brain part, 2) resizing to three image resolutions for different experiments:
128 x 128, 256 x 256, 512 x 512, 3) 3D contrast limited adaptive histogram equalization (7).
In 2D CNN-based classification, additional filtration steps were performed to exclude slices
without the tumor.

The last few experiments with CNN models were focused on the region of interest
(ROI) - based classification. Segmentation masks for 574 patients were provided in Task 1
of The RSNA-ASNR-MICCAI BraTS 2021 challenge (?). Slices were selected based on the
segmentation masks to extract only the tumor region, which was resized to image resolutions
of 128 x 128 and 32 x 32. The small image size was used to examine the same approach
described in (7). The authors used 32 x 32 x 4 input resolution, where four corresponds to
stacking different MR modalities, to train custom ResNet comprised of four residual blocks
with additional minor modifications. For further details, see Appendix A.

For an extensive evaluation of the networks mentioned above, hyperparameters were
tweaked in the following way: the number of epochs varied from 15 to 30, weight decay
was set to 0.01 or was not used. For random initializations, the seed was not fixed. Adam
optimizer and step-based learning rate scheduling were used. Settings for other hyperpa-
rameters and results of the main experiments can be found in Table 1. Overall, selected
models either strongly exhibited overfitting behavior or could not capture the relationship
between MRI features and MGMT promoter status. It was observed that the training loss
fluctuated around the value of 0.7. The rest of the experiments are available in Appendix
A. Possible reasons might include noise in the data and insufficient model complexity. More
sophisticated network architectures were considered in the following sections. As for the
preprocessing steps, we did not notice any positive impact on the performance; hence they
were not used for the later experiments to keep the pipeline simple.

Table 1: Results of the main experiments with CNNs. Pret: (Pretrained where 0 and 1 are

for Random and ImageNet weights model initialization), Aug: Augmentations. * - as two
channels, LR: Learning rate, BS: Batch size.
Model Pret.  Modality  Img Res. Aug. LR BS i‘r{a}g XSIC
ResNet34 0 FLAIR 256 Yes 1e-2 128 0.83 0.54
ResNet50 1 FLAIR 128 Yes 1le-2 128 0.61 0.58
DenseNet121 1 FLAIR 128 Yes le-2 128  0.63 0.58
3D-EfficientNet 0 FLAIR 256 No le-3 4 - 0.64
Custom ResNet 1 Stacking 128 Yes le-3 128 0.76 0.63
ROI Custom ResNet 0 Combined* 32 No 1le2 16 0.70 0.53
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4.2. Can self-supervision benefit the CNNs in prediction?

Due to the scarcity of labeled images in the medical field (?), SSL methods are used to
leverage the large number of unlabeled datasets. In this experiment, we use SimCLR (?),
a contrastive-based SSL algorithm, to pre-train a ResNet18 model with a proxy task and
then finetune it on the downstream task dataset. BraT$S 2020 dataset (?) was used for the
proxy task in the pretraining stage. The BraTS 2020 dataset includes MRI scans of four
modalities belonging to 369 patients. The modalities T'1, T1w, T2w, and FLAIR, were all
included in the proxy task data to maximize the model’s understanding of the variations in
brain MRI. We extracted 80,720 slices and resized them to 128 x 128, disregarding those
containing an inconsiderable view of the brain. The pretraining task used a learning rate of
0.1, batch size of 256, and the SGD optimizer with a momentum of 0.9. The augmentations
applied are random vertical and horizontal flips, random rotations, and random Gaussian
smoothing.

We took 20 slices from each patient for the downstream task and used them as a 20
channel 2D input to the model. The 20 images are of the type FLAIR, in the axial ori-
entation, and resized to 128 x 128. They were chosen by taking the slice containing the
maximum cutaway of the brain as the central slice. The augmentations implemented on the
downstream task are random affine transforms, random Gibbs noise, and random Gaussian
smoothing. The batch size used was 16, the learning rate was 0.001, and the optimizer was
AdamW. These parameters were experimentally chosen. The validation AUC was fluctuat-
ing around 0.6, and the validation loss around 0.7. The final trained model behavior shows
that employing SimCLR to pretrain the model did not lead to significant improvement.
Appendix B presents how the SimCLR model works and the learning curves for the final
downstream experiment.

4.3. Is Vision Transformer’s attention mechanism capable of predicting the
methylation status?

Recently, Dosovitskiy et al. (?) proposed Vision Transformers (ViTs) to perform tasks
such as image classification. ViT is a concept adapted from transformers in the NLP
domain. ViTs uniqueness comes from the attention mechanism it employs, which is utilized
to capture long-range relationships and provide insight into what the model is focused on.
Hence, in this experiment we employed ViTs to predict the methylation status. OPTUNA
framework (?) was used to optimize the hyperparameters of the ViT model. A batch size
of 16, a learning rate of 0.007 and Adam optimizer were found as the best combination of
hyperparameters. A summary of the rest of the hyperparameters are listed in Appendix C.

As for the differences in the number of slices across patients, we chose the slice that
shows the maximum cutaway of the brain as the central slice with 32 additional slices on
each side. The MRI scans were resized to 256 x 256 x 64. The validation AUC was found
to be 0.58.

Since simple and complex models resulted in a validation accuracy no more than 0.6, the
ViT model was trained with random seeds. Figure 2 shows the distribution of predictions
for three of these models. As can be observed, the distribution of prediction on test set is
far from being bi-modal which suggests discrimination between the two classes is very poor.
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Figure 2: Histogram and Kernel Density Estimation (KDE) of predicted classification prob-
abilities of three ViT models trained with different seeds.

The same experiment was conducted for an additional six ViT models with different seeds,
a similar pattern of prediction is observed (Appendix C).

5. Discussion

The accuracy of all the models attempted during this study was very low. Hence, the
focus was to understand the performance of these models and the models that won the
RSNA-MICCATI competition. The following experiment, along with the remainder of the
experiments in this manuscript, was based on ResNet10 model. The choice of this model
is motivated by the winning solution of the Kaggle competition and due to its simplicity,
which makes it ideal for exploring multiple experiments.
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Figure 3: Histogram of the predicted classification probabilities conditioned on true labels.

It was found that the top three models in the competition, when used for inference
on the test set, show a similar uni-modal distribution as discussed in the previous section.
Unfortunately, the test labels for this dataset are not available publicly. Hence, part of
the training data was reserved as a validation set while ensuring stratified sampling in the
training and the validation sets as per Table 2. The model was trained using ten different
random seeds and then tested on the validation set. The validation accuracy of five of these
models is listed in Table 3, and the rest of the validation AUC are in Appendix D.2. It
is evident that the performance of all ten models is slightly better than a random guess.
Figure 3 shows the prediction distribution of three of these models colored based on the
true labels; the grey color shows the overlap between the two classes. The figure shows a
significant overlap in the prediction distribution, suggesting that the model’s prediction is
primarily random. In addition, the mean of prediction varies significantly with the change
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Table 2: Class distribution of train- Table 3: The performance of 5 randomly

ing set selected ResNet10 models
Class Training Validation Model 1 2 3 4 )
0 222 56 AUC 0.57 0.59 054 0.58 0.57
1 246 61

of the seed. This behavior can be visually illustrated in Figure 5, which shows that all these
models perform equally random because they cannot differentiate between the two classes.
Additionally, this behavior indicates that the models are learning irrelevant noise and are
incapable of finding predictive features.

To confirm the above hypothesis, the training loss curves for our models were observed.
The training loss is initially high and saturates to an average value of 0.7 towards the end
of the training, as shown in Figure 4. This trend was observed in our models and many
other models on Kaggle. To explain this behavior, the binary cross entropy (BCE) loss
Equation (1) is solved under the assumption that both classes are almost equally represented
in the training set, and the model is in a random state, i.e., predicting both class 0 and 1
with probability 0.5. Solving Equation (1) yields a loss of 0.69, which explains that these
models are in random states even after 15 epochs.

N
Loss = —% > i x log(p(y:)) + (1 — yi) x log(1 — p(y:)) 1)
=1

These findings are contrary to some previous work; however, we cannot investigate the
discrepancy in the performances due to the absence of public source code (Appendix D.1).

Training Loss

—— experiment -
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~— experiment -
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experiment -

Uk WN e

Class 1 = Class 0

train loss = 0.7

Figure 4: Training loss curves for different Figure 5: Class overlap with random splits
models. representing decision boundaries

5.1. Interpretability

To interpret the trained ResNet1l0 model, the feature maps of a batch size of 128 were
extracted at each layer, as shown in Appendix D.2. It was challenging to interpret the
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feature maps; therefore, we used t-SNE (?) to plot them at every layer in a 2D space. It
can be observed that towards the final layers, the two classes are still entangled, suggesting
that the model is unable to find features that will differentiate between the two classes,
as can be observed from Figure 6. As shown in Appendix D.2, the feature maps were
extracted from the same model trained on MNIST-10. It is clear that the model can learn
predictive features and can separate between the ten classes towards the final layers of the
model. This experiment also confirms the hypothesis that there is no difference between
the features extracted from the two classes’ data.
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Figure 6: Feature visualization via t-SNE. The diffused points show that the model is not
able to separate the two classes.

6. Conclusion

Finally, to answer the question posed in the title: although they showed promising per-
formance in many medical applications, we believe that the current deep learning models
and datasets cannot predict MGMT promoter state using only patient MRI scans. In this
holistic study, we conducted a large number of experiments with different deep-learning
architectures, but they all yielded an AUC that is not significantly better than a random
guess for a binary classification problem. Models with this kind of performance cannot be
used in clinical settings, and hence, as we stand, there is no alternative to surgical biop-
sies. However, these results can be altered in the future based on the development of novel
datasets and methodologies. Also, it might still be possible to predict the methylation sta-
tus by combining other biomarkers or prognostic factors. The future effort shall be focused
on finding these biomarkers, creating new datasets, and developing novel methodologies.
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Appendix A. Supplementary Details for CNN Methods

Table 4 shows the results for extended list of experiments.

Table 4: Results of the main experiments with 2D CNNs. Initialization: 0: Random, 1:
ImageNet weights, Aug:Augmentations. * - as two channels.
. . Train  Val.
Model Init. Modality  Img Res. Aug. AUC  AUC
ResNet34 0 FLAIR 128 No 0.95 0.51
ResNet34 0 FLAIR 256 Yes 0.83 0.54
ResNet34 1 T1wCE 128 Yes 0.51  0.55
Resnet34 1 T1wCE 256 No 0.99 0.52
ResNet50 1 FLAIR 128 Yes 0.61 0.58
DenseNet121 1 FLAIR 128 Yes 0.63 0.58
DenseNet161 1 T1wCE 128 Yes 0.51 0.50
Custom ResNet 1 Stacking 128 Yes 0.76  0.63
Custom ResNet 0 Addition 128 Yes 0.50 0.49
ROI ResNet18 0 FLAIR 128 No 0.97 0.55
ROI ResNet18 + more FC 1 T1wCE 128 Yes 0.88  0.55
ROI Custom ResNet 0 Combined* 32 No 0.70  0.53

Architectural design of the model for ROI-based classification can be found in Figure 7.
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Figure 7: Architecture of the custom ResNet for ROI-based classification, as described in
(?). Each residual block is comprised of two convolutional blocks with added dropout layer.
After each stage, feature maps are downsampled by applying convolution with stride 2
(indicated by /2). 4 x 4 Average pooling is used before FC layer.

Figure 8 depicts the architecture of the custom ensemble network for utilizing informa-

tion from two MRI modalities.
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Figure 8: Architecture of the custom ResNet for combining FLAIR and T1wCE modalities.

Appendix B. Supplementary Details for Self-Supervised Learning
Methods

Figure 9 shows the SimCLR self-supervision procedure in the proxy task. In Figure 10,
the learning curves of the downstream task of SimCLR are presented. Both stages use the
ResNet-18 model.

Representation

h; Zi
Data Maximize
Augmentation Similarity
hj z

Transformed Base Encoder ! Projection Head

Images JiO) 9()
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Figure 9: How SimCLR works: Two augmented versions of the same image are taken by the
model and passed to the encoder (ResNet-18). Then, the representations of the encoder are
passed to a non-linear projection head. The goal of SimCLR is to maximize the similarity
of the vectors resulted from the projection head using a contrastive loss. The downstream
task uses the representations from the encoder.

Appendix C. Supplementary Details for Vision Transformer Methods

Table 5 shows the hyperparameter values for the experiments with ViT. These values were
found after running multiple experiments using OPTUNA framework (?).
Figure 11 shows the prediction distribution for different ViT models.

10
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Figure 10: Learning curves for the SimCLR downstream task.

Table 5: ViT hyperparameter values

Hyperparameter Value
Batch size 16
Learning rate 0.007
Patch size 32
Embedding dimension 2048
Model depth 2
Multi-heads 8
Head dimension 1024
MLP dimension 512

Appendix D. Supplementary Details for Discussion and Conclusion
D.1. Speculation of Discrepancy in Results

We believe there are many possible reasons for the existing discrepancy in the results re-
ported in the referenced papers. Some of the critical factors for higher performance can be
the small dataset and the lack of a rigorous validation process. For example, (7), who got a
high accuracy, outlined in their discussion that the relatively small sample size (N = 259)
and the absence of an independent dataset might have affected the assessment of the gener-
alization performance of their developed model. Similarly, another work by (?) highlighted
that their data were acquired from a single source, which should be avoided to produce
unbiased results. (?), who also reported a high accuracy, described possible data leakage
issues in their previous work. It is worth noting that their own work has a low segmentation
accuracy but high MGMT-promoter status classification accuracy. Other researchers tried
to reproduce the results in (?), but could not achieve the claimed performance and were
unsuccessful in getting any response from the authors. We also tried to reimplement the
strategies of the aforementioned authors by utilizing similar strategies of combining modal-

11



SAEED HARDAN ABUTALIP YAQUB

Model - 1 Maodel - 2 Model - 3
20 E t]
2 20
"] E £
. 3 S5
§ S Sw
51 5 5
[} 0 B 0
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 L0
Predictions (Prob.) Predictions (Prob.) Predictions (Prob.)
Model - 4 Model - 5 Model - 6
0
15
15 5
£ Ew §
3 101 3 310
8 3 g
51 5 5
0 L - 0 A °
00 02 04 06 08 L0 060 02 04 06 08 10 060 02 04 06 08 L0
Predictions (Prob.) Predictions (Prob.) Predictions (Prob.)
Model - 7 Model - 8 Model - 9
30
25
15
201
£ £ £
315 310 3
&l 3 3,
s 5
o+ - - v 0 ' - J o - - - v
00 02 04 06 08 L0 00 02 04 0 08 L0 00 02 04 06 08 L0
Predictions (Prob.) Predictions (Prob.) Predictions (Prob.)

Figure 11: Histogram and Kernel Density Estimation (KDE) of predicted classification
probabilities for ViT models trained with different seeds

ities using segmentation masks to perform region-of-interest-based classification. But, still,
no improvements have been noticed. We cannot reproduce the results reported by these
authors as their code is not publicly available.

The results of any study can be altered in the future based on the development of novel
datasets and methodologies. Thus, it might still be possible to predict the methylation
status by combining other biomarkers or prognostic factors. To generalize this situation,
the question of using high-accuracy models in a clinical setting always remains one of the
most pertinent ones. Our study reminds the Al-centered scientific community about the
importance of thorough and unbiased validation for future studies and clinical implementa-
tion. We believe our contribution encourages extending the research ground to investigate
other prognostic biomarkers and raise ethical concerns by giving a clear example.

D.2. Further Model Analysis

Figure 12 shows the predicted probabilities distribution for nine ResNet10 models which
were trained using different random seeds. Figure 13 shows the feature maps extracted at
each layer of ResNet10, when inferred using an MRI scan of a patient. Figure 14 shows the
feature maps of MNIST data extracted at each layer of ResNet10 and projected onto a two
dimensional space using t-SNE. The model is able to perfectly separate the features for the
different class compared to the MRI scans dataset.

12
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Figure 12: Histogram of predicted classification probabilities of ResNet10 models condi-
tioned on true labels
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Figure 13: Feature visualization at different layers
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Figure 14: Feature visualization via t-SNE for MNIST data
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