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Abstract

Personality is expressed through multiple behavioral elements, including body move-
ment. Using a feature transformation based on Laban Movement Analysis, we present a
model for estimating individuals’ Big Five personality traits. Our approach achieves higher
performance than other methods without exposing image-level information to the network,
which otherwise can leave the system susceptible to bias and result in ethical issues. With
the ever-increasing role of computers in our daily lives, human-computer interaction and
human understanding have become significant. Our system enables better human under-
standing for intelligent agents and personal assistants through personality estimation. We
utilize Graph Convolutional Networks, commonly used for action recognition for this task.

Keywords: Personality Recognition, Laban Movement Analysis, Deep Learning

1. Introduction

From personal assistants to intelligent home appliances, accurate human-computer interac-
tion is essential for many applications. Commanding the household’s service robot through
natural-language speech and gesture is no longer mere science fiction. Unlike interpersonal
communication, human-computer interaction happens through explicit rules and logic, yet
we expect the computer to understand us as other people do. Such accuracy requires intro-
ducing psychological communication elements into human-computer interaction.

Human intentions are not complete without emotions and personality; as a result, for
successful human-computer interaction, the computer should have a good understanding
of the individual. Even a simple sentence such as “Leave me alone.” requires a different
interpretation and response when we are happy or sad. An introverted individual may
need solitude, while an extrovert may require attention in the same situation. A computer
that can sense the individual’s psychological state can respond highly accurately. Services
can better customize digital content, virtual tutors can more intelligently adapt to user’s
understanding level, personal assistants can make more appropriate suggestions, and con-
versational agents can behave more realistically.

Involving many parameters, capturing the inner-state of the individual requires an in-
depth examination, and thus data-driven approaches yield better performance. On the
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other hand, data can be susceptible to bias and may introduce privacy issues, and a well-
equipped system should resolve these issues successfully. Utilizing mid-level features, we
filter out unnecessary information that may expose private details. To this end, we follow
a well-known movement analysis framework that also reduces the risk of network bias. For
example, body shape is influential in personality perception (Hu et al., 2018), but such
associations follow stereotypes and do not apply to human-computer interaction.

Capturing the body shape will not help a system that tries to understand the user’s
inner-state to recommend music; conversely, it would harm the user’s feelings. Similarly,
age, gender, weight, height, and ethnicity can influence personality perception (Melamed,
1992; Faith et al., 2001; Chan et al., 2012; Lockenhoff et al., 2014) but do not carry much
information about the user’s inner-self. We acknowledge that appearance can expose the
personality in some instances. For example, people can use different hair models, clothes,
and accessories to communicate their feelings. On the other hand, there is no guarantee
that every messy hair indicates an irresponsible personality. The choices about appearance
can be mere stylistic. As a result, we focus on pose-related features only.

One of our goals is to show that accurate personality prediction is possible without using
features that reveal the individual’s identity. We do not utilize image-level features and
vocal data while delivering state-of-the-art performance. To this end, we analyze movement
style to capture personality. While movement style can be acted as well, we believe it
is more reliable due to its biological foundation. For example, a slanted posture has a
more concrete connection to low enthusiasm, probably caused by low energy or boredom.
Similarly, reserved nature is best represented by enclosing and retreating movements since
they relate to self-protection. Posture and mood are so closely related that one can feel
better by mimicking a cheerful body pose (Peper et al., 2016). Although many resources
that focus on body language try to uncover the relationship between the body and the inner-
self, there are no definite rules about pose-personality; thus, we utilize data to associate
self-reported personality with pose-related features.

This work focuses on Big Five personality recognition using landmark-based skeletal
animation extracted from real-life videos. Skeletal landmark positions are shown to be ef-
fective in affect perception (Pollick et al., 2001, 2002), and we advocate that they are also
beneficial for personality recognition. Our goal is to utilize behavioral cues only, without
collecting and using image-level information that potentially raises privacy concerns and
network bias. For this reason, in addition to the skeletal pose data, we utilize mid-level
features based on Laban Movement Analysis (LMA). LMA captures the style of movement
using minimal parameters that express the change in skeletal configuration. We utilize
Graph Convolutional Networks (GCNs), commonly used for action recognition, to estimate
each Big Five personality dimension in a regression model. The resulting model offers an
effective solution for human understanding used in numerous applications, including per-
sonal assistants, conversational agents, targeted content marketing, and medical diagnosis,
where preserving the individual’s privacy is essential.

Our contributions include

e novel mid-level features following LMA derived from skeletal animation landmarks,

e a novel personality estimation network that combines GCNs with a regression task,
and
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o state-of-the-art performance without exposing image-level features to the network and
by only using skeleton data.

The organization of the rest of the paper is as follows. Section 2 examines the research of
similar interest. In Section 3, we introduce the details of our network model, including fea-
ture calculations. Section 4 presents experimental results. Finally, we provide a conclusion
with a discussion on future directions in Section 5.

2. Related Work

This section reviews the related works in three categories: personality recognition, action
recognition, and Laban movement analysis.

2.1. Personality Recognition

Recent works in personality recognition use deep neural networks to infer the personality
traits (Palmero et al., 2021; Dotti et al., 2020a,b; Suen et al., 2019; Gorbova et al., 2018;
Shao et al., 2021; Aslan et al., 2021; Li et al., 2020; Wei et al., 2018; Salam et al., 2021).
The majority of the works combine multi-modal features. Palmero et al. (2021) combine
visual, audio, and metadata features like gender, age, ethnicity, and perceived attractiveness
to train a transformer model. SMART-SAIR (Salam et al., 2021), winner of ICCV’21
Understanding Social Behavior in Dyadic and Small Group Interactions Challenge, combines
visual features, textual features (transcripts), and gender information to train personalized
models. Aslan et al. (2021) train different models to fuse image, audio, and textual features,
and they combine the trained models using an attention-based model. Unlike these methods,
we want to only focus on the skeleton data because this information can be easily acquired
from videos using pose estimation techniques. However, other information such as audio,
transcript, and demographic information may not be available when these methods are
applied in a real-world setting.

Dotti et al. (2020b) propose a CNN based personality recognition system. They convert
the skeleton data extracted from video sequences into an image and feed it into the CNN
architecture. They utilize the first few layers of VGG19 with pre-trained weights. They
use both per-individual skeleton data and the distance between different individuals. The
usage of CNN might suffer from the loss of spatial information between the joints. They also
extend their work in Dotti et al. (2020a) and use metric learning to improve the accuracy.
We use GCNs to capture the spatial and temporal information between skeleton joints.
While they focus on the classification problem, we approach personality recognition as a
regression task. This approach enables us to have a deeper understanding of the individual’s
personality. Additionally, we can use regression results to synthesize animation, as most
work that focuses on generation utilize quantitative personality input. Thus, we can visually
compare the input video of our network to the generated animation based on the regression
results as a future task.

Suen et al. (2019) use only facial features to predict personality. They also consider
the task as a classification problem and utilize a CNN. They use face images and the facial
landmarks of each person to calculate the corresponding OCEAN personality factors. The
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direct use of image-level features for the face might develop some bias, as mentioned in
Serna et al. (2021). Hence, we focus only on the skeleton data in our solution.

2.2. Action Recognition

We examine the Action Recognition literature because we consider recognizing the action
and personality embedded in a movement as similar tasks. Thus we aim to benefit from
the methods developed for Action Recognition, which is a field more extensively studied
than Personality Recognition. We specifically focused on Action Recognition Networks that
operate on skeleton data using GCNs.

Shi et al. (2019a) utilize a GCN, but they use directed graphs for that purpose. Initially,
the skeleton is an undirected graph; they convert it to a Directed Acyclic Graph (DAG). In
their DAG, the vertex closer to the root points to the other vertex farther away. They define
the root as the center of gravity. Following these rules, they construct the graph and intro-
duce convolution operations for the DAG. The resulting network performs competitively on
the Action Recognition datasets.

Liu et al. (2020) introduce an Action Recognition Network, called MS-G3D. The net-
work contains Graph Convolution operations to encode spatial information between the
joints. Furthermore, they apply a convolution operation on the time domain to capture the
temporal information between successive frames. We selected it as our backbone network
because of its high performance in Action Recognition challenges. Due to its unique struc-
ture, their network can handle sophisticated relations in both spatial and time domains,
which is essential for the Personality Recognition task.

Previous works also use additional hand-crafted features like motion vectors or angles.
They assume a multiple-stream approach where they train multiple neural networks and
ensemble the results (Simonyan and Zisserman, 2014; Shi et al., 2019a,b). However, we
did not implement multiple deep networks for each Laban feature. We preferred having a
single network for all features because Laban features’ prediction shortens, and interactions
become more pronounced in this way. Originally, MS-G3D also enabled motion-vectors, but
it does so by creating a separate network for that purpose (Liu et al., 2020). We improve
it to fuse Laban features at the first layer of the network.

2.3. Laban Movement Analysis

LMA is initially used for dance choreography design and adapted to general human mo-
tion analysis. LMA concepts examine the body pose during motion concerning the self
and the surrounding environment. The relation between LMA and OCEAN personality is
well-studied. Sonlu et al. (2021) utilize LMA based animation modification parameters to
express different personalities in conversational agents. Durupinar et al. (2016) establish a
connection between OCEAN personality and LMA parameters based on perceived traits in
atomic actions, using animations crafted with the help of LMA experts. The mapping vali-
dation is based on participants filling out a standard personality questionnaire. They focus
on the apparent personality, and the peer-rated results may differ from the self-reported
personality (Ready et al., 2000). However, we believe the correlation between LMA pa-
rameters and personality is not solely about perception. There is a strong bond between
the apparent posture and the inner-self (Peper et al., 2016), and the body mainly reveals
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Table 1: Correlation map between Laban features and OCEAN parameters. x signifies that
two entities are correlated.

O|C|E|A|N

Flow X | x| X X

Time X | X | x| X

Space | x | x | x X
Weight X

the truth about feelings (Fast, 1970). We adapt perception-based LMA parameters to self-
reported personality and show that the use of Laban features improves the performance in
personality recognition.

Application of LMA in the study of personality is not uncommon (Levy and Duke, 2003).
However, there are no definite rules about the quantification of LMA parameters. In this
work, we propose Laban-based features that can be derived from the skeletal pose, inspired
by the use of Laban Effort parameters in Durupinar et al. (2016). These parameters are
Flow, Time, Space and Weight. Flow signifies body tension or vibration; Time shows how
urgent the movement is, Space shows the relation to the surrounding environment, and
Weight is the measure of the impact of the movement. Table 1 shows the correlated Laban
features and OCEAN factors. We can infer that each Laban feature will help the network
learn a particular OCEAN parameter from this information.

3. Method

Our method consists of three stages: Input Preprocessing, Calculation of Laban Features,
and Action Recognition (cf. Figure 1).

3.1. Input Preprocessing

We apply several preprocessing techniques from the Action Recognition literature. We
transform the skeleton to align hip-spine bone with one axis and shoulder bone with another
axis, as in Liu et al. (2020). We use all of the frames in each video instead of skipping some.
Since we cannot fit the whole video into the memory, we divide each video into clips of 2000
frames. That way, each 2000-frame segment corresponds to 80 seconds of the video. We
take the average of all predictions for a person and use it as the final prediction.

3.2. Calculation of Laban Features

To extract Laban features, we need both joint and bone graphs. Joint graph is provided
with the dataset, but the bone graph is not given; hence, we need to calculate it based on
the joint graph. The bone information is necessary because we need rotation angles, which
are easier to calculate over the bones. We apply the approach used by Liu et al. (2020).
Figure 3 shows the joint and bone graphs. The joint graph is an undirected graph whose
structure is identical to SMPL model (Loper et al., 2015). We generate the bone graph
out of the joint graph by converting it to a Directed Acyclic Graph. That is, for an edge;;,
node; is directed to nodej. As a feature vector of node;, we hold the unit vector pointing
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Figure 1: The overview of our method. Our input is a long sequence of the skeleton. We
enrich the skeleton data with Laban features and divide the long data into short
chunks. We fed each chunk into a Graph Convolution Network (GCN). Our final
prediction is the average estimated OCEAN traits made for a person.

from node; to node;. For instance, there is a directed edge going from nodezs to nodeyg,
which means inside nodess, we hold the unit vector between nodess and nodesy. Formally,
assume a directed edge edge;;, then bone_vector; = normalize(posj — pos;). The bone_vector
corresponds to the bone between these two joints and we use it to calculate necessary angles.

Although we show the graphs individually, we can store all the information in one graph
because the joints of both graphs are identical. After creating the joint and bone graphs,
we calculate the Laban features as follows:

Space and Weight: Both of these features correspond to bone angles. Hence, we treat
them equally. Specifically, the calculation of bone angles is straightforward. Because
we have the bone vectors available, we calculate the dot product of the bone vectors
with each dimension and apply the arccos function to calculate the angles.

Flow: We calculate this feature as the 2" numerical derivative of the bone rotations. We
expect it to capture the vibration of the motion approximately.

Time: This feature signifies the movement speed of the person. To represent this, we
calculate the 1% numerical derivative of the joint positions for each joint.

After calculating all immediate features, we concatenate them with the three-dimensional
joint-position vector. As a result, we create a 15-dimensional vector for each joint. So, a
graph with 24-nodes (see Figure 3 (a)) where each node contains 15-dimensional informa-
tion is sent to the Action Recognition Network (ARN). Unlike other methods that run
different networks for each feature, we create a single graph structure and execute it in a
single network.
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Figure 2: Skeleton images representing each end of Laban features. We show Free Flow
using blurred joints as it corresponds to vibrating motion. For Space and Weight,
arrows indicate the general direction of limb rotations. For Time, we overlay two
consecutive frames in each image; the Quick one has more displacement while the
Sustained one has less.

Figure 3: Joint graph (left) and Bone graph (right).
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3.3. Action Recognition

We use an ARN as the backbone of our architecture. Our skeleton input is in the form
of a graph structure. Hence, we utilize Graph Convolution-based ARN. Although our
preliminary research inspired us to choose the MS-G3D architecture (Liu et al., 2020),
the backbone ARN use is arbitrary, and we can replace it with a different network of
similar nature. We utilized the ARN, which performs well in Action Recognition tasks,
with minimal modification. We observe strong over-fitting at early epochs, and therefore,
we inserted Dropout layers to several parts (i.e., especially the temporal convolution layers)
of MS-G3D as a solution.

During training, we monitor training and validation losses. We save the network’s
weights when the validation loss is minimum and use it during inference. We use Stochastic
Gradient Descent (SGD) for optimization with a learning rate of 0.05 and weight decay
of 0.001. The batch size we selected was 16, and we ran the network as many as 200
epochs. We have also adjusted the parameters of the underlying ARN (MS-G3D). We
selected the GCN scale as 13 and the G3D scale as 6. We also parameterized the number
of layers at each Spatio-Temporal Graph Convolution (STGC) block. Initially, there are
three blocks. We set the number of layers at each block as 12, 24, and 48, respectively.
For further details, please refer to our Github implementation on https://github.com/
Rgtemze/PersonalityRecognition.

4. Results

To train, validate and test our network, we use the UDIVA v0.5 dataset proposed by Palmero
et al. (2021, 2022), which includes both self and peer-reported personality labels in addition
to audiovisual features of the participants in face-to-face dyadic interactions. Please refer to
the related work for details of the participants. We conduct our experiments on a computer
with an NVIDIA Tesla P100 GPU. Table 2 summarizes the performance of our models
in comparison to the UDIVA challenge winner, SMART-SAIR (Salam et al., 2021), and
the baseline (Palmero et al., 2021). We use the results of other methods as reported in
the corresponding sources because we use the same test dataset. We experiment with the
existing ARN, called MS-G3D, without Laban features. We had to optimize its hyper-
parameters to improve the results. Our method with Laban features seems to outperform
the vanilla MS-G3D network, which does not use any Laban features. In addition, we can
achieve lower loss values than the SMART-SAIR and the baseline. The Laban features help
the network learn the personality traits. Moreover, our method only uses the skeleton data
while others use various features. We showed that it is possible to perform very well with
only the skeleton data.

To see the contribution of each Laban feature, we conduct an ablation study as shown
in Table 3. Since the Space and Weight parameters stem from the same mathematical
foundation, we treat them equally. Removing any of the Laban features considerably reduces
the model’s overall performance. Moreover, removing some features can decrease the loss
value of some parameters. We expect such behavior because one feature might interfere
with the correct prediction of another parameter. We can see a performance boost if we
rule out that feature.
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We observe that the figures in Tables 1 and 4 are correlated, showing that our results
are on par with the user studies provided in Durupinar et al. (2016) and Sonlu et al. (2021).
For instance, these user studies showed that the Flow feature correlates with O, C, E,
N parameters. We can observe in Table 4 that the absence of this parameter caused a
significant loss increase for most of these parameters compared to the lack of other Laban
features. However, for the Agreeableness parameter, ruling out this parameter did not cause
an increase in loss. In addition, a combination of the Space and Weight features cover all
of the OCEAN parameters; their absence created a significant loss increase in all of the
parameters.

We have provided a scatter plot for each person in the test set (see Figure 4). As we
divide the videos into chunks, we end up with a different prediction for each chunk. Then,
the predicted prediction for a person is defined as the mean of all predictions in all 2000-
frame chunks. As we know that the training data is centered around a zero mean, our model
focuses on correctly predicting the data around the mean. Hence, it predicts people whose
personality traits fall into that range. However, our method could not correctly predict
personality trait values too far from the mean.

Table 2: Comparison of our method with the existing networks. Values are Mean Square
Error (MSE) loss results on the UDIVA v0.5 test dataset.

Method Mean | O C E A N

Challenge Winner (Salam et al., 2021) | 0.769 | 0.711 | 0.723 | 0.867 | 0.548 | 0.997
Baseline (Palmero et al., 2021) 0.818 | 0.744 | 0.794 | 0.886 | 0.653 | 1.012
Ours (MS-G3D) 0.833 | 0.703 | 0.695 | 0.871 | 0.665 | 1.229
Ours (Laban) 0.723 | 0.887 | 0.564 | 0.590 | 0.718 | 0.859

Table 3: Ablation study of our proposed approach for Laban features. Values are MSE loss
results on the UDIVA test dataset.

Method Mean | O C E A N
Laban 0.723 | 0.887 | 0.564 | 0.590 | 0.718 | 0.859
Laban w/o Flow 0.78 0.76 | 0.723 | 0.673 | 0.541 | 1.202
Laban w/o Time 0.747 | 0.700 | 0.653 | 0.682 | 0.542 | 1.157
Laban w/o Space and Weight | 0.76 0.755 | 0.685 | 0.83 0.64 0.89

Table 4: Per-column inverse ranking extracted from Table 3.

Method O |C |[E |A |N

Laban w/o Flow M@ 33| (@
Laban w/o Time 3163|222
Laban w/o Space and Weight | (2) | (2) | (1) | (1) | (3)
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5. Conclusion and Future Directions

In this work, we extend an existing ARN, called MS-G3D, and modify it into a Personality
Recognition Network. We utilize mappings from psychology and use hand-crafted Laban
features, which increase personality recognition accuracy. We show that using these features
significantly decreases the MSE loss and helps to outperform the baseline performance
and the challenge winner. In addition, our method achieves this performance by only
using the skeleton information, unlike other methods using multi-modal data. We believe
various applications can benefit from not utilizing the private information that can reveal
the individual’s identity. For example, personality recognition can be used in public areas
for targeted marketing; thus, public screens can display more relevant information to the
customer’s personality. Our approach can guarantee that no private information is revealed
to the network in this scenario. We admit that utilizing image-level features can improve
performance in some instances. We leave studying the interrelation of the audiovisual
features with Laban features as a future task. An ablation study of a personality recognition
network that utilizes LMA-based skeletal features and video input can reveal important
details about how personality is expressed through different communication elements.

We verify the correlation between Laban features and OCEAN parameters with the ab-
lation study. By adding extra features calculated from the skeletal pose, we show that the
network can estimate people’s personalities more accurately. Finding more such features
and utilizing them in human understanding networks seems to be a promising direction. For
example, the individual’s facial expression can be examined utilizing high-level descriptors
regarding the changes during an interaction. We use our Laban features to focus on one
individual at a time; modeling the dyadic interaction in similar parameters can improve
the results. For example, the proximity of one participant’s joints to the other’s can re-
veal information about extroversion. Network modules can also calculate Laban features
automatically, which we leave as future work. Another future direction is to utilize our Per-
sonality Recognition Network in adversarial training to form a system that automatically
generates personality-rich animation. Then, it would be possible to look closer at how per-
sonality is expressed through body language; thus, we can utilize it better for recognition.
We consider body language to be more connected to the inner-self. Wearing certain acces-
sories, speaking specific words, or making various facial expressions can make an individual
look like a particular persona, but in the end, it is behavior that reveals the true nature of
the personality.
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