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Abstract

Interpersonal synchrony is when two parties in an interaction engage similarly due to the
rhythmic coordination of their behavioral patterns. The study of synchrony in commu-
nication and psychology dates back to the 1960s but has evolved over time. Historically,
studying synchrony has involved the manual coding of nonverbal cues by trained human
coders, such as counting the occurrence of a specific behavior or making subjective ratings
about a speaker. However, its time-consuming nature has been a serious barrier to the
development of the field and has made it difficult for new scholars to adopt the technique.
Recent advances in automated coding techniques allow researchers to collect nonverbal
behavioral data effectively and objectively, and in a much more efficient manner than labo-
rious manual coding methods historically relied upon. This chapter will review some of the
theoretical and methodological challenges in studying interpersonal synchrony and propose
alternatives using automated computer vision techniques.
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1. Introduction

Over 50 years of research on interactional synchrony has largely produced consensus on
its existence, with a few dissenting voices (see, e.g., McDowall, 1978a,b). However, the
conceptualizations, attributed origins, and functions in human interaction have not been as
consensual, leading to some muddle in what is treated as interactional synchrony (IS). For
some, engaging in matching behavior, which is behavioral similarity between interactants in
the most general sense, or mirroring, which is identical matching of an interlocutor’s visibly
observable posture, gestures, facial expressions and the like, is sufficient to qualify as IS.
However, most definitions of IS emphasize that synchrony involves a temporal component,
a rhythmic coordination of behavioral patterns (Bernieri et al., 1988; Burgoon et al., 1995;
Mathiot and Carlock, 1982). Delaherche et al. (2012) define synchrony as “the dynamic and
reciprocal adaptation of the temporal structure of behaviors between interactive partners”
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(p. 351). But the temporal coordination could be between identical body parts, such as
two interlocutors both holding hands to chest in a protective gesture upon hearing about
a terrible accident, or between speaker and listener both adopting left-hand gesturing, or
merely between speaker and listener both making postural shifts and head tilts at the same
time.

Burgoon et al. (1998) brought some clarity to the matter by distinguishing multiple
forms of adaptation, including synchrony, that are often conflated with one another. These
include matching, mirroring, complementarity, compensation, self-synchrony, interactional
synchrony, convergence, divergence and accommodation. Often, these various forms of
adaptation are considered as synchrony. Bernieri and Rosenthal (1991) brought additional
clarity to the concept by arguing that IS involves three forms of coordination: congruent
interaction rhythms between the parties; simultaneous co-occurrence of vocal, facial and/or
body movements; and behavioral meshing, in which individuals’ separate behavior patterns
come together to form a single, unified whole. Although these criteria create a clearly
distinguishable pattern of social interaction, methods for operationalizing IS rarely incor-
porate all three of these criteria. Thus, many different patterns fly under the IS flag in the
literature.

Since the study of IS has a long history in the social sciences, it is fruitful to explore the
historical ways of studying and measuring it, especially for those who might be new to the
field or are coming from more technical disciplines such as machine learning who may be
unaware of the history. Scholars studying IS have struggled with laborious paper-and-pencil
or even computer-aided manual coding for decades (see Fujiwara et al., 2021a) and have
benefitted greatly from advances in computer modeling and vision analysis (see Chetouani
et al., 2017; Delaherche et al., 2012, for an introduction). In this paper, we review these
historical methods and then summarize the work to date on more modern computer-based
coding methods. While these techniques are not new, this paper can be a useful starting
point for non-technical scholars looking to simplify their methods for examining synchrony.

2. Historical Perspectives on IS

Early research in synchrony was limited by the methodology that was available at the
time. Schmidt et al. (2012) say that early methods that employed the temporal coding
of specific actions film or video recordings of interactions to evaluate movement changes
in the form of initiations and terminations of body part movements or vocal activity to
judge whether temporal co-occurrence of actions was present. For example, Newtson and
colleagues (Newtson, 1993; Newtson et al., 1977, 1987) placed a transparency over a still
frame on a video screen and located 15 different body parts at 1.0 or 0.5 s intervals and
tallied the number of changes per frame to establish a time series. This was an ingenious
method but clearly very laborious and was not widely adopted by other researchers. Schmidt
et al. argue these types of coding methods in addition to being difficult to employ, provide
a rather coarse grain view of IS because they are limited in the number of behaviors that
can be measured. Another alternative that has been used is a periodic rating approach
in which third-party raters watching a video make gestalt judgments about synchrony at
regular intervals (see Bernieri et al., 1994, for an example), but this also misses the variety
of behaviors that can be examined using continuous methods. Julien (2005) used 30-second
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rating intervals to create his reciprocity framework, but it also was quite laborious in the
frequent human judgments to be made.

In examining synchrony over the past several decades, researchers have concluded that
a host of behaviors, both verbal and nonverbal, is involved. Early on, Bernieri and Rosen-
thal (1991) defined behavior broadly because it may refer to specific muscle movements of
the face or body, nonverbal gestures, vocalizations, body positions, and even mental states.
This raises difficulty in studying synchrony because two partners may enmesh their behavior
without enacting the very same behavior or even doing it at the same time. Again, Bernieri
and Rosenthal (1991) explain it in this way: “Postures, for example, may be considered
simultaneous (congruent) within the time frame of an entire interaction or interaction seg-
ment. When observing micromovement changes, the time frame for determining simultane-
ity may be less than 5/100 of a second” (p. 413). So, if one partner is excited and displays it
with rapid gestures and increased voice volume and the other responds simultaneously with
vigorous head nodding, the pair would appear synchronized to outsiders because of their
behavioral meshing even if objectively they have not matched on any single behavior. Dela-
herche et al. (2012) note that while some studies examine synchrony on matched behaviors,
others examine what they call “global motion” to capture more generalized synchrony.

If the interlocutors’ behaviors match and are timed to the same vocal “metronome,”
this is known as simultaneous synchrony. It is what most people think of when referring to
IS. However, speaker to listener synchrony, known as concatenous synchrony, more clearly
captures the concept of identical behaviors between interlocutors, since while the speaker is
gesturing, the auditor is not. The only way for the auditor and speaker to synchronize such
behaviors is in a sequential speaker-speaker relationship, not speaker-listener relationship.
This form of IS has received far less attention than simultaneous synchrony. Simultaneous
synchrony almost certainly must entail a rhythmic pacing component inasmuch as it is
unlikely to include identical communicative acts.

Rennung and Göritz (2016) argue that interpersonal synchrony can occur both intention-
ally, as well as incidentally, comparing it to what Knoblich et al. (2011) call planned coordi-
nation (strategic and intentional) and emergent coordination (a result of simple “perception-
action coupling”). Whether or not synchrony occurs automatically or is done strategically
will determine how we interpret it. If someone is synchronizing their movements with an-
other person in order to build rapport and create connection with them, we usually think
this is a positive social behavior and it has benefits for both their relationship and their
future interactions (Tickle-Degnen and Rosenthal, 1990). But, if the rapport developed is
meant to make it easier to deceive the partner, then the strategic use of synchrony is seen as
having a nefarious intent (Dunbar et al., 2020). Whether or not we interpret synchronizing
with a conversational partner as positive or negative has to do with the outcomes of the
interaction and may not be determined in the moment.

Some of these aspects have been difficult to operationalize before the advent of auto-
mated measurement of timing and micro-level nonverbal behaviors. Researchers have had
to make pragmatic decisions about how to segment interaction into fine-grained increments
that can capture the rhythmicity of interactions. Because manual coding is labor-intensive
(Murphy et al., 2019), researchers have had to resort to focusing on the most important
behaviors or the ones that are easiest to code, which tend to be the macro-level behaviors
or objective behaviors that can be counted, such as number of gestures in a time segment.
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Although slow signals such as postural shifts occur as large time intervals, most macro-level
measures typically are too crude to reflect the nuanced micro-level vocal, facial and gestural
behaviors that reflect actual dynamic patterned behavior of IS. The demands to measure
two people’s behaviors over extended time periods was an inhibiting factor for researchers to
investigate IS. The arrival of tools such as automated facial tracking (Yu et al., 2015), Open-
Face (Baltrušaitis et al., 2016), OpenSmile (Eyben et al., 2010), OpenPose (Noori et al.,
2019), and Theme (Magnusson et al., 2016) have made it possible to begin to measure the
fine-grained patterns of nonverbal behavior that underpin IS.

3. Automated coding techniques of synchrony

We now turn our attention to summarizing the methods of measuring synchrony using
automated methods which may be unfamiliar to non-technical audiences. This process will
require two steps. First, behavior is captured using automated motion capture systems in
order to produce a time series for analysis. Then, both the timing and the rhythm can be
analyzed, and compared with chance levels to predict the degree of synchrony (Figure 1).
These steps are explained in more detail below.

3.1. Generating time series movement data

An automated method for synchrony analysis requires continuous time series data with a
constant time interval of sampling. In this regard, there are several options, which would
be chosen depending on the research design and environment of data collection. When the
researcher’s interest is in the detailed movement of each body part, motion capture systems
will be promising. Indeed, motion capture data offers great potential for synchrony research,
including its application to character animation (Bente et al., 2020). However, laboratory-
grade motion tracking systems, such as those provided by OptiTrack, Polhemus, and Vicon
Motion Systems Ltd., have been very costly (Romero et al., 2017) so that they might not
be accessible to many researchers. Instead, a depth camera (e.g., Microsoft’s Kinect, Intel’s
RealSense) seems a low-cost alternative because it can detect the distance from the camera
to objects and measure the 3D coordinates of each joint of the body. Such a low-cost system
may not substitute the sophisticated motion capture system in some tasks (Romero et al.,
2017), however, it successfully captures synchrony in a naturalistic conversation. (Won
et al., 2014), for instance, collected time-series data of coordinate points with Kinect, and
then calculated their synchrony score using angles of each joint part. Similarly, Kinect was
used to capture the bodily movements of a small group consisting of three speakers and
their synchrony (Fujiwara, 2016).

Alternately, the recent development of computer vision enables video-based tracking
techniques, which has been a considerable driving force in research on synchrony. To date,
two major options for the video-based tracking approach have been recognized: pixel or
frame differencing (Paxton and Dale, 2013; Ramseyer, 2020) and OpenPose (Cao et al.,
2017). As for the former technique, the Motion Energy Analysis (MEA) software, available
on the Open Science Framework website (https://osf.io/gkzs3/), seems a promising option
for non-technical scholars because it offers a user-friendly graphical interface and does not
require a written code to perform an analysis (Ramseyer and Tschacher, 2021; Ramseyer,
2020). It automatically calculates the change in greyscale pixels between consecutive video
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Figure 1: (A) Example of OpenPose. Each person’s joint is estimated as coordinate points,
which is overlaid on the image. Person on the left (Person 1) is moving her arms a
lot from frame t to t+1, while person on the right (Person 2) is not moving much.
Their movements are represented as differences in coordinate points. (B) Example
of time series bodily movement data and its plane of cross-wavelet coherence.
They share the same timeline (x-axis). The y-axis in the upper figure is the
amount of movement. If the participant moves a lot (e.g., Person 1 from frame t
to t+1), it will show a large value. The y-axis of the lower plane is the period (the
inverse of the frequency, e.g., period 4 means 0.25 Hz). The upper region of the
plane represents synchrony for fast rhythms, and the lower region for slow tempos.
The intensity of their synchrony is represented by the color. In the example, the
extent of synchrony increases in the middle and end of the conversation.
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frames within a region of interest (ROI), which is encoded as movements when the only thing
moving in the video is a participant. In other words, for the frame differencing technique,
the video recorder must be fixed and neither background nor lighting conditions change.
The entire body of each speaker is considered an ROI for the synchrony analysis of bodily
movement (Dunbar et al., 2020; Fujiwara et al., 2019, 2020), however, specific body parts
such as the head and body can also be separately investigated (Ramseyer and Tschacher,
2014). Although the pixel-based frame differencing methods offers simple “movement”
information, its results have been extensively compared to those of 3D motion-tracking
systems in several analytical contexts including social synchronization Romero et al. (2017)
and multimodal synchronization Pouw et al. (2020), which supports its robustness as well
as utility in a range of tasks. The current version of the MEA software (4.11) is available for
both Mac and Windows operating systems, making it accessible to a wide range of users.

Whereas frame differencing methods capture human motion in a plane or a region, Open-
Pose (Cao et al., 2017; Noori et al., 2019) captures motion using points. It incorporates
computer vision and deep learning so that automatically detects the 2D coordinates of the
face as well as the joint parts of the human body, such as the nose, neck, shoulders, hands,
and legs. Its output is thus similar to that of motion capture systems or depth cameras, but
OpenPose only estimates the 2D coordinates if it is run on single video footage. It may be
noted that, unlike the frame differencing technique, the coordinate data obtained in JSON
format needs to be converted to distance using the formula

√
(Xt+1 −Xt)2 + (Yt+1 − Yt)2.

R (the jsonlite package) or Python (a built-in package called json) will likely work well for
JSON format data. Despite the additional effort of preprocessing the data, the advantage
of this pose-estimation cannot be underestimated. OpenPose offers highly precise bodily
coordinate data with reduced sensitivity to background noise and lighting conditions com-
pared to the frame-differencing technique, still, its performance should be hampered with
low-quality videos and/or other extraneous factors such as the clothing worn by the target
(Fujiwara and Yokomitsu, 2021). Although OpenPose may generate a missing value for the
targeted joint most likely due to occlusion, it still gives an estimate of the joint if informa-
tion for other joints is available. It also calculates the confidence score so that the user can
eliminate unstable estimations if necessary. The currently available version of the software
is pre-trained, so it is not necessary to train the algorithm to estimate the coordinates of
body parts.

The primary advantage of those video-tracking approaches lies in their simplicity. Unlike
a motion capture system, no markers nor special sensors (e.g., an infrared camera) are
required to obtain the bodily movement data. Instead, video footage taken with a single
camera is sufficient. The sampling rate is 25 to 30 Hz, the same as the frame rate of the video,
which should be fine enough to study human nonverbal communication. As for synchrony
analysis, it is beneficial that both techniques allow for the movement of multiple persons
to be tracked simultaneously. Furthermore, there is another significant utility in that the
timing of onset and offset is perfectly matched to each individual if all speakers are filmed.
Since these techniques employ unique methods to capture bodily movement, a recent study
directly compared both video-tracking techniques (i.e., MEA and OpenPose) for synchrony
with the same video clips of dyadic conversations (Fujiwara and Yokomitsu, 2021). The
results were highly comparable in terms of the difference from chance, the gender differences,
and the association with personality traits. Given both techniques provide essentially the
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same information about bodily movement under the same condition, the choice of which
technique is better must depend on the video recording constraints. For dyadic conversations
with a fixed camera and set lighting conditions, MEA may be preferable for its user-friendly
graphic interface and straightforward output. However, if the targets are near each other
or overlap, MEA may not be the best option. In such cases, OpenPose may be a promising
alternative. Moreover, if researchers wish to focus on synchrony in specific body parts (e.g.,
only the hands or head; Dunbar et al., 2014, 2020) or specific combinations thereof (e.g.,
one’s hand and the other’s head), they may find OpenPose more useful.

3.2. Time series analysis for synchrony

3.2.1. The convergence of timing

After getting time-series data, time series analysis will be performed to evaluate the extent
of synchrony. In general, time-series analyses are used for a broader range of purposes in
various fields of research including forecasting. Under the context of research on IS, time
series of two speakers are supposed to be analyzed in terms of their convergence of timing
and rhythm (Bernieri and Rosenthal, 1991). There is no one way to compute synchrony,
and many authors have used different methods in the past. As for a way to investigate
the convergence of timing, cross-correlation, a simple extension of Pearson’s correlation
to time-series data, has been widely used (e.g., Schoenherr et al., 2019; Tschacher et al.,
2014). While cross-correlation is intuitively easy to understand, it also has the drawbacks
of assuming stationarity for the entire time series (Delaherche et al., 2012). Stationarity
refers to a property of time-series data, and a stationary time series is one whose statistical
properties including mean, variance, and autocorrelation are all constant over time. The
importance of stationarity is similar to the assumption of a normal distribution in classical
statistical testing because many analytical tools and statistical models rely on it. However,
stationarity is not likely ensured in an unstructured dyadic conversation since speakers
usually change the speed of their speech and the tempo of their movements during their
conversation. To account for the possible non-stationarity of the time series, previous
studies have employed segment-wise computation (Schoenherr et al., 2019). By using a
segmented short-time window, the assumption of stationarity would only be adapted to the
local segment, not the whole time series, which can be more reasonable. However, due to
the nature of the segment, researchers have to decide on four major parameters: window
size, window increment, maximum lag, and lag increment (Boker et al., 2002), each of which
has a great impact on the results (Schoenherr et al., 2019).

Another solution for the (non-)stationarity issue is using a non-linear method that ex-
tracts synchronous patterns occurring in varying lags throughout the time series. For in-
stance, dynamic time warping (Berndt and Clifford, 1994) calculates a distance between two
time series using the “warping” sequences, where the time scale of one sequence is locally
shrunk or extended to ensure maximum alignment of the relevant part between the two time
series. Because of the unique feature of using a flexible time sequence, it can measure the
convergence of timing by handling the time lags that occur at various lengths (Van Der Zee
et al., 2021). As software to perform dynamic time warping, the packages dtw for R and
dtw-python for Python are available. A recent study employed OpenPose and dynamic time
warping to examine synchrony between humans and non-human partners (i.e., avatars) in
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negotiation settings. The results demonstrated that the human participants synchronized
their movements with the movements of non-human negotiation partners beyond the level
of chance, and the greater extent of synchrony (i.e., the smaller distance calculated by
dynamic time warping) was associated with the reported greater affiliation with the non-
human partner and more altruistic or avatar-friendly decisions in the negotiation (Fujiwara
et al., 2021b).

3.2.2. The convergence of rhythm

As a way to examine the convergence of rhythm, a spectrum analysis that deconstructs a
complex time series into the properties of its rhythmic components has been used (Dunbar
et al., 2020; Fujiwara et al., 2020). In a spectrum analysis, a spectral power that indicates the
magnitude at each component frequency can be calculated for each time series. Moreover,
if there are two time series, a cross-spectrum analysis can provide a coherence measure.
Coherence, which ranges on a scale from 0 to 1, is a measurement of similarity between the
two time series at each frequency component. A coherence of 1 reflects a perfect rhythmic
match between the two movements, whereas 0 reflects no match. Coherence is a non-
negative metric such that the case of anti-phase synchrony where the speakers move in the
opposite timing (with the same rhythm) is also calculated as higher intensity of synchrony.
This is similar to how previous studies use the absolute value of cross-correlation analysis
(Schoenherr et al., 2019), where the negative correlation is considered as one pattern of
synchrony. Overall, this measurement may be interpreted as Pearson’s correlation, however,
it indicates the convergence of rhythm in the frequency domain (Fujiwara and Daibo, 2016;
Fujiwara et al., 2020; Schmidt et al., 2012, 2014).

In recent synchrony research, the wavelet transform is recognized as a promising option
of the spectrum analysis for synchrony in unstructured conversation because it does not re-
quire constant properties (i.e., stationarity) in each time series (Issartel et al., 2006, 2015).
The wavelet approach uses a predetermined form of wavelet (i.e., mother wavelet) that is
supposed to be localized into the analyzed time series. The size of the mother wavelet
changes according to the analyzed frequency band; it is dilated if the analyzed frequency
band is low (i.e., slower rhythm), and contracted if the analyzed frequency band is high (i.e.,
faster rhythm). The multi-scale property works like a microscope with adjustable resolution,
thus the wavelet approach enables the precise detection of signal properties in a very complex
signal and is applicable to a wide range of motor signals (Issartel et al., 2006, 2015), which
shows superiority over short-time windowed techniques such as the segment-wise Fourier
transform. Furthermore, relative phase information, the pattern of synchrony, can also be
obtained via the wavelet transform method. The front-to-back relationship on the time axis,
illustrated as a difference in phase, tells us whose move is preceding the opponent’s. If a
research hypothesis focuses on who is in sync with whom (e.g., leader–follower interaction),
relative phase should be a useful metric. To perform the cross-wavelet analysis, the wavelet
toolbox is provided for MATLAB (https://github.com/grinsted/wavelet-coherence; Grin-
sted et al., 2004), and the biwavelet package for R features the same function as MATLAB.
For Python, the PIWavelet module is available.

The recent evidence has shown speakers exhibit the greater extent of synchrony (i.e.,
the rhythmic convergence) when they are highly engaged in their interaction(Dunbar et al.,
2020), especially in the rhythm of 0.5–1.5 Hz, the rhythm of once every 0.67–2 sec. (Fujiwara
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et al., 2021a). Synchrony in the particular frequency band is more salient in conversation
between two females where the speakers are more socially oriented (Fujiwara and Yokomitsu,
2021) and also contributes to building rapport compared to synchrony in other frequency
bands (Fujiwara et al., 2020). It should also be noted that synchrony in the rhythm of 0.5–1.5
Hz offers highly comparable results with the manually coded measure of synchrony (Fujiwara
et al., 2021a). Synchrony in this frequency was mainly related to gestural synchrony, whereas
the slower tempo of synchrony pertained to postural synchrony and laughing along the
partner (Fujiwara et al., 2021a). Indeed, the function of synchrony in human communication
may differ depending on the frequency band. For example, in a context of communication
involving deception, the deceiver appeared to synchronize his or her movements with the
opponent at a faster rhythm (Dunbar et al., 2020). Synchrony in a different rhythm is still
a new point of focus and needs further investigation.

3.3. Comparison with chance synchrony

The earlier synchrony research (Cappella, 1981) suggested that certain coordinated or si-
multaneous movements could occur by chance, and a statistical control for this “baseline”
of chance synchrony would be needed. Relatedly, the automated coding introduced above
is so powerful that there may be an infeasible risk of falsely detecting noise as genuine syn-
chrony. Therefore, once researchers calculated a synchrony score using automated coding
methods, it should be compared to a baseline to show that the obtained synchrony is not a
product of chance. As a baseline of chance synchrony, artificial interactions created using
randomly shuffled pairs or data shuffling within a time series are commonly used (Bernieri
et al., 1988; Fujiwara and Yokomitsu, 2021; Moulder et al., 2018). The former is known
as the pseudo-synchrony experimental paradigm (Bernieri and Rosenthal, 1991), where two
time series from the genuine pair who actually engaged in their interaction are isolated and
recombined in random order. In pseudo pairs, each participant retains time series move-
ment information, however, the extent of synchrony is supposed to be lowered because the
pairs were not engaged in actual interaction and no coordination occurred between them.
Because of this nature, the pseudo-synchrony paradigm should only be applied if the length
of the time series to be shuffled is identical. It is noted that it may not be the best option if
all the interactions shared a similar behavioral pattern at a similar point in time, including
dancing or structured conversation with a specific topic. In such cases, the difference be-
tween the genuine and pseudo pair is supposed to be unclear due to the “similar” behaviors
embedded into the structured interaction (Moulder et al., 2018).

The technique with data shuffling within a time series is known as surrogate data gen-
eration, which is considered a time series equivalent of a randomization/permutation test
(Moulder et al., 2018) because it eliminates all time-dependent properties of the interacting
time series. Still, the generated surrogate data keeps the averaged information available
from the entire series (e.g., Mean, SD). Since this method shuffles the data within a series,
it can be used even if the time length of each conversation is different.

4. Conclusion

In this paper, we have reviewed the historical perspective of IS and the recent development
of its automatic coding methods. IS has fascinated many researchers for a long time, and
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therefore there is still diversity in what is considered IS. In addition, the traditional manual
coding effort has been a bottleneck in the development of research. The emerging automated
methods offer reliable data in a cost-efficient way, which may be appealing to researchers.
However, it is fair to note that no standard operationalization of these measures exists under
the current development phase of the field. We believe the automated approach does not
negate the traditional manual coding and rating, but it will serve as its complement. With
automated coding techniques, the research on IS can be further developed.
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