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Abstract

Magnetic Resonance (MR) image reconstruction from highly undersampled k-space data
is critical in accelerated MR imaging (MRI) techniques. In recent years, deep learning-
based methods have shown great potential in this task. This paper proposes a learned
half-quadratic splitting algorithm for MR image reconstruction and implements the algo-
rithm in an unrolled deep learning network architecture. We compare the performance of
our proposed method on a public cardiac MR dataset against DC-CNN, ISTANet+ and
LPDNet, and our method outperforms other methods in both quantitative results and qual-
itative results. Finally, we enlarge our model to achieve superior reconstruction quality,
and the improvement is 1.00 dB and 1.76 dB over LPDNet in peak signal-to-noise ratio
on 5× and 10× acceleration, respectively. Code for our method is publicly available at
https://github.com/hellopipu/HQS-Net.
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1. Introduction

Magnetic resonance imaging (MRI) has been widely used in clinical disease diagnosis as
a non-invasive imaging technique with a high spatio-temporal signal-to-noise ratio (SNR).
However, the main limitation for MRI is the slow acquisition procedure, which usually lasts
between 15 to 90 minutes per subject. For dynamic cardiac MRI, subjects are required to
hold their breath and stay still to reduce imaging artifacts during the acquisition process,
which is challenging or even impossible for those with breathing difficulties.

In MRI physics, k-space is the 2D or 3D Fourier transform of the MR image, and MR
raw data is acquired in k-space. The recent fast MRI techniques aim to reduce the MRI
acquisition time by scanning undersampled k-space data, which are then used to reconstruct
the MR images by applying an inverse Fourier transform. This data undersampling process
violates the Nyquist Theorem, and therefore the reconstructed images will be heavily aliased,
which will result in imaging artifacts and low SNR.

Traditional compressed sensing MR image reconstruction methods (Ma et al., 2008)
(Ravishankar and Bresler, 2010) (?) (Lingala et al., 2011) are time-consuming, and the
reconstruction quality is often not satisfactory. The recent use of deep learning methods
for MR image reconstruction has resulted in improved reconstruction quality, higher SNR
with significant efficiency gains at runtime.
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In this work, we propose a deep learning method that is motivated by the half-quadratic
splitting (HQS) algorithm (Geman and Yang, 1995) for compressed sensing MR image
reconstruction. We train, validate, and test our approach on a publicly available cardiac
MR dataset with a single-coil acquisition setting. We compare our method with three
mainstream and high-performance methods (Schlemper et al., 2017; Adler and Öktem,
2018; Zhang and Ghanem, 2018) with acceleration factors of 5× and 10×. The results
demonstrate the improvements offered by our method in terms of the MR reconstruction
image quality, the model size, and the efficient inference speed. We also provide a larger
size model for improved image reconstruction quality.

2. Brief Literature Review

Over the past 15 years, compressed sensing (CS) methods for MR image reconstruction
(Lustig et al., 2007) have been one of the most successful reconstruction methods by ex-
ploring the sparsity of the image using sparse transforms such as the wavelet transform. CS
reconstructs MR images by iteratively increasing the sparsity in transform space and up-
dating the denoised images. Based on CS, DLMRI (Ravishankar and Bresler, 2010) exploits
adaptive patch-based dictionaries as a more sparse transform to improve the reconstruction
performance. The Learned Iterative Shrinkage-Thresholding Algorithm (LISTA) (Gregor
and LeCun, 2010) is a fast algorithm that approximates optimal sparse codes by replacing
two pre-computed matrices in classical ISTA with learned ones.

Recently, the success of deep learning has further inspired research in MRI reconstruc-
tion (Wang et al., 2021). CNNs automatically extract features that have significantly better
representational power compared to hand-crafted features used by conventional methods.
In these deep CNN methods, deep unrolled networks has dominated in the MR reconstruc-
tion task. Schlemper et al. (2017) follows the iterative algorithm in DLMRI but replaces
the dictionary learning reconstruction with a deep cascade of CNNs (DC-CNN). DC-CNN
outperforms the conventional method significantly in both reconstruction quality and in-
ference time and is a great baseline for today’s k-space reconstruction research. ISTA-Net
(Zhang and Ghanem, 2018) is proposed by mapping the traditional ISTA for optimizing
a general l1 norm CS reconstruction model into a deep network and can be essentially
viewed as a significant extension of LISTA (Gregor and LeCun, 2010). LPDNet (Adler and
Öktem, 2018) is also an iterative reconstruction scheme. It is inspired by Primal-Dual Hy-
brid Gradient (PDHG) algorithm (Sidky et al., 2012) where the primal and dual proximal
operators are replaced by learned CNNs. LPDNet was originally proposed for tomographic
data reconstruction, but it shows superior performance over other methods on recent MR
reconstruction challenges (Muckley et al., 2021).

The PDHG algorithm used in LPDNet is a special case of the proximal gradient descent
(PGD) method used in DC-CNN and ISTA-Net, while HQS is a more efficient algorithm
when the forward model is linear and regularization is not smooth. While both PGD and
HQS alternating between data consistency step and denoising step, HQS instead performs a
full model inversion rather than a single gradient step for data consistency update (Kellman
et al., 2020). Our proposed method with several model designs based on HQS shows superior
reconstruction performance compared to all the models mentioned above.
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3. Proposed Method

3.1. Problem Formulation

We want to to reconstruct the complex-valued MR image x from single-coil undersampled
measurements y in k-space, such that:

y = Fux+ ϵ (1)

where Fu = MF , where M is a cartesian undersampling mask in k-space, F is the Fourier
transform, ϵ is the acquisition noise. Eq.(1) is underdetermined, and hence the inversion
is ill-posed. According to CS theory, we can estimate x by formulating an optimization
problem:

min
x

1

2
∥y − Fux∥22 + λR(x) (2)

where ∥y − Fux∥22 is the data fidelity term, R(x) is a regularization term on x and λ is to
adjust the regularization based on the noise level of y. For traditional CS-based methods,
the regularization term R(x) typically involves l0 or l1 norms in the sparse domain of x.

3.2. Half Quadratic Splitting (HQS) Algorithm

The variable splitting technique is usually adopted to decouple the fidelity term and regu-
larization term (Geman and Yang, 1995) (Boyd et al., 2010). By introducing an auxiliary
variable z, Eq.(2) is equivalent to the constrained optimization problem below:

min
x

1

2
∥y − Fux∥22 + λR(z), s.t. z = x (3)

The HQS method(Geman and Yang, 1995) solves the following problem:

min
x,z

1

2
∥y − Fux∥22 + λR(z) +

µ

2
∥z − x∥22 (4)

where µ is a penalty parameter. Eq.(4) can be solved in an iterative strategy, HQS optimizes
{x, z} in an alternating fashion by solving the following two subproblems separately:

xk+1 = argmin
x

∥y − Fux∥22 + µ∥x− zk∥22 (5a)

zk+1 = argmin
z

µ

2
∥z − xk+1∥22 + λR(z) (5b)

The fidelity term and regularization term are decoupled into Eq.(5a) and Eq.(5b), respec-
tively. Eq.(5a) contains the fidelity term associated with a quadratic regularized least-
squares problem, and the closed-form solution is given by:

xk+1 = (FH
u Fu + µI)−1(FH

u y + µzk) = zk +
1

1 + µ
FH
u (y − Fuzk) (6)

where FH
u is the Hermitian of Fu, I is the identity matrix. Eq.(5a) can be easily solved by

Eq.(6). However, solving Eq.(5b) efficiently and effectively is non-trivial.
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3.3. Learned HQS

Our goal is to derive a learned reconstruction scheme inspired by HQS. Motivated by former
works (Sun et al., 2016; Schlemper et al., 2017; Adler and Öktem, 2018), our approach
replaces Eq.(5b) by a parametrized CNN learned from training data. Inspirit of deep
residual learning (He et al., 2016), our CNN updates zk+1 from zk, so Eq.(5b) can be
written as below:

zk+1 = zk +CNN(zk, xk+1) (7)

We also use a buffer design for z adapted from Adler and Öktem (2018). The buffer verion
of z is denoted as f , which is initialized as f0 = [x0, ..., x0]m, where m is the size of buffer,

x0 is the zero-filled image. Only the first data in the buffer fk, which is denoted as f
(0)
k is

used to update xk+1 in Eq.(6), the other data in the buffer is used as additional information
for updating fk+1 using Eq.(7). The buffer design (additional storage) is originally used in
quasi-Newton methods to accelerate convergence (Liu and Nocedal, 1989). Our proposed
method is outlined in Algorithm 1.

Figure 1 shows an overview of our proposed unrolled network architecture to solve the
MR reconstruction problem. The input to the network is the buffer data f0, which is the
concatenation of m copies of the complex-valued zero-filled image x0, the channel size of f0
is 2m. The proposed network consists of n reconstruction blocks, which correspond to n

iterations in the HQS algorithm. In each reconstruction block, the first data f
(0)
i−1 in fi−1 is

used for updating Eq.(5a) by the solution given in Eq.(6) denoted as an update operation
in the figure. The updated xi will be concatenated with fi−1 as the input for updating
Eq.(5b), while the updating module for Eq.(5b) is a learnable CNN with 6 convolutional
layers denoted as red and green arrows shown in the block. Deep residual learning (He
et al., 2016) is adapted in the block for better learning performance. The output of the

network f
(0)
n is the final reconstructed MR image by our method.

Although we discuss Algorithm 1 in the context of single-coil cartesian MRI, it can
also be extended to multi-coil non-Cartesian MRI with minor modifications. When k-space
is sampled by non-Cartesian trajectories, we need to replace Fourier transform operator
by Non-Uniform Fourier transform operator; While in the multi-coil setting, (FH

u Fu + µI)
in Eq.(6) is not analytically invertible, in this case, we need to use conjugate gradient
optimization to solve Eq. (5a) (Aggarwal et al., 2018).

Algorithm 1: Learned Half-Quadratic Splitting

Input: zero-filled MR image x0, Fourier operator Fu,F
H
u , iterations n, buffer size m

Output: reconstructed image f
(0)
n

Initialize f0 = [x0, ..., x0]m, µ and Γθi are learned parameters
for i = 1 to n do

xi ← f
(0)
i−1 +

1
1+µF

H
u (y − Fuf

(0)
i−1);

fi ← fi−1 + Γθi(fi−1, xi);

end

4



Learned Half-Quadratic Splitting

…

2m+2 64 64 2m

U

C

f0 f (1)
n

U

C

+
Update operation

Concatenation

Addition

Identity map

Conv 3x3 + LeakyReLU

Conv 3x3

Reconstruction block

Features

+

<latexit sha1_base64="IaiDjEQRMheYoL9MEL6ADk0HTGA=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahHixJKeqx6MVjBfsBbSyb7aZdutnE3U2hhPwOLx4U8eqP8ea/cdvmoK0PBh7vzTAzz4s4U9q2v63c2vrG5lZ+u7Czu7d/UDw8aqkwloQ2SchD2fGwopwJ2tRMc9qJJMWBx2nbG9/O/PaESsVC8aCnEXUDPBTMZwRrI7l+P2EXTvqYlO3ztF8s2RV7DrRKnIyUIEOjX/zqDUISB1RowrFSXceOtJtgqRnhNC30YkUjTMZ4SLuGChxQ5Sbzo1N0ZpQB8kNpSmg0V39PJDhQahp4pjPAeqSWvZn4n9eNtX/tJkxEsaaCLBb5MUc6RLME0IBJSjSfGoKJZOZWREZYYqJNTgUTgrP88ippVSvOZaV2XyvVb7I48nACp1AGB66gDnfQgCYQeIJneIU3a2K9WO/Wx6I1Z2Uzx/AH1ucPpKuRYA==</latexit>

f
(0)
i�1

fifi−1 …

Figure 1: Overview of the proposed reconstruction network architecture. The input data
f0 is the concatenation of m copies of the complex-valued zero-filled images x0, the network

contains n reconstruction blocks, and the final reconstructed image is f
(1)
n . In each block,

the update operation is utilized by Eq.(6), a learnable CNN with six convolutional layers
denoted as red and green arrows is used for updating Eq.(5b). The numbers in the figure
denote the channels of the output features of the CNN layers. Skip connection is adapted
for better learning performance.

3.4. Loss function

Following Pezzotti et al. (2020), we deploy a compound loss of MS-SSIM (Wang et al., 2003)
loss and L1 loss while training our model:

L = γLMS-SSIM(xrec, xgt) + (1− γ)∥xrec − xgt∥1 (8)

where LMS-SSIM is MS-SSIM loss, xrec is the reconstructed image, xgt is the ground truth
image, γ is the weight for MS-SSIM loss.

4. Experiments

4.1. Dataset

We use an open-access complex-valued Cardiovascular MR (OCMR) dataset1 (Chen et al.,
2020) in our experiments. The dataset provides multi-coil k-space data from 74 fully sam-
pled cardiac cine series. In this paper, we only experiment on 2D image slices with a
single-coil setting. We first generate the emulated single-coil k-space data from the OCMR
dataset using the method described in Tygert and Zbontar (2020). Each 2D image slice is
processed to the size of [2,192,160], where the first dimension stores the real part and the
imaginary part of the complex value. The train, validation, and test sets have 1874, 544,
and 1104 slices, respectively, from a disjoint set of subjects.

1. https://ocmr.info/
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4.2. Metrics

In this work, we use three commonly used metrics in the MR reconstruction task: normalized
root-mean-square error (NRMSE), peak signal-to-noise ratio (PSNR), and the structural
similarity index measure (SSIM) to evaluate the reconstruction quality of different methods.
These metrics are computed against the fully sampled MR images. A good reconstruction
will have low NRMSE, high PSNR and SSIM values.

4.3. Experiment settings

We implemented two versions of our method in the experiments; one model is the same
as shown in Figure 1, denoted as HQSNet, while the other model is much larger, which
replaces the regular CNN with a modified U-net (Zhang et al., 2021) that is shared between
different reconstruction blocks, denoted as HQSNet-Unet. We use this model to get the
best reconstruction quality without considering the model size. We compare our method
against three published methods, soft format DC-CNN (Schlemper et al., 2017), ISTANet+

(Zhang and Ghanem, 2018) and LPDNet (Adler and Öktem, 2018).
For fair comparison between HQSNet and three other models, the number of iterations,

the number of convolution layers in each reconstruction block and the number of output
channel in intermediate convolution layers are all set to 8, 6 and 64, respectively. The buffer
size m is set to 5. We use Adam optimizer, compound loss (γ = 0.84), and the learning
rate is set to 0.001 for all models. All other hyper-parameters may influence the fairness are
all set the same. All models are trained from scratch for two different acceleration factors
of 5× and 10×. We use random cartesian sampling masks throughout training and a fixed
cartesian mask when validating and testing. Input data is the zero-filled image normalized
such that the magnitude of 99th percentile pixel in the image is equal to 1, and we apply
random crop and random affine transformation as data augmentation. More details about
experiments can be found in our public code.

5. Results and Discussion

Quantitative Results Quantitative results of different models are summarized in Table
1. As a widely used baseline model in MR reconstruction, the reconstructed images us-
ing DC-CNN far surpass the zero-filled images of the NRMSE, PSNR, and SSIM values.
ISTANet+ is slightly better than DC-CNN. LPDNet achieves better results than ISTANet+

by updating reconstruction in both image and k-space domain. Our proposed HQSNet out-
performs these methods in all metrics, which shows its effectiveness, and the HQSNet-Unet
further improves the reconstruction quality owing to its larger model capacity.

Qualitative Results Figure 2 shows reconstructed MR image samples in the test set of
different models on acceleration factors of 5× and 10×. On 5× acceleration, the zero-filled
image is corrupted aliasing artifacts. The reconstructed images by different models are
much better than the zero-filled image and visually similar to the ground truth. However,
we can still find subtle differences using the zoomed area and error maps. Our proposed two
models get slightly better quality than the other three methods; on 10× acceleration, the
aliasing artifact in the zero-filled image becomes more prominent. DC-CNN and LPDNet
only generate unsatisfied recoveries, HQSNet is slightly better, and HQSNet-Unet is much
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Table 1: Mean/std results of different methods on two acceleration factors. The best and
second best results are highlighted in red and blue colors

Acc Metric Zero-Filled DC-CNN ISTANet+ LPDNet HQSNet HQSNet-Unet

5×
NRMSE(%) 41.49/4.29 15.99/3.10 16.05/2.99 15.77/2.83 14.98/2.84 14.10/2.71
PSNR(dB) 25.20/1.63 33.61/2.98 33.56/2.95 33.70/2.90 34.17/2.96 34.70/3.06

SSIM 0.603/0.049 0.875/0.045 0.884/0.040 0.887/0.039 0.895/0.038 0.904/0.039

10×
NRMSE(%) 59.50/4.72 28.70/4.11 28.26/3.78 27.99/4.13 26.19/3.95 22.99/4.09
PSNR(dB) 22.05/1.66 28.45/2.67 28.57/2.59 28.67/2.87 29.25/2.77 30.43/3.02

SSIM 0.469/0.063 0.731/0.065 0.752/0.061 0.758/0.070 0.776/0.064 0.804/0.069

Table 2: Comparison of FLOPs and number of parameters for different models. The best
and second best results are highlighted in red and blue colors

Models DC-CNN ISTANet+ LPDNet HQSNet HQSNet-Unet
FLOPs (G) 36.81 36.81 78.99 39.35 660.72

# of param (M) 1.20 1.20 2.58 1.28 32.65

better, especially in the zoomed area where the reconstructed myocardium wall and the
boundary are more precise and closer to the ground truth.

Model Comparison Table 2 gives a summary of the number of model parameters and
inference speed of these methods. Compared to DC-CNN and ISTANet+, HQSNet can
achieve better results with small additional parameters and FLOPs. The HQSNet-Unet
with a larger capacity can reconstruct images of much higher quality at the cost of model size
and inference time. It’s worth noting that we can easily balance between the model size and
reconstruction quality by choosing an appropriate buffer size m, the number of iterations,
the number of convolution layers in each reconstruction block, and the convolution channel
size. We can further improve the reconstruction quality of the HQSNet-Unet by increasing
these hyper-parameters or replace Unet with more powerful models.

Ablation Study For ablation study, we address three main differences between our pro-
posed HQSNet and DC-CNN. The first is the order of data consistency step (DC) and
denoiser step (DN) in each iteration, DC-CNN is DN first while HQSNet is DC first. The-
oretically it should make no difference to the result if the algorithm converges, but in our
practice, DC first is slightly better than DN first; The second difference is how we imple-
ment DN step, DN in HQSNet is implemented by Eq.(7), while DC-CNN is implemented by
zk+1 = xk+1+CNN(xk+1), we find our DN design is more effective because it updates zk+1

from zk and CNN only needs to represent to residual of z. The third is the buffer design
for z, which is discussed in model description. Table 3 shows the effect of each design in
HQSNet.

6. Conclusion

This paper proposed a learned HQS method for MR image reconstruction. Our method
outperforms other reconstruction methods with higher reconstruction quality, fewer model
parameters, and faster speed. We also provide a more extensive version model to achieve
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Zero-filled DC-CNN LPDNet HQSNet HQSNet-Unet GT

Figure 2: Reconstruction samples. The first two rows and the last two rows show the
reconstructed images and error maps on the acceleration factors of 5× and 10×, respectively.
The first five columns show the reconstruction and corresponding error maps of different
models, from left to right is zero-filled, DC-CNN, LPDNet, our proposed HQSNet model,
and HQSNet-Unet model. The red square on the bottom left in each reconstructed image
shows the zoomed area. The last column shows the ground truth (GT) images and the
cartesian sampling masks.

Table 3: Ablation study on HQSNet design

Model DC first DN design no buffer buffer=3 buffer=5 buffer=7 PSNR/SSIM

DC-CNN ✓ 28.45/0.731

- ✓ ✓ 28.48/0.740
- ✓ ✓ 29.00/0.767
- ✓ ✓ ✓ 29.00/0.756

HQSNet
✓ ✓ ✓ 29.07/0.767
✓ ✓ ✓ 29.25/0.776
✓ ✓ ✓ 29.25/0.774
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visually more pleasing reconstruction results. We validate the effectiveness of our method on
a public cardiac MR dataset. In future research, we will extend our approach to dynamic
cardiac MR data acquired with multi-coil and radial sampling masks, which is a more
realistic scenario.
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