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Abstract

Assessment of the left ventricle segmentation in cardiac magnetic resonance imaging (MRI)
is of crucial importance for cardiac disease diagnosis. However, conventional manual seg-
mentation is a tedious task that requires excessive human effort, which makes automated
segmentation highly desirable in practice to facilitate the process of clinical diagnosis. In
this paper, we propose a novel reinforcement-learning-based framework for left ventricle
contouring, which mimics how a cardiologist outlines the left ventricle along a specific
trajectory in a cardiac image. Following the algorithm of proximal policy optimization
(PPO), we train a policy network, which makes a stochastic decision on the agent’s move-
ment according to its local observation such that the generated trajectory matches the
true contour of the left ventricle as much as possible. Moreover, we design a deep learning
model with a customized loss function to generate the agent’s landing spot (or coordinate
of its initial position on a cardiac image). The experiment results show that the coordinate
of the generated landing spot is sufficiently close to the true contour and the proposed
reinforcement-learning-based approach outperforms the existing U-net model and its im-
proved version, even with limited training set.

Keywords: Left ventricle contouring, cardiac image segmentation, deep reinforcement
learning

1. Introduction

Deep learning has recently received extensive attention in a great number of areas (LeCun
et al., 2015). In particular, tremendous effort has been made to automate medical imaging
analysis and facilitate diagnosis through deep learning (Rav̀ı et al., 2017). Most of the
existing deep-learning models for image segmentation originates from CNNs (Krizhevsky
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et al.). In 2015, Long et al. proposed the fully cnvolutional networks (FCNs) (Long et al.,
2015). However, the FCN-based models could produce relatively sparse features and ignore
global context. In response, encoder-decoder model is proposed for image segmentation
(Badrinarayanan et al., 2017). U-net (Ronneberger et al., 2015) and V-net (Milletari et al.,
2016) are two popular computational structures that are inspired by FCNs and the encoder-
decoder model and there have been a great number of variants (Çiçek et al., 2016) (Zhou
et al., 2018) (Li et al., 2018). To integrate more context, probabilistic graphical models
such as conditional random fields are incorporated into CNNs and relevant models and al-
gorithms have achieved encouraging results (Zheng et al., 2015) (Lin et al., 2016). Moreover,
specialized information is found helpful for feature learning in medical image segmentation,
such as anatomical positions (Bai et al., 2019).

However, due to the inevitable challenges of medical images, such as poor image quality,
different imaging and segmentation protocols, and random variation among patients, such
deep-learning-based approaches have still been considered untrustworthy and thus not yet
been extensively put into clinical use. Such untrustworthiness comes mainly from the fact
that the hidden features extracted by those end-to-end models based on deep learning
fall short of human-level understandability and explainability, which inevitably leads to
potential high risk in clinical trials. In this sense, a model that works in accordance with
how human experts segment medical images is more preferable in practice. A human expert
basically focuses on contouring an object in a medical image, which is also the routine work
of a specialist doctor to provide explicit clue of clinical diagnosis.

With such motivation, in this paper, we focus on cardiac image segmentation and pro-
pose a novel approach for left ventricle contouring based on reinforcement learning (Sutton
and Barto, 2018), which mimics how a cardiologist outlines the left ventricle along a specific
trajectory in a cardiac image. The overall framework of the proposed approach is shown
in Figure 1, where a robot tries to make the best movement on a cardiac image accord-
ing to its local observation such that the trajectory it walks along sufficiently matches the
contour of the left ventricle. The proposed approach is different from most of the existing
supervised-learning-based approaches, which take medical image segmentation as pixel-level
classification and focus largely on design for the end-to-end computational model1. More-
over, in order for the practicality of the proposed approach, we design a deep learning model
with a customized loss function to generate the agent’s landing spot, i.e., a coordinate on
the cardiac image, from which the robot makes its first movement. Through comprehensive
experiments, we show that the coordinate of the generated landing spot is sufficiently close
to the true contour and the proposed reinforcement-learning-based approach outperforms
the existing U-net model and its improved version, even with limited training set.

2. Methodology

2.1. Problem Definition

Instead of supervised-learning-based image segmentation to highlight the left ventricle, we
focus on human-like contouring that mimics how a cardiologist outlines the left ventricle in

1. There have been previous work that make use of reinforcement learning for medical image segmentation.
One can refer to Section A for more detail.
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Figure 1: Overall framework of left ventricle contouring based on reinforcement learning.

a cardiac image. Since such a contour drawing process is simply moving a paintbrush, it can
be analogized to a path finding problem, where a robot explores the unseen world and tries
to find its way along the object boundary. In this problem, contouring the left ventricle
along a specific trajectory in a cardiac image can be translated into a reinforcement learning
problem, where an agent seeks to make the best decision according to its surrounding sight,
i.e., a single-step movement, by interacting with an environment so as to travel as closely as
possible to the true contour. Under the reinforcement learning framework, a policy network
is trained to output the best movement according to the agent’s local observation, as shown
in Figure 12. In the following part, the key elements of reinforcement learning framework
for left ventricle contouring are formally defined.

2.1.1. Environment

An environment in left ventricle contouring can be defined as any cardiac image and its
associated contour image. Here the whole cardiac image and the true contour of the left
ventricle are unseen by the agent. Every time the agent interacts with such an environment
by taking a single action, a reward is given by the environment as the feedback to indicate
how good that action was, based on which the agent further updates its policy for a better
decision, i.e., moving closer to the true contour.

2. In fact, the proposed method can be extended to multi-object segmentation by individually contouring
each apart of the object in the training images. Hence, multiple single-object contouring tasks can be
done in parallel.
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2.1.2. State

In the reinforcement learning setting, a state is what the agent can observe, and based upon
on which it can choose an appropriate action. In this paper, we specify that, being located
at any pixel in a cardiac image, the agent can only myopically observe its surrounding sight
rather than the whole image. We define the state s as the N ×N square patch centered by
the pixel where agent is located. One advantage of such setting is that the policy network
can be designed with a uniform structure since the input size is always N ×N .

2.1.3. Action

Since we analogize left ventricle contouring in a cardiac image to path finding in an unseen
world, the agent’s one-step movement can be defined as the action. Here we specify that
at each step, the agent takes a one-pixel move towards one of its eight outbound direction
and moves to one of its eight neighbouring pixels. Thus, the action a with such definition is
discrete and can be numbered with a ∈ {1, ..., 8}. Then with the agent’s surrounding sight
defined as state, Markovian property holds for state transition at each step, i.e., the next
state depends only on the current one and the action taken by the agent.

2.1.4. Reward and Return

At each step, the environment gives a reward back to the agent based on its action. Since
it is more desirable for the agent to stay as close as possible to the true contour while
travelling, reward (denoted by rt for step t) can be defined as the negative distance between
the agent’s current position (denoted by pt) and the corresponding position on the true
contour (denoted by p′t), i.e., rt = −|pt − p′t|3. Therefore, the discounted accumulated
return from step t to the end of the episode (also termed “reward-to-go”) can be defined as

the discounted sum of negative distance over the entire episode, i.e., Rt = −
T∑
τ=t

γτ−t|pτ−p′τ |,

where γ ∈ (0, 1] and T denote the discount factor and number of steps in one episode (which
differs in different cardiac images), respectively.

2.1.5. Episode Termination

Normally, an episode can be terminated once the agent has finished the entire steps of
actions, the total number of which is equal to the length of the true contour. However, an
exception is that the agent might have moved illegitimately outside the cardiac image before
the episode ends normally, which is a common case at the early stage of model training. In
this case, we specify that the episode is terminated in advance and a reward of an extremely
small negative value is given to the agent as a penalty for the illegal movement.

3. Apparently, with such definition of reward, the agent will select a movement that is closer to the true
contour after being well trained. Here we use the “negative distance” as the reward because in a
reinforcement learning setting, the agent’s policy is optimized to maximize the total return. Moreover,
positive reward definition could also be applicable if such distance mapped to a “score” by a decreasing
function that always has positive values.
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2.2. Policy Optimization

The previous definition for the elements of reinforcement learning implies a stochastic policy,
i.e., the agent chooses its movement according to a probability distribution, which is output
by the policy network with the agent’s surrounding sight as input. We resort to proximal
policy optimization (PPO) as the training algorithm: a policy-based algorithm which aims
at iteratively improving the policy with a relatively small update (Schulman et al., 2017).
With the PPO algorithm, the policy network is iteratively updated to maximize a clipped
surrogate objective function defined as

L(θ) = Es,a∼πθk [min(
πθ(a|s)
πθk(a|s)

Aπθk (s, a),CLIP(
πθ(a|s)
πθk(a|s)

, 1− ϵ, 1 + ϵ)Aπθk (s, a))] (1)

for iteration k, where πθ denote the policy under parameter θ, Aπ(s, a) refers to the ad-
vantage of action a for state s under policy π, ϵ is a hyper-parameter that ranges from
0 to 1 to control the deviation from the current policy πθk to the updated one πθ, and
the clip function CLIP(x, b, u) limits x within the range [b, u]. The PPO algorithm for left
ventricle contouring is summarized in Algorithm 1, where Ti refers to the total number of
steps in episode trajectory τi, i.e., the contour length. As training proceeds, parameters of
both policy and value networks are iterative updated such that the agents turns smarter
in locating the contour. One of the advantages with such a policy-based algorithm is that,
even with limited training dataset, diversity of the collected episode trajectories can still be
guaranteed by randomly choosing the agent’s starting point on a contour in each iteration.

Algorithm 1: PPO for Left Ventricle Contouring

Input: Initial the parameters of policy network θ0 and value network ϕ0
Output: The parameters of policy network θ and the parameters of value network ϕ
for k = 0, 1, .... do

For each training image, randomly select a position on its contour as the agent’s
starting point and run one episode by carrying out policy πθk . A set of episode
trajectories Dk = {τi} is then collected for the entire training images;

Estimate advantage for each step based on the current value network:

A(st, at) =
T∑
t′=t

γt
′−trt′ − Vϕk(st);

Update the parameters of the policy network to maximize the mean surrogate

objective defined in (1): θk+1 = argmax
θ

1

|Dk|
∑

τi∈Dk

1

Ti

Ti∑
t=0

L(θ);

Update the parameters of the value network to minimize the mean squared error
between the predicted value function and the estimated reward-to-go:

ϕk+1 = argmin
ϕ

1

|Dk|
∑

τi∈Dk

1

Ti

Ti∑
t=0

(Vϕk(st)−
T∑
t′=t

γt
′−trt′)

2.

end
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2.3. Generating Landing Spot

During training, the agent’s starting point is randomly chosen on a true contour. However,
this is unrealistic for testing stage since the true contour of an unseen cardiac image is
inaccessible. Therefore, where the agent should start to move on an unseen cardiac image
still needs to be figured out. Apparently, the agent’s landing spot should be as close to the
true contour as possible. Otherwise, if the landing spot is excessively far away from the
true contour, it is difficult for the agent to be back on track since its surrounding sight in
this case could be significantly different from what it observed during training.

Intuitively, a deep learning model can be trained to generate the coordinate of the agent’s
appropriate landing spot. After inspecting all the cardiac images, we found that part of
true contours always falls into the upper-right quadrant without exception. Therefore, we
only focus on the upper-right sub-image with uniform size for each cardiac image to reduce
the input size of the landing spot generator and improve training efficiency. The landing
spot generator then takes a sub-image as input and is expected to output a coordinate
that is sufficiently close to any point on the true contour. This can be done through
training a supervised-learning model with the loss function defined as the mean minimum
distance between the output coordinate and that of any point on the true contour, i.e.,

L(ψ) =
1

B

B∑
i=1

min(d1, ..., dTi), where dt = |Gψ(x) − p′t| refers to the distance between the

output coordinate and the t-th point p′t on the true contour of a sub-image, Gψ(x) refers to
the landing spot generator with ψ as parameters and sub-image x as input, Ti denotes the
total length of the true contour that falls into the i-th sub-image and B denotes the batch
size.

The output coordinate of the landing spot generator is not necessarily an integer one,
which is probably the case. Therefore, we simply round the output coordinate to its nearest
integer in the sub-image. Then, the output coordinate still has to be translated back
to that in the original (full-sized) cardiac image. This can be done by simply leaving
the vertical coordinate unchanged while changing the horizontal coordinate x following
x ⇐ x + (Nx −W ), where Nx refers to the horizontal size of the original cardiac image
and W denotes the width of the sub-image. According to the loss definition, the proposed
landing spot generator also applies to datasets where left ventricles are located differently
across cardiac images. In this case, landing spot generator can take the original full-size
image as input and output the absolute coordinate of the landing spot. Thus, the coordinate
translation will be unnecessary while the training process will be more time-consuming.

3. Experiment

3.1. Dataset

Our dataset is provided by the radiology department of a “triple-A-level” hospital in Beijing,
China. It contains 100 two-dimensional MRI cardiac images in total, which was collected
from 60 patients, and has non-uniform sizes of 208× 138, 208× 150, 208× 162, 208× 168,
208 × 186 and 208 × 210, respectively. Each cardiac image is associated with a contour
image created by an experienced radiologists subspecialized in cardiovascular imaging as
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Table 1: Contouring Performance Comparison
Metrics Average Dice Score Average Hausdorff Distance

U-net without data augmentation 0.896 (±0.075) 14.158 (±13.386)

U-net with data augmentation 0.935 (±0.052) 11.966 (±11.784)

BL U-net without data augmentation 0.899 (±0.075) 9.098(±11.513)

BL U-net with data augmentation 0.923 (±0.055) 7.601 (±8.565)

Ours 0.926 (±0.043) 5.784 (±1.713)

the ground truth. Throughout the experiment, 32 images are selected as the training set, 8
as the validation set while the remaining 60 as the testing set.

We consider each contour of the left ventricle as a sequential point set, which are counter-
clockwise sorted without loss of generality. In the original dataset, the contours marked
by the cardiologists are commonly discontinuous “trajectories”. In order to cater for the
reinforcement learning setting, we have to first refine the original contours by interpolating
sufficient extra points between two consecutive ones that are non-adjacent to each other
to meet the continuity requirement, i.e., any point on a contour always have neighbours
located within its 3 × 3 patch. Moreover, all the images are normalized with pixel values
from 0 to 1 before being fed into the model.

3.2. Contouring Performance

With Dice score and Hausdorff distance as the two contouring performance metrics, we com-
pare the proposed approach with two baselines: the original U-net model and an improved
version with regional generalized Dice loss and boundary loss (termed BL U-net(Kervadec
et al., 2019), both of which are intended for medical image segmentation based on super-
vised learning4. The result of contouring performance comparison with the same training
set of 32 images is summarized in Table 1, where average Dice score and Hausdorff distance
along with their standard deviation are presented. Moreover, data augmentation, which
triples the train set to 96 images, is optionally conducted for U-net model training.

According to the numerical results in Table 1, the proposed approach for left ventricle
contouring satisfactorily achieves 92.6% in average Dice score and 5.784 in average Haus-
dorff distance, even with a limited training set of only 32 images. Table 1 also shows that
in general, the proposed approach outperforms both the U-net and BL U-net model with
limited training set. An exception is that the proposed approach falls a little behind (while
is still comparable to) the U-net model with data augmentation in average Dice score. Espe-
cially, for average Hausdorff distance, the proposed approach shows a significant advantage
over the two baselines, even with data augmentation. This can be well explained by the
rationale of the proposed approach, i.e., it focuses on drawing the contour of an object
instead of making pixel-level classification.

The visual result for contouring performance evaluation with randomly selected testing
images is shown in Figure 2, where the corresponding segmentation results are provided

4. Please refer Appendix B for implementation details.
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Figure 2: Visual comparison for segmentation performance with three sample images.

as well5. Although it is difficult to ensure exactly full consistency, the contours of the
left ventricle generated via the proposed approach still maintain high resemblance to the
ground-truth ones. It is also notable that even if the predicted landing spot deviates to a
certain extent from the ground-truth contour (in the second row of Figure 2 as marked by
the yellow cross), the agent is still able to get back on track so long as its sight covers part
of the true contour. Moreover, the last two columns show that with limited training set,
the segmentation performance of the original U-net model (even with data augmentation)
is less satisfactory on cardiac images with irregular cavities on the left ventricles, where
unexpected “grooves” and “holes” appear. This is because U-net might not work well
in existence of fuzzy edges that make them non-differentiable. In contrast, left ventricles
identified by the proposed approach are still highly consistent with the ground-truth ones.
This is still owed to the fact that the proposed approach aims at drawing contours close to
the ground-truth ones and the well-trained policy is barely distracted by irregular cavities.

4. Conclusion

In this paper, instead of end-to-end model design for left ventricle segmentation, we focus
on imitating how a human expert outlines the left ventricle in a cardiac image. Following
this notion, we think of left ventricle contouring as a path finding problem and propose a
novel reinforcement-learning-based framework, where the agent interacts with the unknown
environment and to make the movement based on its local observation such that its trajec-
tory matches the true contour of the left ventricle as much as possible. We also design a
deep learning model and customize the loss function to generate the agent’s landing spot.
The experiment results show that the coordinate of the generated landing spot is suffi-
ciently close to the true contour and the proposed reinforcement-learning-based approach
outperforms two U-net-based models, even with limited training set.

5. Since left ventricle contouring in cardiac images is analogized to a path finding problem, one can refer
to (Han, 2021) for animated contouring results.
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and Yike Guo. The deep poincaré map: A novel approach for left ventricle segmentation.
In Alejandro F. Frangi, Julia A. Schnabel, Christos Davatzikos, Carlos Alberola-López,
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Appendix A. Reinforcement-learning-based Medical Image Segmentation

In fact, there have been several existing work that involves reinforcement learning in medical
image segmentation (Zhou et al., 2021). However, in most of them, reinforcement learning
is applied to either parameter search for segmentation network (Liao et al., 2020) or data
augmentation (Qin et al., 2020). In (Mo et al., 2018), a policy model is trained to guide an
agent to trace out the object boundary. However, it still works in a way of supervised learn-
ing. It is notable that one of the previous work is quite similar with the proposed method
in this paper. In (Xiong et al., 2021), a reinforcement-learning model is proposed to imitate
the human process of outlining left ventricle as well. Besides different alogirthms for model
training, the main difference between (Xiong et al., 2021) and this paper lies in definition
of state and reward. The state defined in (Xiong et al., 2021) contains the edge information
in addition to the original grayscale image. The reward in (Xiong et al., 2021) is defined
as the difference of Intersection over Union (IoU) in each step. To calculate such reward, a
segmentation binary mask that comprises all the localized edge points must be maintained
and updated in each step. In comparison, for our proposed method, state is simply defined
as the square patch centered by the agent’s position without extra information and reward
is simply defined as location difference between the agent’s position and the corresponding
one on the true contour. Moreover, we also define episode termination for both training
and testing stages and specify how to handle the early termination case.

Appendix B. Implementation Details

Starting from the landing spot, the agent then sequentially makes its movement decision by
following the policy network trained to draw the contour of the left ventricle. Throughout
the experiments, the agent’s eyesight, i.e., the input of the policy network, is fixed at a 21×21
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square patch. The extremely small negative reward to penalize the agent for moving outside
a cardiac image before the episode ends normally is set to −4006. We have γ = 0.997 for the
discount factor. The whole model is trained with “Adam” as the optimizer and the initial
learning rate of both policy and value networks is 3× 10−4, which exponentially decays as
training proceeds. Moreover, the policy and value networks along with the landing spot
generator share a similar structure, which contains two convolutional layers and three fully-
connected layers. During model training, eight positions on the true contour are randomly
selected as the agent’s starting points for each cardiac image, which leads to a total of 256
experience trajectories in each iteration for the entire 32 training images. Moreover, during
the testing stage, we specify that an episode is terminated if the agent have moved into the
3 × 3 square patch centered by its first five positions on the contour, which indicates that
the agent has finished contouring and returned to the vicinity of the landing spot.

6. For the six different sizes of the cardiac images in our dataset (208×138, 208×150, 208×162, 208×168,
208 × 186 and 208 × 210), such a penalty reward of 400 is much longer than the maximum diagonal
distance of the cardiac images (less than 300 for the largest size 208 × 210), which is longer than the
distance between any two points on a cardiac image. Thus, setting the penalty reward to −400 is able
to sufficiently punish the agent’s out-of-bound movement.
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