
Proceedings of Machine Learning Research 172:1–12, 2022 Full Paper – MIDL 2022

Unsupervised Domain Adaptation for Medical Image
Segmentation via Self-Training of Early Features

Rasha Sheikh rasha@cs.uni-bonn.de

Thomas Schultz schultz@cs.uni-bonn.de

University of Bonn

Abstract

U-Net models provide a state-of-the-art approach for medical image segmentation, but their
accuracy is often reduced when training and test images come from different domains, such
as different scanners. Recent work suggests that, when limited supervision is available for
domain adaptation, early U-Net layers benefit the most from a refinement. This motivates
our proposed approach for self-supervised refinement, which does not require any manual
annotations, but instead refines early layers based on the richer, higher-level information
that is derived in later layers of the U-Net. This is achieved by adding a segmentation
head for early features, and using the final predictions of the network as pseudo-labels for
refinement. This strategy reduces detrimental effects of imperfection in the pseudo-labels,
which are unavoidable given the domain shift, by retaining their probabilistic nature and
restricting the refinement to early layers. Experiments on two medical image segmentation
tasks confirm the effectiveness of this approach, even in a one-shot setting, and compare
favorably to a baseline method for unsupervised domain adaptation.
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1. Introduction

Annotating medical images to supervise the training of deep neural networks for segmen-
tation is time-consuming and often requires medical experts. Once trained, these models
perform well on similar data from the same site, but the performance often drops on data
acquired in a different site with another type of scanner for example. Transfer learning and
domain adaptation offer various solutions to this problem by adapting the model to new
data and addressing the domain shift between source and target domains. Unsupervised
domain adaptation attempts to do so without using any labeled target data.

There are different approaches to unsupervised domain adaptation for the task of se-
mantic segmentation. Several works use an adversarial scheme to learn domain-invariant
features (Hoffman et al., 2016) or image-to-image translation as in CycleGAN (Zhu et al.,
2017) to adapt the segmentation model (Li et al., 2019). Others perform a layer-wise match-
ing of activations between the domains (Huang et al., 2018), or aim to minimize the entropy
of target predictions (Vu et al., 2019) based on the observation that source predictions often
have higher confidence values.

Our proposed approach follows a self-supervision strategy. Self-supervision either makes
use of auxiliary tasks (Sun et al., 2019) or losses (Hu et al., 2021) that do not require
supervision, or it refines the network based on its own predictions on the target domain.
An important issue with the latter strategy is to avoid propagating incorrect predictions.
This has been approached by filtering predictions so that only the most confident ones are
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Figure 1: Architecture of the segmentation model.

used as a training signal (Zou et al., 2018). We propose to use the predictions differently,
inspired by recent work that has observed that the first layers of U-Net models learn more
domain-specific features (Shirokikh et al., 2020), and benefit most from a refinement when
limited training data is available (Zakazov et al., 2021).

Therefore, we add a segmentation head after the first few convolutional layers and use
final predictions of the network as pseudo-labels to refine only those early features. Our
main finding is that this leads to a stronger improvement of the final segmentation than a
filtered self-training of the whole network. We believe that this reflects a greatly decreased
re-enforcement of incorrect predictions, because our pseudo-labels retain their probabilistic
nature, and because we limit adaptation to early layers. Our code is publicly available at
https://github.com/ferasha/UDAS.

2. Method

2.1. Base Model

We first train a segmentation model on a source domain, and later adapt it to a target
domain with unlabeled data. The base model is shown in Figure 1. It has a U-Net (Ron-
neberger et al., 2015) structure identical to the one used by (Shirokikh et al., 2020) where
images go through a number of convolutional blocks that learn M feature maps with the
same spatial size as the input before proceeding with the encoder-like part of the architec-
ture. It uses 3×3 convolution kernels, ReLU activation functions, and the skip connections
are implemented as convolutions followed by a sum operation. The model is trained with
the cross-entropy loss,
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l(x, y)source = − 1

NS

NS∑
n=1

C∑
c=1

yn,c log pc(xn), (1)

where NS is the number of samples in the source images, pc(xn) is our model’s predicted
probability that pixel n in image x belongs to class c, and yn is a one-hot-encoding vector
of the true label for pixel n. We use the Adam optimizer, no augmentation, and 0.001 as
the learning rate.

2.2. Domain Adaptation Through Self-Training

To prepare adapting the base model to the target domain, we first add another segmentation
head to it, just before the first downsampling operation. This block is titled Early Features
Segmentor in Figure 1. During refinement, this head will act as a student which is trained
by the output of the overall base model, which acts as a teacher. Because student and
teacher share the first few convolutional layers, refining the student on the target domain
also benefits the teacher. While initializing the student on the source domain, we freeze all
weights in the base model, and train with the same loss as in Equation 1, again using the
ground-truth segmentation masks.

The model now produces two probabilistic segmentation outputs, a weak one p̃c based
on early features, and the final segmentation pc at the end of the network. For domain
adaptation, we feed samples from the target domain through both branches of the network,
and compute a cross-entropy loss between them,

l(x)target = − 1

NT

NT∑
n=1

C∑
c=1

pc(xn) log p̃c(xn), (2)

where NT is the number of samples in the target images.

We now use the stronger segmentation pc at the end of the network to improve the
weaker early segmentation p̃c. This adapts the early features based on the richer and higher
level information that was learned by the rest of the network. In this phase, we only update
the weights of the early convolutional blocks that are shared between the two branches,
freezing the weights in the early segmentation head itself. Since we minimize Equation 2
only with respect to the early segmentation p̃c, we do not obtain a gradient in the rest of
the U-Net, so weights there remain unaffected as well. Despite this, the probabilities pc
that we use as pseudo ground truth also change during the refinement process, since they
are affected by the updates in the early layers. Throughout the refinement, we track the
Dice score between the early and final segmentations. We stop when the absolute difference
between the Dice in the current and the previous epoch drops below 0.005.

3. Experiments

3.1. Calgary-Campinas Dataset

The Calgary-Campinas dataset (Souza et al., 2018) consists of 359 3D volumes of brain
MR images with corresponding skull-stripping segmentation masks. The data is generated
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Table 1: Surface Dice scores on the Calgary-Campinas dataset. ST and CBST refer to the
self-training and class-balanced self-training proposed by (Zou et al., 2018).

Base Model ST CBST Ours
GE 1.5 0.55487 0.53042 0.55347 0.75887
Philips 1.5 0.74974 0.72526 0.77563 0.84601
Philips 3 0.65806 0.66237 0.68958 0.85810
Siemens 1.5 0.70478 0.69294 0.75003 0.82457
Siemens 3 0.88651 0.89180 0.88418 0.88740

using six scanners which differ in the vendor type and the field strength. Those scanners
represent the different domains in our experiments.

We train on 40 subjects from GE 3 (i.e. source domain) and test on 10 subjects from
each of the other target domains. The only pre-processing is a min-max scaling of each
volume. To evaluate the performance, we follow (Shirokikh et al., 2020) and use the surface
Dice score (Nikolov et al., 2018), which quantifies the fraction of the predicted and ground
truth surfaces that are within a pre-specified distance of each other. This score is deemed
more informative than the usual volumetric Dice in this context because it focuses on the
structure of interest, i.e., the brain contour, as opposed to the large, but mostly trivial
internal volume.

3.1.1. Improvement Over Base Model

Table 1 shows the adaptation result on the different domains. Here, the label “base model”
refers to the model that was trained on the source domain, without any adaptation. Our
approach significantly improves upon the base model. Qualitative results from all targets
domains are shown in Figure 2.

To further validate our approach, we also treated another domain, Siemens 3, as our
source domain and adapt to the other target domains. These results are shown in Ap-
pendix A. Once again, we observe an improvement in the performance.

To illustrate that the refinement works as described above, Appendix B shows the early
and final probabilistic segmentations for an example input, before and after refinement.

3.1.2. Comparison to Previous Work

We consider the previous work by (Zou et al., 2018) to be most similar to ours, since it also
uses a segmentation loss towards pseudo-labels to refine the network weights. Unlike our
approach, they filter the predictions of the network to keep those with higher confidence
values and use them as labels to refine the whole network. They implement two variations of
this idea, with and without class-balanced filtering. These are referred to as Class-Balanced
Self-Training (CBST) and Self-Training (ST) in Table 1. On our data, we observe moderate
improvements with this approach and occasionally a drop in performance. For a more direct
comparison, we also tried to restrict the CBST approach to update the same layers as our
method. However, results were worse than when refining the entire model.
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Figure 2: Qualitative results from the Calgary-Campinas dataset. Columns show the in-
put image, ground-truth, and segmentation using the base and adapted models,
respectively. The rows represent the different domains.
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Table 2: Surface Dice when refining and testing on one target subject at a time, averaged
over 10 subjects.

Base Model One-Shot Refinement
GE 1.5 0.55487 0.73655
Philips 1.5 0.74974 0.84003
Philips 3 0.65806 0.85312
Siemens 1.5 0.70478 0.82449
Siemens 3 0.88651 0.87900

Table 3: Surface Dice of the adapted model on a new subset from the same target domain,
without additional refinement.

Base Model Fixed Adapted Model
GE 1.5 0.46892 0.72773
Philips 1.5 0.78818 0.88231
Philips 3 0.55264 0.82302
Siemens 1.5 0.72790 0.82344
Siemens 3 0.88564 0.90815

3.1.3. One-Shot Domain Adaptation

In the one-shot setting, a single dataset should be segmented, and is the only data available
from the target domain. Running our refinement in that mode, separately for each subject
in our test set, produced results that were almost as accurate as the refinement on 10
volumes, which was reported above. Table 2 shows the resulting average surface Dice score.

3.1.4. Generalization to Unseen Data

After using our approach to refine the early layers on 10 subjects from the target domain,
we applied the model to further data from the same domain without further refinement.
Results on a subset of the target domain that was disjoint from the one used for refinement
are shown in Table 3. They confirm that the model now generalizes successfully.

3.1.5. Alternative Modes of Refinement

Given the benefit from refining the first few convolutional layers, it is natural to try a
similar strategy for refining deeper layers as well. Due to the mismatch in image resolution
at deeper layers, this requires a resampling of features, predictions, or labels. Even the
variant that worked best in our experiments only provided a marginal additional benefit
when compared to the simpler refinement of the earliest layers alone.
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Figure 3: Qualitative results from the M&Ms dataset. The rows represent the different
domains. The columns show the input image, ground-truth, segmentation using
the base and adapted model respectively. Yellow: RV, Blue: LV, Green: MYO

Moreover, we tried refining only the batch normalization layers, as proposed for domain
adaptation by (Hu et al., 2021). However, refining all weights gave better results in our
case. Experimental results related to these alternatives are discussed in Appendix C.

3.2. Multi-Centre, Multi-Vendor & Multi-Disease Cardiac Image
Segmentation (M&Ms) Dataset

We also present results on a more challenging multi-class segmentation task. This dataset
(Campello et al., 2021) consists of four domains corresponding to images from four scanner
vendors. The data from the different sites vary in their in-plane resolution, slice thickness,
number of slices, and number of time frames.

The publicly available data includes cardiac MR scans of 345 subjects. The segmented
regions are the left ventricle cavity (LV), the right ventricle cavity (RV), and the left ventricle
myocardium (MYO). The only pre-processing we apply is min-max scaling.

We train on 75 subjects from the Philips training set (source domain) and test on the
official test sets of the other target domains. We chose Philips as our source domain because
of the large drop in performance when testing on the other domains (Campello et al., 2021).
Exemplary segmentation results are shown in Figure 3. They illustrate differences in image
appearance across the domains (rows), and the benefit of our refinement (final column)
compared to the base model with respect to the ground truth (GT).

To quantify the performance, we use the volumetric Dice score

Dice =
2
∑

ŷy∑
ŷ +

∑
y
, (3)
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Table 4: Volumetric Dice scores on the M&Ms Dataset. ST and CBST again refer to the
self-training and class-balanced self-training proposed by (Zou et al., 2018).

Base Model ST CBST Ours
Siemens 0.61926 0.54632 0.53262 0.68608
GE 0.43403 0.37390 0.38717 0.67550
Canon 0.65464 0.66477 0.68268 0.70576

where ŷ and y are the predicted and true labels respectively. Table 4 reports the correspond-
ing results on the different domains. We again compare the performance to the self-training
approach in (Zou et al., 2018) and also show the baseline performance with no adaptation.

We found that on this more challenging dataset, the selection made by ST and CBST
often includes samples that are incorrect despite a high confidence. In our experiments,
the accuracy among pixels that were selected for adaptation was sometimes as low as 20%.
This explains why the filtering approach was sometimes detrimental on this dataset. In
contrast to this, our use of probabilistic pseudo-labels from the full image for early feature
refinement still provided a benefit.

Appendix D provides a breakdown of the per-class performance, demonstrating that all
classes benefit from the refinement.

4. Conclusion

Domain shift frequently occurs in medical imaging when data generation differs between
sites, e.g., when different scanners are in use. This can severely impact the performance
of segmentation models on test data from a different site. Therefore, models have to be
adapted. Unsupervised domain adaptation is an attractive solution since it lifts the need
for annotating data from the other domain.

We proposed a novel, simple, and efficient strategy for domain adaptation via self-
training and demonstrated clear qualitative and quantitative benefits on segmentation per-
formance on two medical image segmentation tasks. We achieved superior performance
compared to the CT and CBST baselines, which can be explained by reducing detrimental
effects of propagating incorrect labels by retaining probabilistic pseudo-labels, and restrict-
ing the refinement to early layers. Using pseudo-labels and having to refine only a subset of
weights also leads to fast training times: Our experiments only required up to five epochs.
Compared to unsupervised domain adaptation based on adversarial training, our approach
is easier to use because it does not require a careful balancing of the training signals from
a generator and discriminator.
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Appendix A. Results With Siemens 3 as the Source Domain

Table 5: Surface Dice when using the Siemens 3T domain of the Calgary-Campinas dataset
as the source domain.

Base Model Adapted Model
GE 1.5 0.60650 0.74609
GE 3 0.82829 0.95561
Philips 1.5 0.73747 0.83830
Philips 3 0.56104 0.85981
Siemens 1.5 0.47547 0.82672

Appendix B. Illustration of Early and Final Segmentations

Figure 4: First column shows the input and ground truth. Second column shows the early
and final segmentations using the base model. Third column shows the early and
final segmentations using the refined model.

Figure 4 compares segmentations from the base model in the second column to the refined
model in the third column. As expected given the limited receptive field and complexity
of early features, the early segmentations (top row) are much weaker than the ones at the
end of the network (bottom row). The top image in the third column shows that early
feature refinement improved the early segmentation. The bottom image shows the final
improvement when propagating the refined features through the remaining network.
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Appendix C. Results from Alternative Refinement Strategies

Table 6: Surface Dice when also refining deeper layers, or only batch normalization weights

Base Model Refine L1 Refine L1 Refine L1 Refine
then L2 and L2 L1-BN

GE 1.5 0.55487 0.75887 0.75994 0.76352 0.70093
Philips 1.5 0.74974 0.84601 0.84120 0.85202 0.83101
Philips 3 0.65806 0.85810 0.85979 0.86574 0.85083
Siemens 1.5 0.70478 0.82457 0.82176 0.82338 0.81101
Siemens 3 0.88651 0.88740 0.87205 0.87971 0.88291

Table 6 compares results from our proposed refinement (“refine L1”) to alternative refine-
ment strategies. In “refine L1 then L2”, we extended our proposed method with a second
refinement, in which we place an additional early segmentation head at the second reso-
lution level, just before the second downsampling. We initialized it in the same way as
it is described in Section 2.2, and used it to refine the weights at the second resolution
level of the encoder, freezing the weights at the first level, which had already been refined
previously. We resolved the resolution mismatch by upsampling logits and computing the
segmentation losses at the original resolution. In “refine L1 and L2”, we only used an early
segmentation head at the second level, to update the weights of the first and second layer
jointly. Compared to the benefit from refining the initial layers, the additional benefit from
refining deeper layers with our method was marginal.

“Refine L1-BN” corresponds to our proposed method, but only refines parameters in the
batch normalization blocks of the first layer. It did not perform as well as a full refinement
of all weights.

Appendix D. Class-Wise Quantitative Results on M&Ms Dataset

Table 7: Breakdown of class-specific Dice scores on the M&Ms Dataset

LV MYO RV
Siemens Base Model 0.71047 0.54531 0.60199

Ours 0.77685 0.62302 0.65838
GE Base Model 0.49160 0.38219 0.42831

Ours 0.74438 0.62778 0.65434
Canon Base Model 0.71849 0.63117 0.61427

Ours 0.77674 0.65661 0.68394
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