
PMLR 173:107–138, 2022 Understanding Social Behavior in Dyadic and Small Group Interactions

Comparison of Spatio-Temporal Models for Human Motion
and Pose Forecasting in Face-to-Face Interaction Scenarios

German Barquero gbarquga9@alumnes.ub.edu
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Abstract

Human behavior forecasting during human-human interactions is of utmost importance
to provide robotic or virtual agents with social intelligence. This problem is especially
challenging for scenarios that are highly driven by interpersonal dynamics. In this work,
we present the first systematic comparison of state-of-the-art approaches for behavior fore-
casting. To do so, we leverage whole-body annotations (face, body, and hands) from the
very recently released UDIVA v0.5, which features face-to-face dyadic interactions. Our
best attention-based approaches achieve state-of-the-art performance in UDIVA v0.5. We
show that by autoregressively predicting the future with methods trained for the short-term
future (<400ms), we outperform the baselines even for a considerably longer-term future
(up to 2s). We also show that this finding holds when highly noisy annotations are used,
which opens new horizons towards the use of weakly-supervised learning. Combined with
large-scale datasets, this may help boost the advances in this field.

Keywords: Human motion prediction, Human pose forecasting, Behavior forecasting,
Dyadic interaction, Multimodal forecasting

1. Introduction

Take a moment to think about a recent conversation you were engaged in. How often did you
nod while endorsing the other interlocutor’s speech? Or scratch your chin while thinking
deeply about an answer to a difficult question? Both your compliance with someone’s speech
and a demanding question triggered specific behaviors. Now, imagine yourself involved in
a conversation where your partner is completely frozen. Weird, right? These conversa-
tional behaviors are not only expected but also needed in order to enhance human-human
communication.
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Figure 1: Two examples of conversations where each individual behavior is highly driven
by the dyadic interaction. Top row: the left-most participant nods in answer to
the interlocutor question, which results in the latter acquiring a typical posture of
someone who is dubious and thinks deeply about something. Bottom row: both
participants engage in a highly interactive conversation which triggers surprise
and joy emotions from the right-most participant.

The way someone behaves during a social interaction evolves over time, and can be
driven by intrapersonal (e.g., personality, mood, culture), interpersonal (e.g., role within
the interaction, shared history), and scenario (e.g., thesis defence, informal conversation
in a restaurant) characteristics (Reis et al., 2000). For example, the greeting between two
people will depend on their relationship and their meeting context. The body language of
an extrovert person talking about themselves will differ from that of a shy person. Similarly,
someone’s behavior will vary from a job interview to a friendly conversation. During these
interactions, interlocutors can communicate and influence each other by means of verbal
and non-verbal behaviors (Burgoon et al., 2007), including facial expressions, gaze, gestures,
or body language (see Figure 1 for an example of interaction-driven behaviors). Even in
contexts such as public speaking where the communication is mostly unidirectional, the
speaker can perceive the public reaction by their subtle non-verbal cues and adapt his/her
message and behavior accordingly.

Understanding the dynamics of individuals’ behavior is important for many applications
related to human communication (Vinciarelli et al., 2009; Ondáš and Pleva, 2019). In
medicine and psychology, for example, experts analyze the behavior of the patient in social
environments in order to detect any communication anomalies. Deficits in eye contact,
pointing or expressing emotions represent key markers that might help in the diagnosis of
autism spectrum disorders (Barbaro and Dissanayake, 2013; Loth et al., 2018). In other
fields like virtual reality or robotics, communication needs to be fully replicated. Therefore,
social robots and virtual avatars need to combine all natural modalities (e.g., visual, audio,
language) involved in a real interaction. In order to induce a human-like social interaction,
their facial expressions (Lombardi et al., 2018; Moosaei et al., 2017) need to be harmonized
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with the body pose, hands gestures and speech (Saerbeck et al., 2010). They also need to
tailor their behavior and communication style to the user and situation so as to increase
perceived empathy and immediacy (Marco Iacoboni, 2007). Most of these tasks can only
be accomplished by understanding and modeling behavior in human-human interactions,
which represents a challenge involving cognitive, affective, and behavioral perspectives,
among others.

Another requirement especially important for human-robot communication or person-
alized assistive agents is the ability to forecast human behavior accurately and timely.
Automated agents need to predict someone’s short-term future behavior in order to provide
a better and faster response, and a more natural communication (Kanda and Ishiguro, 2017;
Nocentini et al., 2019). Similarly, it is of utmost importance to any system to minimize the
latencies. We cannot always afford that the user waits until the whole information is pro-
cessed, so detecting and interpreting the user’s social signals may help providing with a fast
approximation as a starting point, which may be improved as more information is collected.
For example, safety driving systems extremely benefit from anticipating pedestrian trajec-
tories, as they may need to make an emergency stop in order to avoid an accident (Alahi
et al., 2016).

One may argue that by forecasting behavior during a human-human interaction, we
are also understanding the underlying mechanisms of human interaction and, therefore,
uncovering their semantics, interdependencies, etc. Computational models for behavior
forecasting have started to gain more popularity due to recent advances in computer vi-
sion, machine learning, and natural language processing techniques. In this sense, behavior
can be expressed, represented, and predicted in many forms, ranging from low-level body
landmarks or meshes to high-level action events and social signals (Barquero et al., 2022).
When using the former representation, this task is alternatively referred to as human mo-
tion prediction (Corona et al., 2020) or human pose forecasting (Ahuja et al., 2019). The
most recent methodological advances in this task and the main challenges still to be ad-
dressed are discussed in the very recent survey from Barquero et al. (2022). Very recently,
a behavior forecasting competition was held within the ChaLearn LAP DYAD@ICCV’21
challenge (hereafter referred to as DYAD’21), for which behavior was represented by means
of body, face, and hand landmarks. The goal of the competition was to foster interlocutor-
and context-aware models for social behavior understanding. It was based on UDIVA
v0.5 (Palmero et al., 2022)1, a dataset of face-to-face dyadic interaction sessions consisting
of conversational, collaborative and competitive tasks in a lab setting with seated partic-
ipants. The dataset includes videos and transcripts of the sessions, as well as participant
(e.g., sociodemographics, self-reported personality, and pre- and post-session mood and fa-
tigue), and session and dyadic metadata (e.g., characteristics of the tasks or relationship
among interaction partners). In addition, it provides automatically extracted landmarks
and 3D gaze vectors. None of the teams beat the competition baseline, a zero-velocity ap-
proach that propagated the landmarks of the last visible frame into the future. Nevertheless,
the organizers identified some of the main challenges, such as the usage of noisy labels, the
highly stochastic nature of the hands, or the mostly static nature of the dataset (Palmero
et al., 2022). Furthermore, human behavior is highly driven by a combination of short- and

1. https://chalearnlap.cvc.uab.cat/dataset/41/description/
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long-range temporal dependencies, which are difficult to capture appropriately (Hausdorff
et al., 1995).

Motivated by these findings, the goal of this work is to assess the performance of several
state-of-the-art computer vision and machine learning approaches on the task of non-verbal
social behavior forecasting, specifically represented as 2D face, body, and hands landmarks
of the skeleton joints (hereafter referred to as skeleton). In particular, we evaluate sequence-
to-sequence (Seq2Seq) recurrent models (Sutskever et al., 2014), Temporal Convolutional
Networks (TCNs) (Lea et al., 2017), Graph Convolutional Networks (GCNs) (Wu et al.,
2020), and Transformers (Vaswani et al., 2017). All approaches are evaluated assuming
that we are provided with a temporal window of observed behavior (observation window)
to predict the future behavior in a short time-frame (prediction window) of up to 2 seconds.
Figure 2 depicts the methodological workflow. Furthermore, we aim at exploring the effects
of incorporating other available data modalities in addition to the visual modality, such as
metadata about the participants in the dyad or transcripts. As previously stated, both intra-
and interpersonal components influence human behavior and therefore need to be included
in any behavioral model. However, contemplating all possible combinations of components
yields a colossal set of scenarios. Additionally, behavior forecasting needs to deal with
the stochasticity of the future. In order to alleviate both challenges, many related works
focus on predicting the human behavior while performing specific actions (Diller et al., 2020;
Kania et al., 2021). In these scenarios, there are no interpersonal cues and the intrapersonal
ones are minimized. Also, the future is narrowed down and becomes more deterministic.
Instead, we focus our work on dyadic conversations, where participants’ behaviors are under
the influence of strong interpersonal cues. To do so, our comparison is applied on the UDIVA
v0.5 dataset. Apart from following the challenge’s benchmark so that our results can be
compared, the dataset choice came naturally for three main reasons. First, their diversity
with respect to participants and contexts provides a reasonable playground for modeling
behavior. Second, it is the only dataset up to date that provides landmarks for all the
visible parts of the body, including face and hands, for dyadic social interactions (Barquero
et al., 2022). Lastly, the cleaned annotations for the validation and test sets include manual
fixes for up to 7% of the hands, and quality labels for each part of the body in every frame.
This allows us to assess the influence that noise present in a real deployment would imply
in the task of behavior forecasting (Section 3.8.1).

Our experimental evaluation showed that the models trained to generate short-term
behavior (< 400ms) can be autoregressively applied to predict longer-term behavior (up to
2 seconds) and outperform the baselines for the long term (Section 3.4). The robustness
experiment proved the superiority of our models with respect to the baseline in a hypothet-
ical real-life deployment with uncleaned noisy annotations (Section 3.8.1), especially for the
short term future. The overall good results obtained in this work by training with noisy
automatically extracted annotations proves the feasibility of weakly-supervised training for
the behavior forecasting task in UDIVA v0.5. Finally, our experiments on multimodal and
dyadic-aware models showed that more complex fusion strategies need to be explored in
order to efficiently exploit multimodality and interpersonal dynamics.

To the best of our knowledge, this is the first systematic comparison of state-of-the-art
approaches for behavior forecasting (Barquero et al., 2022), and also the first in extensively
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Figure 2: Illustration of the behavior forecasting problem tackled in this work. Given the
automatically extracted skeleton landmarks from an observation window in the
past, the goal is to predict the skeleton motion within a prediction window in the
future.

evaluating the potential of UDIVA v0.5 for such task. The main contributions of this work
are summarized as follows:

• We present several adaptations of recurrent, convolutional, attention-based, and graph
networks for behavior forecasting. We propose a Transformer-based method which
becomes the state of the art for behavior forecasting with UDIVA v0.52. Its promising
results even when trained with highly noisy annotations open new horizons towards
the use of weakly-supervised learning for behavior forecasting.

• We analyze the main challenges of behavior forecasting specific to a conversational
scenario. In particular, its static nature, its high percentage of noise, and the highly
dyad-driven behavioral dynamics make it a very challenging benchmark.

• We present the results of several attempts to model the interpersonal dynamics which
drive a dyadic conversation. They serve us to state the current limitations of the
dataset, and how future work may try to address them.

The remainder of this paper is organized as follows. Section 2 describes the methodology
followed for the systematic comparison, including details of different modalities of input data
used, data processing, and models compared. In Section 3, we present the details of the
experimental evaluation carried out. Their descriptions are complemented in Section 4 with
a thorough discussion of the findings of our work, the main challenges posed by UDIVA
v0.5, and the most relevant future research lines in this field. Finally, in Section 5, we review
the ethical considerations regarding human motion and pose forecasting and its real-world
applications.

2. The code is publicly available in https://github.com/crisie/UDIVA/tree/main/BehaviorForecasting

111

https://github.com/crisie/UDIVA/tree/main/BehaviorForecasting
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2. Methodologies

We frame our methodological approach within the non-verbal behavior forecasting taxon-
omy of Barquero et al. (2022). In particular, we aim at predicting low-level behavioral
representations: face, body, and hands 2D landmarks. The motivation behind using the
visible skeleton is delineated with our goal of modeling as many dimensions of the human
behavior as we can. In fact, we might consider our problem to be an implicit generalization
of the forecasting of any visual social cue or signal that can be perceived from facial, body,
or hands landmarks.

Even though such problem formulation could be seen as a multi-task problem, in which
each part of the body is predicted separately, we see the human skeleton as a single skele-
ton and therefore consider our framework to be defined in a single task scenario. Further,
we conceive our approach under the deterministic viewpoint. That is, both our methods
and evaluation metrics consider a single possible future. We also explore the benefits and
challenges of modeling the dyad-driven dynamics by evaluating three context-aware method-
ologies. In our scenario, the context is made up of the pose, motion, and any information
(e.g., speech, metadata) belonging to the interactant. Additionally, we explore the use of
several multimodal combinations of data including text, audio, and metadata features. Fi-
nally, although we use features from observed time windows that are longer than in most
related works, we still consider us to be on the history-blinded side. The reason is that we
are not implementing any specific strategy to extract insights from the historical data.

In Section 2.1, we describe the pre-processing steps for all the data used from the dataset:
skeleton annotations, metadata, audio, and transcriptions. Then, we present the common
encoder-decoder framework shared among all the methods tested (Section 2.2).

2.1. Data preparation

2.1.1. Pose representation

In first place, it is important to note that, since the UDIVA skeleton annotations were
automatically extracted and post-processed, they are highly noisy (around 20% of frames
had wrong hand annotations) (Palmero et al., 2022). On the positive side, this allowed us
to conceptually train our models in a weakly-supervised fashion. At the same time though,
the frequent wrong or missing landmark estimations posed new challenges to the training
stability and model performance.

Additionally, there were several challenges associated to the skeleton annotations that
needed to be addressed. In the first place, the three skeleton entities (face, body and
hands) were independently extracted. As a result, the depth coordinates among them did
not match. This made it more difficult for the model to extract useful insight from the 3D
coordinates. Secondly, our predictions needed to be detached from the image space in order
to compress the subspace of poses that the network needed to model. At the same time,
the location and trajectory of the person with respect to the camera view (e.g., centered,
closer to its interlocutor, etc.) was relevant and strongly determined their future behavior.
Therefore, our predictions could not be fully trajectory-agnostic.

The first challenge was unsolvable, so we assumed that our three spaces of coordinates
would be independent and that the depth coordinate could become an important source
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of noise. In order to alleviate the second problem, some works proposed working with
offsets instead of poses. This strategy isolates the input feature from the image space,
and thus narrows their range of possible values (Martinez et al., 2017; Adeli et al., 2020).
Unfortunately, this solution completely removed the information about the global position
of the participants, which was not favorable either. In order to find the right trade-off,
recent works have shown that mixing root-relative position and velocity was beneficial for
future single human motion forecasting (Liu et al., 2020; Li et al., 2021). Following this
trend, we combined the joints’ root-relative coordinates and their offsets to create our input.
Our root points were chosen as 1) the middle point between both eye centers for face, 2)
the middle chest joint for body, and 3) the middle knuckles for hands. Therefore, our input
skeleton vectors consisted of root-relative 3D coordinates and 3D offsets for 28 inner facial
landmarks, 10 upper-body joints, and 40 hand landmarks (20 for each hand) (Palmero
et al., 2022), which can be visualized in Figure 2. Missing sets of landmarks for face, body,
or hands were replaced by sets of zero-valued landmarks. Additionally, the global image
coordinates and offsets of the face, body, and hands roots were also included in the skeleton
input. Finally, the gaze vector directions and its offsets were also included as input features
(although gaze vector directions were not predicted).

2.1.2. Multimodal data

Our work includes a first attempt to leverage multimodal data to forecast low-level repre-
sentations of future behavior. The metadata, transcriptions, and the audio were processed
so that they could be easily fed into any network.

Metadata. For each session, we generated a vector of normalized participant and
session metadata as proposed in Palmero et al. (2020). Additionally, we used education,
and the speaking language. In particular, the age (scaled from [17,75] to [0,1]), gender
(male, 0; female, 1), country of origin (6D one-hot encoding after recategorization based on
cultural differences, Mensah and Chen 2013), education level (7D one-hot encoding) and self-
reported personality (z-scores of the Big Five traits, McCrae and John 1992) were included
as participants’ metadata. The session metadata comprised the language spoken (3D one-
hot encoding for English, Spanish, and Catalan), the relationship between participants
(unknown, 0; known, 1), the pre-session mood (8D vector, scaled from [1,5] to [0,1] each)
and the pre-session fatigue scores (scaled from [0, 10] to [0,1]). The mood was assessed with
8 categorical values: good, bad, happy, sad, friendly, unfriendly, tense, and relaxed.

Audio. The audio features were extracted with the pre-trained VGGish model (Hershey
et al., 2017). For each frame T , the model generated a feature vector of size 128 with the
audio chunk of 1 second (25 frames) centered at T . All audio features were normalized to
the [-1, 1] range with statistics generated from the training sessions. Note that the audio
feature vectors for the last 12 frames of the observation window were set to zero because
their generation used audio that overlapped the prediction window.

Transcriptions. To avoid an explosion of dimensionality driven by the wide spectrum
of speech possibilities, and in order to standardize features retrieval across observation
windows, we did not use utterance-based embeddings. Instead, for each prediction window,
all the utterances that overlapped its preceding observation window and ended on it were
jointly considered. A state-of-the-art sentence encoder network was used to extract semantic
embeddings of size 768 from the combined utterances (Reimers and Gurevych, 2019).
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Figure 3: Overview of the modular encoder-decoder architecture used in the experiments.
The embedding layer (EL) uses a dense layer to generate an intermediate rep-
resentation of the coordinates and the offsets from the observed skeletons. The
dashed and the dotted arrows are active only for the multimodal and the dyadic
experiments, respectively. The output of the model are always 2D offsets, either
implicitly by the implementation of a residual layer (recurrent decoding), or ex-
plicitly (non-recurrent decoding). Weights for both models are shared.

2.2. Settings tested

The architectures included in our comparison have been built over an encoder-decoder
architecture and adapted to the needs of each of the settings explored. Each setting is
defined by the origin of the information leveraged: from 1) a single participant and a single
modality (unimodal), 2) both participants and a single modality (dyadic), and 3) a single
participant and two modalities (multimodal).

2.2.1. Unimodal

We built an encoder-decoder architecture to test several encoding and decoding state-of-the-
art modules. As shown in our architecture scheme (see Figure 3), before going through the
model, the observed skeletons are fed to an embedding layer (EL) that combines the land-
marks coordinates and offsets. The models used for both participants share their weights.
The technical details about the four architectures tested are included in the supplementary
material, and briefly described next:

1. Seq2Seq. Adopted from the natural language processing field (Sutskever et al., 2014),
the sequence-to-sequence model has always been a very popular framework for human
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motion forecasting (Martinez et al., 2017; Li et al., 2018). We test the Seq2Seq with
a single gated recurrent unit, Seq2Seq w/ GRU (Chung et al., 2014), or a single long
short-term memory unit, Seq2Seq w/ LSTM (Hochreiter and Schmidhuber, 1997).

2. TCN. Temporal convolutional networks, TCNs (Lea et al., 2017), have proven to work
as well as recurrent models in many practical applications (Bai et al., 2018). Their
main advantage resides in their ability to model long-range dynamics with relatively
few parameters. In our work, we use it to encode the input. The decoding is done by
a single GRU/LSTM unit. For the former, the encoded vector is used as the hidden
state. For the latter, the encoded vector is split into halves to generate the initial
hidden and cell states.

3. STGNN. In spatiotemporal multivariate time series modeling, Spatial Temporal Graph
Neural Networks (STGNN) has been a popular choice. The STGNN model proposed
by Wu et al. (2020) has shown to be state-of-the-art. The model consists of a series of
temporal module and spatial module. Temporal module is implemented with dilated
TCN while spatial module is implemented with mixhop graph neural networks. In
graph convolution, the graph structure between nodes are learnt end-to-end thus no
ground truth adjacency matrix is needed.

4. Transformer. Also originally from the natural language processing world, Transform-
ers are attention-based architectures that are populating the top positions in many
tasks’ benchmarks. In this work, we test the spatio-temporal transformer defined
by Zheng et al. (2021) (Transformer ST). A simplification without spatial attention is
also considered (Transformer T). Both architectures use a single GRU unit as decoder.

The number of parameters of the TCN and STGNN models is kept about 10 times lower
than Seq2Seq and Transformer models in order to avoid intractable training times. All
recurrent decoders implement a residual connection between the x and y coordinates of the
recurrent unit input and the output, so that the network learns to predict 2D offsets instead
of 2D coordinates. For STGNN, we add up the prediction frames to the last observation to
force the model predict offsets.

2.2.2. Dyadic

We adapted the Seq2Seq, TCN, and Transformer models so that they received the landmarks
from both participants. Our attempts so that the network effectively models the dyad-driven
aspects of the interaction include:

Early fusion. We first explore the simplest way: modeling the behavior of both partici-
pants jointly since the beginning. Therefore, the observed skeletons of both participants are
concatenated immediately after the embedding layer, and encoded together. The decoding
stage is equivalent to that of the unimodal models.

Late fusion. In our second attempt, each participant is independently encoded. Then,
before every decoding step, the input embedded skeleton is concatenated with the encoded
vector of the other participant, which is constant during the whole decoding process.

Interactive. Additionally, we implemented the fusion method proposed by Honda et al.
(2020). Unfortunately, the encoding part could not be implemented exactly as described for
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TCN and Transformers due to the absence of a recurrently updated hidden state. In these
cases, the encoder simply applies early fusion instead. The decoding part is interactive in
the sense that the evolving hidden states are exchanged between decoders at each time step.
The main difference with respect to the late fusion strategy is that the interactive one is
aware of the future predictions made in parallel for the other participant. As a result, both
participants’ predictions should maintain certain coherence.

Note that, during training and testing stages of all the dyadic models presented, the
prediction is done simultaneously for both participants. Therefore, in the late fusion ap-
proach, the encoded vector of participant B that is fed with the embedded skeleton into the
decoder of participant A is the same that the decoder of participant B uses to carry out its
own decoding. Similarly for the interactive approach.

2.2.3. Multimodal

As a first attempt to leverage multimodal information for behavior forecasting, we explored
the inclusion of the metadata, transcriptions, and audio of the target participant (monadic).
In preliminary unimodal experiments (see Section 3.4), transformer-based methods outper-
formed the others, so for simplicity we built our multimodal approaches with Transformer T:

Metadata. Intuitively, values such as the participant tiredness or mood before starting
the session are important for both modeling a more accurate human behavior into the
latent space (encoder), and also inferring an appropriate behavior continuation (decoder).
Therefore, the target participant’s metadata array is embedded by a dense layer and then
concatenated to the embedded skeleton of both the encoder and decoder in every step.
Given the impact that personalizing behavior forecasting to each personality idiosyncrasies
may have, especially in the long term, we consider two configurations for the metadata
array: with and without personality traits. Such metadata array consists of 34 values when
personality traits are considered (29 if not), and does not include the interactant’s mood,
fatigue, or demographic metadata.

Transcriptions. Similarly, the transcriptions are also embedded with a dense layer
and concatenated with the embedded skeleton at every encoding and decoding steps.

Audio. Differently from previous modalities, the audio features are extracted and
embedded through a dense layer in a frame basis. The audio and skeleton embeddings are
concatenated for every frame of the observation window. In contrast with the previous
multimodal approaches, the decoder is equivalent to that of the unimodal approach. This
decision was motivated by the lack of a single audio feature representative of the whole
observation window. Although we could have simply selected the latest audio feature vector,
or embedded all of them into a single representation, we wanted to promote simplicity. In
any case, the most relevant audio features can flow through the decoder by means of the
encoding process.

3. Experimental evaluation

In this section, we first present the baselines, the training details and the evaluation protocol
(Sections 3.1, 3.2 and 3.3, respectively). In our first experiment, we describe the effects of
training with short- and long-term losses (Section 3.4). We follow by exploring whether
building a single model specific for the motion prediction of each part of the body is a
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better choice than the holistic approach (Section 3.5). Next, we show the performance of the
dyadic-aware and multimodal approaches (Sections 3.6 and 3.7). Finally, we present three
experiments that go deeper in the analysis of more specific issues like the inference with noisy
labels (Section 3.8.1), the appropriate length of the observation window (Section 3.8.2),
and the performance of our best models at the DYAD’21 behavior forecasting competition
(Section 3.8.3). All the findings from the experiments are further discussed in Section 4.

3.1. Baselines

First, in order to make sure that our models are doing better than a naive approach, we
establish three simple but challenging metrics.

Zero-velocity. The simplest baseline for behavior forecasting using skeletons consists in
propagating the landmarks from the last observed frame into the future, as if the person froze
once the observation window finished (zero-velocity). While it may seem counterintuitive,
the zero-velocity baseline has been proven to be a very strong and difficult to improve
baseline (Martinez et al., 2017). This is especially true in our conversational validation
and test sets, as most parts of the participant’s body remain static while listening to their
partner’s speech. In fact, it was the DYAD’21 competition baseline.

Linear propagation. Inspired by Adeli et al. (2020), this baseline predicts the global
motion for each part of the body as the linear propagation of its last observed velocity (Lin-
earProp). This velocity is computed as the average velocity of all landmarks from that part
of the body.

Regression to observed mean. This baseline is designed to replicate the regression-
to-the-mean effect commonly observed in forecasting problems like ours (Feng et al., 2017;
Raman et al., 2021). To do so, it computes the linear velocity needed to get from the last
observed skeleton pose to the mean observed skeleton pose in 2 seconds (at the last predicted
frame). Two versions of this baseline were considered. The first (RTOMean) uses the same
constant velocity model for all the landmarks from each part of the body (face, body, and
hands). The second (RTOMean L) makes the regression with one constant velocity model
per landmark. Intuitively, while the first simply translates the last observed face, body and
hands to their observed mean positions, the second also rotates and scales each part of the
body to their observed mean shape.

3.2. Training details

Our goal is to learn to predict behavior for the Talk task. However, the other tasks provided
in UDIVA v0.5 (Animals, Lego, and Ghost) also contain conversational parts that share
many behavioral dimensions with the target task. Therefore, we used the raw annotations
of all the tasks (Talk, Animals, Lego, and Ghost) from the training sessions of UDIVA v0.5 as
training set in order to include as much diverse behaviors as possible. For validation, though,
only the cleaned annotations from the Talk task of the UDIVA v0.5 validation sessions were
used. Training and validation segments were extracted with a stride of 50 frames. Note
that the validation segments are therefore different from those provided in the DYAD’21
challenge, which were manually selected by the organizers. Unless otherwise specified, an
observation window of 100 frames (4 seconds) was used. The prediction window was fixed
to 50 frames (2 seconds) in order to match the formulation of the challenge. The training
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loss used was the mean-squared error. All the models were trained with the AMSGrad
variant of the Adam optimizer (Kingma and Ba, 2015) (weight decay to 0.001, β1=0.9,
β2=0.999) with learning rate set to 0.0001. The batch size and dropout values were tuned
for each model type. The final values after hyperparameter optimization are: 512 and 0.5
for Seq2Seq, 512 and 0.25 for TCN, 32 and 0.25 for Transformer, and 32 and 0.3 for STGNN.
Early stopping was applied to all models with a patience of 20 epochs.

In addition, in order to deal with the particularities of the dataset, its associated metrics,
and the problem itself, several training decisions were taken:

1. Missing landmark estimations and hidden parts of the body (e.g., hands under the
table) were fed to the network as zeros. As learning to predict such hidden states was
beyond the scope of this work, hidden or missing landmarks were filtered out when
computing the training loss (similar strategy as in Adeli et al. 2021).

2. From both training and validation sets, segments with a missing hand in the last
observed frame but visible in the sequence to predict were filtered out (21.5% and 6.0%
of segments, respectively). The rationale behind this decision is purely conceptual.
Since the network implements a residual connection and therefore predicts the offsets
between consecutive frames, the full skeleton of the predicted sequence cannot be
reconstructed if the hand is missing in the last frame of the observation window.

3.3. Evaluation protocol

The evaluation was performed on the cleaned annotations of the UDIVA v0.5 test set (11
sessions), which include a selection of 278 prediction windows of 2 seconds from the Talk
task. Our models are evaluated with the Mean Per Joint Position Error (MPJPE), which has
been broadly used in prior behavior forecasting works (Adeli et al., 2021; Wang et al., 2021b).
It is computed as the mean of the L2 distances between the ground truth and the predicted
landmarks in all frames. We also propose the short-term (ST), the mid-term (MT), and
the long-term (LT) variants, whose computation is restricted to the subintervals of frames
1-10 (0-400ms), 11-25 (400ms-1s) and 26-50 (1s-2s), respectively. We also calculate the
Final Displacement Error (FDE, Mohamed et al. 2020), which corresponds to the MPJPE
of the last predicted frame of the sequence, and helps to detect error propagations to the
very long-term. Finally, a divergence metric (∆) is calculated as the mean displacement
per frame and landmark (pixels) in the predicted sequence. This metric helps to quantify
the amount of motion present in the predicted sequences of skeletons. Similarly to MPJPE,
the short-, mid-, and long-term versions are also present.

As reported in Palmero et al. (2022), cleaned annotations of UDIVA v0.5 underwent
visual inspection. Despite all wrong landmark extractions were identified, only a subset
of them were fixed. Therefore, it is important to note that our observed skeletons, even
for evaluation, are noisy per se (about 15%, 3%, 1% of inaccurate hands, body, and face
observations, respectively). Nonetheless, all evaluation metrics are computed only on the
correct landmarks. Missing face, body, or hands annotations are also left out.

Additionally, and in order to compare our methods to those from the DYAD’21 challenge,
we consider the face, body, and hands metrics presented in Palmero et al. (2022), and present
them in Section 3.8.3.
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Params. MPJPE ST MT LT FDE ∆ ∆ST ∆MT ∆LT

Ground truth - - - - - - 0.86 0.82 0.85 0.88

Baseline models

Zero-velocity - 16.16 6.00 14.45 21.12 23.37 0.00 0.00 0.00 0.00

LinearProp - 34.88 7.65 25.84 51.06 65.22 0.64 0.64 0.64 0.64

RTOMean - 17.60 6.46 15.53 23.15 25.73 0.19 0.19 0.19 0.19

RTOMean L - 17.60 6.48 15.53 23.14 25.72 0.21 0.21 0.21 0.21

Long-term models

Seq2Seq w/ LSTM 15.2M 16.46 6.03 14.66 21.58 24.08 0.12 0.08 0.12 0.13

Seq2Seq w/ GRU 12.0M 16.74 6.03 14.76 22.07 24.68 0.14 0.12 0.15 0.14

TCN + LSTM 1.5M 17.25 5.89 14.88 23.09 26.26 0.16 0.20 0.16 0.15

TCN + GRU 1.7M 16.95 6.06 14.91 22.39 25.20 0.15 0.19 0.15 0.12

STGNN 1.5M 16.42 5.93 14.78 21.48 23.69 0.28 0.44 0.34 0.19

Transformer T 15.3M 17.27 6.24 15.30 22.72 25.38 0.17 0.25 0.17 0.13

Transformer ST 15.0M 16.81 5.99 14.84 22.18 24.72 0.15 0.21 0.15 0.12

Short-term models

Seq2Seq w/ LSTM 15.2M 15.86 5.75 14.32 20.69 22.78 0.07 0.18 0.05 0.04

Seq2Seq w/ GRU 12.0M 15.96 5.73 14.36 20.88 23.18 0.09 0.21 0.06 0.06

TCN + LSTM 1.5M 16.12 5.53 14.13 21.41 24.73 0.14 0.23 0.07 0.16

TCN + GRU 1.7M 16.28 5.45 14.07 21.79 25.59 0.17 0.25 0.09 0.20

STGNN 1.5M 17.17 5.41 14.45 23.37 27.50 0.23 0.29 0.16 0.25

Transformer T 15.3M 15.65 5.44 13.93 20.63 23.06 0.12 0.29 0.08 0.08

Transformer ST 15.0M 15.62 5.34 13.95 20.59 22.74 0.09 0.27 0.07 0.04

Table 1: Comparison of models optimized considering the whole prediction window of 2s
(long-term models) and those optimized with respect to only 400ms (short-term
models). Lower values for MPJPE and FDE are better. Abbreviations: MPJPE,
mean per joint position error; ST/MT/LT, short-/mid-/long-term mean per joint
position error; FDE, final displacement error; ∆, divergence; ∆ST/MT/LT , short-
/mid-/long-term divergence.

3.4. Unimodal results

All unimodal models were trained with two configurations:

• Short-term methods. The number of frames that networks outputted was 10, for which
the mean-squared error loss was computed and backpropagated. The validation loss
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was also computed considering only 10 frames. Longer-term predictions (up to 50
frames) were autoregressively generated at inference time by including the 10 predicted
skeletons in the next observation window. That is, the prediction windows [t, t + 10)
and [t+ 10, t+ 20) were generated using [t− 100, t) and [t− 90, t+ 10) as observation
windows, respectively.

• Long-term methods. The number of frames that networks outputted was 50. The
training loss was computed and backpropagated for all of them.

Results are shown in Table 1. Additionally, tables showing the metrics restricted to
each part of the body are included in the supplementary material. Interestingly, the zero-
velocity baseline outperforms all other baselines. As we expected, the LinearProp shows
poor performance due to the high error originated in segments with fast motion in the last
observed frames. Both versions of regression to the observed mean provide a good non-static
metrics’ upper bound. None of the long-term methods outperform the zero-velocity baseline
in the overall MPJPE. Among them, the STGNN seems to perform the best. For all models
with the long-term loss, we consistently observed that the validation loss quickly reached the
validation minimum and started diverging (overfitting). Very interestingly, most short-term
approaches outperform not only their long-term versions but also the baseline results in the
long-term horizon. This is specially striking because they were not specifically trained to
make long-term predictions. In contrast to the long-term experiment, the validation loss
for the short-term models decreased steadier, taking considerably longer to overfit. Among
the short-term architectures, both transformer-based approaches performed the best in all
time-windows. The divergence values show a common freezing trend for all short-term
methods except for the STGNN as they go deep into the future. On the contrary, ∆LT

increases for short-term TCN methods, suggesting their higher sensitivity to noise.

From the qualitative perspective, we observed that the predictions of our models tend
to avoid taking risks. For example, they predict a sequence of fixed skeletons if the person
has been static during the observation window, or tend to converge to the resting pose
if the motion in the last observed frames is high. On the other side, some predictions
feature emphasizing hand gestures, or head rotations towards the other interlocutor. In
Figure 4 and Figure 5, we present four qualitative examples of diverse behaviors elicited by
the short-term models. The alpha channel of the skeletons colors illustrates the error for
each part of the body at each timestep (the more transparent, the higher the error). We
can observe how transformer models successfully anticipate the motion of the left hand of
the right-most participant in both examples from Figure 4. Figure 5 shows two scenarios
where the difficulty of predicting the emphasizing hands gestures makes remaining static
the safest bet. In fact, the transformer methods are penalized by their riskier predictions.

Given the superior performance of the short-term strategy, we chose it as our default
strategy for all the experiments presented onward.

3.5. Holistic experiments

A question that quickly arises when predicting three different body parts is whether training
a model to predict the behavior of each part would work better than training a generic
model to predict all of them at once. To answer this question, we trained instances of
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Figure 4: Two examples of behavior forecasting by the tested architectures. The solid
and dashed arrows correspond to the observed and predicted temporal windows,
respectively. The higher the transparency, the higher the error for that part of
the body is. In both cases, a high variance among the sequences predicted by the
models is observed.
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Figure 5: Two examples where remaining static represents a safer option than trying to
replicate the emphasizing movement. In fact, at the bottom example, the freezing
effect observed in Seq2Seq leads to a better overall accuracy than the riskier
behavior elicited by the TCN and Transformer models.
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MPJPE ST MT LT FDE ∆ ∆ST ∆MT ∆LT

Face metrics

Ground truth - - - - - 0.65 0.62 0.66 0.67

Zero-velocity 13.29 4.35 11.99 17.65 18.80 0.00 0.00 0.00 0.00

Transformer T 12.77 3.74 11.33 17.25 19.08 0.12 0.21 0.09 0.10

Transformer T | Whole2Face - 3.55 - - - - 0.25 - -

Transformer T | Face2Face 12.69 3.46 11.10 17.34 19.03 0.18 0.23 0.15 0.17

Hands metrics

Ground truth - - - - - 1.33 1.28 1.31 1.36

Zero-velocity 25.87 9.04 20.37 31.98 34.51 0.00 0.00 0.00 0.00

Transformer T 25.13 8.37 19.78 31.14 33.43 0.15 0.45 0.09 0.08

Transformer T | Whole2Hands - 8.46 - - - - 0.42 - -

Transformer T | Hands2Hands 24.87 8.07 19.62 30.84 33.31 0.14 0.37 0.11 0.07

Table 2: Temporal transformer trained to either use the whole skeleton to predict the
whole skeleton (Transformer T), the whole skeleton to predict only the face/hands
(Whole2Face/Whole2Hands), or the face/hands to predict only the face/hands
(Face2Face/Hands2Hands). We observe how target-specific models outperform
the Transformer T model in almost all metrics.

the transformer model that only predict the motion of a single part of the body (face
or hands). Each of them was trained twice with 1) the landmarks from the whole body
(Whole2Face and Whole2Hands), 2) all landmarks except those from the part of the body
to be predicted masked to zeros (Face2Face and Hands2Hands). Results for face and hands
are summarized in Table 2. The Whole2Face and Whole2Hands could not be tested for the
mid- and long-term windows because their design impeded to make recurrent inference.

In general, we observe a superior performance of the part-specific models. We hypothe-
size that one reason could be that the different levels of modeling complexity for each part
of the body might lead to unequal training times needed to converge to an optimal solution.
For instance, while training the Transformer T model, early-stopping might be triggered
before getting to the actual lowest validation minimum for face if the hands prediction starts
to overfit before.

3.6. Dyadic experiments

We adapted the Seq2Seq, TCN, and Transformer architectures such that they fuse the
observed skeletons of both participants in three different ways. We left the STGNN adap-
tation for future work due to its higher conceptual complexity (e.g., design of dyadic graph
structure). For all fusion strategies, the recurrency during inference contemplated both
participants’ predictions simultaneously. Unfortunately, results are inconclusive, as seen in
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Params. MPJPE ST MT LT FDE ∆ ∆ST ∆MT ∆LT

Zero-velocity - 16.16 6.00 14.45 21.12 23.37 0.00 0.00 0.00 0.00

Seq2Seq w/ GRU

Monadic 12.0M 15.96 5.73 14.36 20.88 23.18 0.09 0.21 0.06 0.06

Dyadic - Early 13.6M 16.07 5.75 14.46 21.03 23.36 0.10 0.22 0.08 0.07

Dyadic - Late 15.2M 15.92 5.76 14.38 20.77 22.82 0.07 0.18 0.05 0.04

Dyadic - Interactive 18.3M 16.21 5.80 14.61 21.20 23.35 0.09 0.20 0.07 0.06

TCN + GRU

Monadic 1.7M 16.28 5.45 14.07 21.79 25.59 0.17 0.25 0.09 0.20

Dyadic - Early 1.9M 15.99 5.59 14.18 21.10 23.83 0.13 0.22 0.08 0.12

Dyadic - Late 1.7M 16.32 5.48 14.10 21.85 25.61 0.17 0.23 0.09 0.20

Dyadic - Interactive 1.9M 15.82 5.54 14.09 20.84 23.32 0.09 0.25 0.06 0.05

Transformer T

Monadic 15.3M 15.65 5.44 13.93 20.63 23.06 0.12 0.29 0.08 0.08

Dyadic - Early 15.6M 17.65 5.57 14.94 23.96 27.31 0.21 0.28 0.23 0.18

Dyadic - Late 16.6M 16.48 5.55 14.50 21.89 24.39 0.14 0.25 0.15 0.10

Dyadic - Interactive 16.9M 15.91 5.61 14.19 20.93 23.31 0.12 0.28 0.10 0.08

Table 3: Results of the dyadic architectures tested with three different fusion strategies.
Monadic results correspond to those presented in Table 1. We observe that the
Transformer T approach still yields the best results.

Table 3. All fusion strategies performed slightly worse in the short term than the method
considering only one participant (monadic). For the mid- and long-term windows, the re-
sults varied inconsistently across models. Interestingly, the training and validation curves
showed a consistently faster convergence to the overfitting point for all dyad-aware methods.
Although further research needs to be done, it seems that the higher dimensionality of the
dyads requires much more data in order to generalize in the test set.

3.7. Multimodalities

The Transformer T was trained by naively fusing several modalities of data: metadata,
audio, and transcriptions. Results are summarized in Table 4. Both versions exploiting the
audio and transcription modalities slightly underperform the unimodal version. Although
the models incorporating metadata with and without personality perform apparently at
the level of the unimodal approach in the short term, they predict much less accurate
skeleton sequences for the long term. The relatively small number of participants (134), and
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Params. MPJPE ST MT LT FDE ∆ ∆ST ∆MT ∆LT

Zero-velocity - 16.16 6.00 14.45 21.12 23.37 0.00 0.00 0.00 0.00

Transformer T (Unimodal) 15.3M 15.65 5.44 13.93 20.63 23.06 0.12 0.29 0.08 0.08

+ Metadata 15.4M 17.58 5.44 15.04 23.81 26.97 0.23 0.29 0.27 0.18

+ Metadata w/ Personality 15.4M 16.55 5.42 14.57 22.05 24.69 0.18 0.29 0.20 0.13

+ Audio 15.4M - 5.46 - - - - 0.30 - -

+ Transcriptions 15.5M 16.01 5.44 14.13 21.23 23.38 0.14 0.30 0.13 0.09

Table 4: Results of the Transformer-based bimodal architectures tested in this work (land-
marks and another modality). Although there are no important differences in
the short term, the architectures leveraging metadata seem to compromise their
long-term performance. The audio model could not be recurrently tested for the
long-term given the need of audio features specific to each observed frame.

metadata samples, might not be enough to generalize across participants. However, further
research on more complex multimodal fusion strategies and on incremental combinations
of multiple modalities is required. Similarly to the dyadic experiment, we also observed
a faster decrease of the training loss and eventual divergence of the validation loss. The
consistency of these observations reinforce our hypothesis that more data is needed in order
to effectively model all behavioral combinations within the multimodal space.

3.8. Additional experiments

3.8.1. Robustness test

As explained in Section 3.3, our experiments were carried out with the cleaned annotations
of the UDIVA v0.5 test set. In a real deployment though, our model would necessarily
leverage noisy annotations. In order to depict the expected decrease of performance in
such conditions, we re-evaluated our models by using noisy annotations in the observation
window instead (experiment inspired by Corona et al. 2020). More specifically, such noisy
annotations correspond to the raw test set from UDIVA v0.5. For fairness, note that the last
observed skeleton was always preserved as cleaned in order to apply the predicted motion
offsets on an initial correct skeleton. As the only differences between the cleaned and the
raw annotations were the hands interpolation and the visibility fix (Palmero et al., 2022),
the noisy experiment was done with up to an extra 10% of noisy hands annotations. Results
are summarized in Table 5.

The results show a generalized drop in performance for all the models, especially for the
Transformer T and the Seq2Seq models. It looks like the long-range modelling of TCNs
and the spatial modeling of Transformer ST and STGNN increase their robustness of the
models against noise.
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MPJPE ST MT LT FDE ∆ ∆ST ∆MT ∆LT

Zero-velocity 16.16 6.00 14.45 21.12 23.37 0.00 0.00 0.00 0.00

Seq2Seq w/ LSTM 16.85 6.26 15.55 21.73 23.88 0.10 0.29 0.07 0.04

Seq2Seq w/ GRU 16.82 6.18 15.35 21.81 24.19 0.12 0.30 0.08 0.07

TCN + GRU 16.81 5.93 14.67 22.30 26.00 0.18 0.30 0.09 0.20

TCN + LSTM 16.58 5.93 14.66 21.86 25.12 0.15 0.28 0.07 0.16

STGNN 17.67 6.10 15.38 23.53 26.52 0.18 0.32 0.17 0.14

Transformer T 17.12 6.65 15.64 22.06 24.40 0.15 0.41 0.09 0.08

Transformer ST 16.16 5.81 14.58 21.10 23.18 0.10 0.31 0.07 0.04

Table 5: Results of the short-term models when the inference is done with the raw anno-
tations from UDIVA v0.5. These annotations include up to an extra 10% of noise
in the hands landmarks. Despite the significant increase in observed noise, the
Transformer ST still outperforms the zero-velocity baseline, with a fair margin in
the short term.

3.8.2. Attention analysis

In general, human behavior is modeled by both short- and long-range temporal dependen-
cies. During our experiments, we assumed that our models learnt to extract them in order
to predict the future. However, we cannot be confident of such a statement. In fact, we
do not know up to which extent these cues are useful for forecasting short- and long-term
behavior. In this experiment, we try to determine this extent. To do so, we took advantage
of the attention mechanism of the transformer-based model (Transformer T) and computed
the average of the attention received by each frame across all the transformer depths and
attention heads. Intuitively, this measure gives us a rough approximation of the importance
attributed to each part of the observation window when building the encoding for the ob-
servation window. As a result, we can detect the most informative frames when it comes to
predicting the future behavior. Results for the long- and short-term models are shown in
Figure 6 (top and bottom, respectively). We clearly observe a huge peak of attention in the
last frames of the observation window when predicting the short-term future. Differently,
for the long-term, the network may try to look for behavioral cues in the farther past. Of
course, the last observed frames are less informative for the long term than for the short
term.

After seeing the results of this experiment, an important question that raises is whether
a model trained with only the last observed frames would predict as much accurate behavior
as the model trained with the whole observation window (4s). To answer this question, we
trained three short- and long-term models with much shorter observation windows (400,
200, and 80ms), see Table 6. For both models, the best overall results are yielded by the
model trained with the whole observation window. However, these differences are smaller
than expected, especially for the short term future, where the short-term model trained
with only 400ms of observed behavior even outperforms the original model (MPJPE from
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Figure 6: Attention given to each frame of the observation window during the encoding
phase with the long- and short-term Transformer T models (top and bottom,
respectively). The attention values across heads and transformer depths were
averaged. A higher value intuitively means higher influence on the prediction.
On the left, average attention values across all segments. On the right, attention
values for several samples from the test set. We observe that, for the short-term
models (top row), the information from the few latest observed frames were the
most informative with regards to future behavior forecasting. This effect is not
visible at all for the long-term model, which might try to extract mid- and long-
range dependencies from the past.

5.44 to 5.41). Surprisingly, the model considering only the last 80ms is fairly accurate in
the short term. In return, the short-term models trained with shorter observation window
perform worse in the long term. This suggests the importance of a long enough observation
window, and leaves a more thorough exploration on its appropriate size as future work.

3.8.3. Challenge results

In this section, we evaluate our architectures with the metrics of the ChaLearn LAP
DYAD’21 behavior forecasting competition. The characteristics of the segments to pre-
dict were the same as the ones used in most of our experiments: an observation window
of 100 frames (4 seconds), and a prediction window of 50 frames (2 seconds). However,
we observed that accurately predicting behavior for the 2-seconds-long prediction window
proposed in the challenge was beyond the capabilities of our networks. The main reason
was that the challenge metrics greatly penalized wrong predictions, which were unavoid-
able given the stochasticity of the future. In order to compensate for those errors, the
network would need to perfectly predict many segments, which was not feasible. Instead,
we attempted a very conservative strategy. We knew from our experiments that our models
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MPJPE ST MT LT FDE ∆ ∆ST ∆MT ∆LT

Long-term models

Transformer T - 4s 17.27 6.24 15.30 22.72 25.38 0.17 0.25 0.17 0.13

Transformer T - 400ms 17.30 6.03 15.21 22.92 25.53 0.16 0.26 0.17 0.11

Transformer T - 200ms 17.80 6.04 15.61 23.69 26.34 0.19 0.30 0.20 0.14

Transformer T - 80ms 17.51 6.16 15.40 23.17 25.90 0.17 0.28 0.18 0.12

Short-term models

Transformer T - 4s 15.65 5.44 13.93 20.63 23.06 0.12 0.29 0.08 0.08

Transformer T - 400ms 15.83 5.41 14.10 20.89 23.21 0.10 0.27 0.06 0.06

Transformer T - 200ms 16.43 5.49 14.42 21.88 24.71 0.16 0.29 0.14 0.13

Transformer T - 80ms 16.37 5.55 14.48 21.69 24.19 0.15 0.31 0.13 0.10

Table 6: Performance of long- and short-term Transformer T models trained with smaller
observation windows (400ms, 200ms, 80ms). Although leveraging 4s of observa-
tions yields the overall lowest error, short-term models trained with short obser-
vation lengths perform incredibly well, especially in the short term.
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Figure 7: Performance of the proposed models in the validation stage of the DYAD’21 chal-
lenge split by face (left), body (middle) and hands (right). The x axis corresponds
to the number of frames predicted before starting to propagate the last predicted
pose into the future (in a similar way the zero-velocity baseline is generated). For
a better visualization, the hands plot is zoomed. The maximum is reached after
predicting few frames, and quickly decreases as we dare to predict further due to
the highly penalizing challenge metrics.

made better predictions for the short-term future. Therefore, we explored whether by pre-
dicting fewer frames, N , and applying zero-velocity motion onward (propagating the last
predicted pose into the future) we improved the zero-velocity baseline. Figure 7 illustrates
the challenge metrics in function of the choice of N for our best performing short-term
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Architecture Face Body Hands

Baseline (zero-velocity) 0.3458 0.8897 0.5392

rays2pix 0.3458 0.8824 0.5177

Tuyen and Celiktutan 2021 0.2049 0.8507 0.3160

Transformer T (6-4-2*) 0.3537 0.8898 0.5401

Transformer T | Face2Face (6-0-0*) 0.3603 - -

Transformer T | Hands2Hands (0-0-2*) - - 0.5411

Ensemble of models 0.3603 0.8898 0.5411

Table 7: Final results of our best model on the test set of the DYAD’21 challenge. The best
model configurations from the validation stage were used as an ensemble of models
to combine the benefits from each of them. Scores for the baseline (zero-velocity)
and other participating teams are also included. *Number of frames predicted
before freezing face, body and hands, respectively.

models. We observe that this strategy indeed improves the baseline for very few frames
(< 250ms for face and < 200ms for body and hands) before quickly falling as more frames
are predicted before starting the static propagation. In order to make our final prediction
at test stage, we first found the combination of model and N value that maximized each
metric (face, body, and hands). Then, we ensembled those models to generate the final
predictions. Consistently with the results from the experiments from Section 3.5, we found
that the Face2Face and Hands2Hands models performed the best at predicting the face
and hands behavior, respectively. With these two models and the Transformer T model for
the body prediction, we scored 0.3603, 0.8898, 0.5411 for face, body, and hands (Table 7),
respectively. The three scores are higher than those of the zero-velocity baseline and the
participants from the DYAD’21 behavior forecasting competition.

4. Discussion

In our multiple experiments, we came up with very interesting findings related to the size of
the prediction window, or whether combining multiple modalities in a naive way improves
the accuracy. In this section, we discuss all these points by encompassing them in generic
areas.

Long-term goal. From the unimodal experiments (Section 3.4) it can be observed
that one needs to be conservative with respect to the prediction window length. The
training of the long-term methods triggered the early stopping as soon as the network started
predicting excessive risky motions, ending up with very static and freezing predictions.
We hypothesize that this may be caused by two main factors. First, the high uncertainty
present in such a long future time window favors the presence of many segments with similar
observed behavior but different future outcomes. This eventually leads to a regression-to-
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the-mean effect. This is especially critical in rather static datasets like ours, in which the
mean is remaining mostly immobile. In fact, the simple zero-velocity baseline yielded fairly
accurate long-term results. Second, the complexity of learning to predict behavior for 2
seconds at once. Previous works (Wang et al., 2021a; Adeli et al., 2021) suggest the use
of curriculum learning so that the network starts with easier sub-tasks (short-term) and
gradually increases their difficulty (long-term). This strategy could improve our long-term
networks’ performance, and will be tested as future work. However, we believe that the first
problem would still arise as soon as the network starts learning the long-term behaviors of
the training set. We hypothesize that both the effective exploitation of extra information
like multimodality, the scene context, or larger historical windows (history-aware methods),
and the collection of bigger multimodal datasets will allow to reduce the future stochasticity,
which will translate to more accurate behavior forecasting.

Short-term goal. In contrast with the subpar performance of the long-term models,
the short-term models considerably outperform the zero-velocity baseline, even in the long
term. In the first 400ms of prediction (short term), the error is similar for TCNs, STGNN,
and Transformer methods. In particular, the spatio-temporal Transformer performs the
best (MPJPE in the short term of 5.34px). The convolutional nature of TCNs and STGNN
required to reduce their number of parameters in order to be trained in tractable time.
Still, the training convergence took considerably longer than Seq2Seq and Transformer
models. As a result, they show an incredibly good parameters/accuracy ratio. However,
their high error and divergence in the long term suggests a compromised performance when
applied recurrently. The Seq2Seq models, instead, offer a more modest improvement for
the short-term future but deal very well with the recurrent future prediction. We have two
hypotheses for this. First, their recurrent structure might learn more generalizing patterns
to deal with the noise. Second, they may have better capabilities for deciding whether to
predict static behavior (low divergence in the mid- and long-term futures). As a result, the
good short-term accuracy would help favor a more accurate propagation of an almost frozen
skeleton pose to the future. The qualitative results from Figure 4 illustrate this effect. In
terms of accuracy, the Transformer approaches combine the benefits from both convolutional
and recurrent worlds. Their excellent short-term performance also translates into a fairly
good long-term accuracy. However, yet less severe, the freezing pattern is also observed in
the Transformer-based architectures. Another interesting point is the incredibly low error
increase of the spatio-temporal transformer when leveraging more noisy annotations (Sec-
tion 3.8.1). We think that its joints-wise attention mechanism may be useful to filter noisy
parts of the body out (e.g., hands). This hypothesis could be validated by analyzing the
attention received by the most noisy landmarks, and remains as a very compelling future
work. Also as future work, we will explore the benefits from the implementation of adver-
sarial training. This would be particularly interesting because, given the massive amount of
static segments in the UDIVA v0.5, generating realistic behavior does not necessarily mean
generating moving sequences.

Holistic. The holistic experiment showed a superior performance of the models
trained to predict only a single part of the body. Our rationale behind this observation
is that the validation minimum for each part of the body is reached at different training
stages. As a result, the early-stopping of holistic models (Transformer T) may end up
being triggered at the optimum point for hands. In fact, while the short-term face error for
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Whole2Face is lower than for Transformer T, the short-term hands error for the latter and
Whole2Hands is similar. This suggests that the hands validation error could be the early-
stopping trigger for the Transformer T model. Future work needs to explore more complex
training strategies that address these issues. On the other hand, although the Whole2Hands
and Whole2Face models should theoretically perform better than the Hands2Hands and
Face2Face models, they do not. This may be caused by the lack of data available to learn all
the behavioral dependencies among far away positioned joints. An alternative explanation
is that the dependencies among parts of the body might not be useful enough for motion
forecasting in the short-term future so that the network decides to put efforts into learning
them. Additionally, we observed that the validation loss for face decreased steadier and
took considerably longer than the hands’ to overfit. This superior generalization capability
observed for face may be due to the fact that the face mostly performs translation and
rotations as a unit. Therefore, it can be easier modelled and predicted. The hand and the
fingers, instead, can move more freely and may be harder to model and predict.

Interlocutor-aware dynamics. None of our several attempts to merge the skeletons
from both participants of the conversation improves the unimodal results. Our hypotheses
behind it are mainly three. First, there is a natural imbalance between the interpersonal
and intrapersonal dynamics in dyadic conversations (Ahuja et al., 2019). As a result, the
model might not find the minority class predictive enough to model it. In fact, recent
methods that found improvements by modeling the interpersonal dynamics were evaluated
in highly interactive scenarios like dancing or fencing (Honda et al., 2020; Katircioglu et al.,
2021; Guo et al., 2021). Secondly, the interpersonal dynamics are different for each pair
of interacting subjects. Therefore, the data needed to model all possible interpersonal
dependencies is considerably bigger. The steeper and faster decrease observed for the dyadic
training losses supports this hypothesis. Finally, the approach used might have failed to
capture interdependencies or jointly model both behaviors. More research is needed to
come to any strong conclusion, as there are evidences that joint modeling is necessary and
works (Ahuja et al., 2019; Hua et al., 2019).

Multimodalities exploitation. In this work, we trained three transformer-based
models that naively merged the observed landmarks with either the audio, the transcrip-
tions, or the metadata of the target person. All of them performed worse than the unimodal
model. Similarly to the dyadic experiments, the multimodal training losses showed steeper
decreases. Again, the extra information about the participant increases the dimensionality
of the problem and thus the amount of data needed to acquire good generalization ca-
pabilities. For instance, the model with access to the participant’s personality may learn
to discern behavioral patterns specific to each type of personality. However, these learnt
behavioral associations may be wrong due to the low amount of representations of each
personality type in the training dataset (134 participants). The same argument can be
extrapolated to audio and transcriptions. One more time, there is a need for larger and
more diverse datasets in what refers to participants and elicited behaviors.

Noise. The noise present in the annotations from UDIVA v0.5 has a direct impact
on our experiments from two perspectives. First, the faulty skeletons in the observation
windows might interfere in the behavior modeling, which directly impacts the models’ pre-
dictive capability. We noticed this effect in our robustness experiment (Section 3.8.1), where
the increased noise from the raw observation windows considerably impacted the accuracy
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of the predicted behavior. Secondly, the noisy skeleton annotations used as future ground
truth might be promoting conflicting gradient flows at training time, which may further
accentuate the regression-to-the-mean effect. Nonetheless, most of our models still outper-
form the zero-velocity baseline for the short-term future, even when inference is run on noisy
observations. Therefore, our work proves the effectiveness of weakly-supervised training by
using noisy skeleton extractions, and its possibilities to a hypothetical real deployment by
using automatically extracted annotations. Interestingly, the fairly big amount of datasets
available with respect to contexts, tasks, and subjects may benefit from weakly- or even
self-supervised learning and help towards the development of a definitive individual-agnostic
behavioral model. Future work includes the exploration of specific techniques to better deal
with the noise in the training data (Ghosh et al., 2017).

Future work. We foresee the evolution of future research towards several directions.
First, we predict that the community interest will grow towards the exploration of behavior
forecasting in the frequency space. Many works have already stated their benefits for
avoiding the freezing behavior in single human motion forecasting (Mao et al., 2020, 2021).
In fact, few very recent works showed very promising results in this direction in highly
dyad-driven scenarios like dancing (Katircioglu et al., 2021; Guo et al., 2021). Second, we
think that the biggest benefit will come from methods that are capable (at inference time) of
adapting their learnt behavioral model to the specific behavioral patterns of the person for
which forecasting is being applied. Meta-learning could be a good candidate to represent
one of the next breakthroughs in this field (Raman et al., 2021; Moon and Seo, 2021).
We also think that models that promote the interpretability of the behavioral predictions
(e.g., causal models) may help us to automatically detect the dependencies among visual
cues/signals, which may eventually lead to the discovery of new underlying mechanisms in
human social communication. Finally, the exploitation of more explicit contextual cues,
and the exploration of stochastic methods are still open issues.

5. Ethics

The research presented herein has several advantages and applications for good, but also
comes with a number of potential pitfalls. Regarding the applications for good, social
behavior forecasting is increasingly showing its potential due to the wide spectrum of pos-
sibilities it enables. Specifically, personalized interventions in virtual agents or assistive
robots may improve well-being and mental health. For example, pedagogical agents (Davis,
2018) which are personalized to maximize learner’s attention and learning are another im-
portant real-life application. Health care delivered by robots is also a burgeoning field of
research (Esterwood and Robert, 2021), and personalization of robots’ personalities seem to
have positive impacts of patients’ health and social outcomes (Andrist et al., 2015) by means
of increasing acceptance of robot’s care. Behavior forecasting can also have applications for
good in assistive technology (e.g., anticipating falls), collaborative and autonomous robots
or autonomous vehicles (Chaabane et al., 2020). However, each new technology comes with
pitfalls and limitations. Non-consensual behavior forecasting may have potential pitfalls in
areas such as security borders or migration controls, where unfair algorithms may lead to
undesired outcomes (McKendrick, 2019) impacting human rights (Akhmetova and Harris,
2021). All in all, although data protection regulations vary across countries (Guzzo et al.,
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2015), data privacy and data protection must ensure informational self-determination and
consensual use of the information that can be extracted with the methods presented herein.
In this sense, frameworks such as the EU General Data Protection Regulation (GDPR3)
provide excellent safeguards for establishing ethical limits that should not be crossed.

6. Conclusions

In this work, we presented the first comprehensive comparison of state-of-the-art approaches
for behavior forecasting during dyadic conversations. Differently from other human motion
prediction works, our approach considered the participants’ whole body (face, body, and
hands landmarks). In particular, we proposed several adaptations of recurrent, convolu-
tional, transformer-based, and graph networks for whole-body motion forecasting, most
of them outperforming the zero-velocity baseline when trained under the right conditions
(e.g., short-term optimization). Our experiments showed the superiority of the temporal
and spatio-temporal transformer-based approaches. In fact, our temporal transformer rep-
resents the new state of the art in the ChaLearn LAP DYAD’21 competition. Interestingly,
the model with spatio-temporal attention achieved better results than the baseline even
when using the raw annotations. This proves the feasibility of weakly-supervised learn-
ing for human behavior forecasting tasks. Finally, our experiments helped us to identify,
analyze and raise awareness of the main challenges posed by the UDIVA v0.5 dataset for
behavior forecasting.
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Stanislav Ondáš and Matúš Pleva. Anticipation and its applications in human-machine
interaction. In Proceedings of the 19th Conference Information Technologies-Applications
and Theory (ITAT 2019), pages 152–156, 2019.

Cristina Palmero, Javier Selva, Sorina Smeureanu, Julio C. S. Jacques Junior, Albert Clapés,
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