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Abstract

Human-machine, human-robot interaction, and collaboration appear in diverse fields, from
homecare to Cyber-Physical Systems. Technological development is fast, whereas real-time
methods for social communication analysis that can measure small changes in sentiment
and personality states, including visual, acoustic and language modalities are lagging, par-
ticularly when the goal is to build robust, appearance invariant, and fair methods. We study
and compare methods capable of fusing modalities while satisfying real-time and invariant
appearance conditions. We compare state-of-the-art transformer architectures in sentiment
estimation and introduce them in the much less explored field of personality perception.
We show that the architectures perform differently on automatic sentiment and personal-
ity perception, suggesting that each task may be better captured/modeled by a particular
method. Our work calls attention to the attractive properties of the linear versions of
the transformer architectures. In particular, we show that the best results are achieved
by fusing the different architectures’ preprocessing methods. However, they pose extreme
conditions in computation power and energy consumption for real-time computations for
quadratic transformers due to their memory requirements. In turn, linear transformers pave
the way for quantifying small changes in sentiment estimation and personality perception
for real-time social communications for machines and robots.
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MULTIMODAL SENTIMENT AND PERSONALITY PERCEPTION UNDER SPEECH

1. Introduction

In social communication, emotion and personality are two of the main cues that define
how we feel and behave when we interact with others, as well as how we (and others)
react while interacting. If we aim intelligent systems to engage and communicate with
us in a "human-like” way, we need to provide them with similar mechanisms. This may
explain why automatic sentiment, emotion and personality perception (and recognition) are
receiving increasing interest from the Machine Learning (ML) and Computer Vision (CV)
communities (Vinciarelli and Mohammadi, 2014; Jacques Junior et al., 2019; Zeng et al.,
2009; Soleymani et al., 2017; Avots et al., 2019), but also Personality Psychology (PP) (Phan
and Rauthmann, 2021), which is supported by the easy access to large and public databases
and benchmarks on related topics, in addition to the outstanding advancements of deep
learning methods.

The research on human affective behavior and personality computing has evolved from
single modality (e.g., audio, visual, or text-based) to multimodal, including audiovisual
fusion, linguistic and paralinguistic fusion, and multicue visual fusion based on facial ex-
pressions, head movements, body gestures (Zeng et al., 2009) or context (Martinez, 2019).
However, past publicly available datasets and works on these fields, especially those focus-
ing on visual cues, were not explicitly addressing the “under speech” scenario, where facial
expressions produced during speech could lead to low recognition performances on different
tasks if the dynamics of the expression are not considered. That is, most works and public
datasets found in the literature for visual emotion recognition are focused on still images,
e.g., (Guo et al., 2018). At the same time, information gathered “under speech” time in-
tervals is most important during interactions and can express a rich variety of intentions
(Hellbernd and Sammler, 2016). To address this problem, recent works and datasets started
to pay more attention to temporal dynamics such as the CMU-MOSEI dataset, developed
for the case of multimodal sentiment analysis and emotion recognition (Zadeh et al., 2018).

Previous works used to model temporal dynamics in these kinds of applications through
frame-by-fame recognition followed by aggregation (Biel et al., 2012; Celiktutan and Gunes,
2014). Nonetheless, such approach may not generalize well under speech due to the dynam-
ics of the task. Moreover, human face-to-face communication is a complex multimodal sig-
nal, where words (language modality), gestures/pose/gaze (visual modality) and changes
in tone (acoustic modality) are used to convey our intentions (Zadeh et al., 2018). To
address this problem, different deep learning-based solutions have been proposed, from Re-
current Neural Networks (Majumder et al., 2019; Elbarougy et al., 2020; Schoneveld et al.,
2021) to the recently emerging Transformers (Vaswani et al., 2017), as proposed by Palmero
et al. (2021) or Siriwardhana et al. (2020). Past works have already exploited the use of
Transformer architecture for personality recognition (Leonardi et al., 2020), but in the con-
text of Natural Language Provessing (NLP). In this work, we follow the latter multimodal
Transformer-based approaches and evaluate different Transformer architectures on state-of-
the-art databases for the problem of sentiment and personality perception under speech,
with the purpose of finding the trade-off between accuracy and efficiency.

According to Avots et al. (2019), most of the existing approaches for emotion recogni-
tion are tailored for a specific database, which also applies for personality computing and
sentiment analysis. This way, while the model is trained on a particular database, it usually
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faces high variation in appearance and background, as well as human-centered attributes,
such as head pose, ethnicity, age, gender, and local fashion, which in turn impose a strong
limitation when the goal is to build robust and fair machine learning models which are
capable of generalizing well to different populations, contexts and environments. Although
erasing demographic bias in data-driven machine learning architectures is of extreme diffi-
culty, in this work we encode visual information as Action Units (or AUs, for short) (Ekman
and Rosenberg, 1997; Baltrusaitis et al., 2015) to mitigate such problem. It must be em-
phasized that using AUs as features are neither supposed nor intended to remove all kinds
of bias. Our goal here is to be sure that the model is at least not basing its decisions on
some appearance-based features like the background, people’s skin tone or hair stile. Ac-
tion Unit detectors might have their own biases, depending on the way they were trained.
Nevertheless, we believe such kind of feature can also promote cross-dataset generalization.

Beyond the desire for competitive performance, applications must be real-time while
satisfying privacy-related comstraints in many environments giving rise to the combined de-
mand of fast processing and low memory consumption. Cloud-based computation is possible
under the condition that information is de-identified before it is sent to the cloud. Evalu-
ations in the cloud using Action Unit estimations seem plausible at first sight, but facial
dynamics may still reveal identity (Stone, 2001), limiting computations to local computers.
Cloud service for speech recognition is more complex. Even if the speech is transformed
to a robotic one (Fodor et al., 2021) before being sent, personal information concerning
names, places, and dates set serious barriers. These points highlight the need for local
computations and the potential advantages of the linear version of the transformer family.

In this work we are focusing on real-time applications. This choice restricts us in the
selection of the tools. For example, we are not using features developed for specific databases
not available otherwise. In turn, although competitive, our results could be improved further
and are sometimes surpassed by others. Our contributions are summarized as follows:

e We compare different Transformer-based architectures, with the aim of finding the
trade-off between accuracy and efficiency, as well as the best competitive architecture
that works well for both sentiment and personality perception;

e We use Action Units as inputs for the visual modality, which are supposed to be
invariant to some appearance-based features (e.g., skin-tone or hair-style). Thus,
mitigating possible sources of bias toward under-represented groups/categories while
promoting cross-dataset/domain/scenario generalization.

e We consider memory and speed parameters as required by real-time processing in
human-machine, human-robot interactions, an important goal of future developments.

e The proposed approach was evaluated on different tasks and datasets. The results
obtained are similar to those given by state-of-the-art models on the respective tasks
and datasets.

We note that the underlying machine learning technology (i.e., the technology of in-
formation fusion using deep neural networks) has diverse applications and is developing
quickly, leading to more elaborated and efficient architectures and performance improve-
ments. We show that real-time applications are feasible today even if resources concerning
GPU strength and memory consumption are limited.
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The paper is organized as follows. In Sec. 2, we present a brief overview about the
state-of-the-art on sentiment and personality perception with respect to methodologies and
datasets, with a particular focus on visual and deep learning-based approaches under speech.
The evaluated architectures are presented in Sec. 3. Sections 4 and 5 respectively describe
and discuss the experiments and the results. Finally, we draw the conclusion and make our
final remarks in Sec. 6.

2. Related Work

2.1. Sentiment

The ML and CV communities have widely studied the analysis and understanding of peo-
ple’s affective state over the past years (Zeng et al., 2009; Soleymani et al., 2017). The
majority of works found in the literature and publicly available datasets on the topic deal
with instantaneous expression categorization (Guo et al., 2018), where the task is to classify
a discrete affective state using features from different modalities (Soleymani et al., 2017).
From the past few years, however, the research community started to pay attention to the
design and development of novel multimodal datasets and annotation protocols to advance
state of the art on the field, taking into account how people communicate and express ideas
and opinions through verbal content as well as visual and vocal features, such as facial
expressions, head gestures, and voice quality (Zadeh et al., 2016a).

In the work of Zadeh et al. (2016a), the CMU Multimodal Opinion-Level Sentiment
Intensity (CMU-MOSI) dataset was introduced, a video corpus with opinion-level sentiment
intensity annotations that can be used for sentiment, subjectivity, and multimodal language
studies. On the basis of interaction patterns between words and facial gestures, the authors
presented a simple representation model that jointly accounts for words and gestures in
each opinion segment. As a baseline, they trained prediction models using Support Vector
Regression, showing that the proposed multimodal dictionary can yield better results in
sentiment intensity analysis compared with common fusion methods. Later, Zadeh et al.
(2018) introduced the CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-
MOSEI) dataset, which is currently the largest dataset of multimodal sentiment analysis and
emotion recognition. They also presented a Multi-attention Recurrent Network (MARN)
model for understanding human communication. According to these authors, the main
strength of MARN comes from discovering interactions between modalities over time using
a Multi-attention Block and storing them in the hybrid memory of a recurrent component
called the Long-short Term Hybrid Memory, which is an extension of the Long-short Term
Memory by reformulating the memory component to carry hybrid information. Similarly
to our work, Action Units are used as indicators of facial muscles movements. However, a
set of visual features including per-frame basic and advanced emotions are also considered
in their work.

Siriwardhana et al. (2020) represented text, acoustic (speech), and visual modalities with
features extracted independently from pre-trained Self Supervised Learning (SSL) models,
applied to multimodal emotion recognition. Given the high dimensional nature of SSL-
based features, they introduced a novel Transformer and Attention-based fusion mechanism
to efficiently combine and train on multimodal embeddings. They achieved state-of-the-art
results for sentiment and emotion recognition on different datasets. For the visual modality,
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they used a pre-trained FAb-Net (Wiles et al., 2018) model to obtain embeddings for each
frame in the video that contained the speaker’s face. Their work was partially inspired
by the Multimodal Transformer (MulT) using unaligned language sentences (Tsai et al.,
2019). To the best of our knowledge, the current state-of-the-art on sentiment recognition
on CMU-MOSI/MOSEI is the work of Han et al. (2021). In their work, a Bi-Bimodal
Fusion Network (BBFN) is proposed, an end-to-end network that performs fusion (relevance
increment) and separation (difference increment) on pairwise modality representations. For
the visual modality, MulT and BBFN use the FACET module of the commercial iMotion
software, and make the extracted features available for research purposes. The FACET
module estimates 35 AUs. Thus, this also mitigates possible sources of bias coming from
(raw or deep) appearance-based features.

Our literature review on sentiment perception revealed that state-or-the-art methods on
the topic are considering the use of visual inputs based on Action Units (Zadeh et al., 2018;
Han et al., 2021), that could alleviate possible sources of bias coming from appearance-based
features. This is not the typical route in automatic personality perception since features
like hairstyle, piercings, and makeups are excellent tools for self-expression. Furthermore,
to the best of our knowledge, we are the first to evaluate an efficient linear transformer for
the task of audio-visual sentiment perception.

2.2. Personality

Personality computing (Vinciarelli and Mohammadi, 2014) is receiving high attention from
different research communities due to its applicability on emerging Human-Centered Ar-
tificial Intelligence scenarios. It covers automatic personality recognition, perception, and
synthesis, which may guide the machine or the robot in interactive, collaborative scenarios.

There is almost no difference in how the ML and CV communities are addressing au-
tomatic personality recognition or perception when it comes to supervised learning. That
is, the main difference between them is the origin of the labels. In the case of recogni-
tion (Palmero et al., 2021), the labels are generally obtained from self-report question-
naires. In the case of perception (Jacques Junior et al., 2019), the labels are given from
the perspective of external observers, usually obtained via crowd-sourcing or other-report
questionnaires. Both cases currently share a common limitation, i.e., large and publicly
available databases on these topics are scarce, constraining advancing the field’s state of
the art.

The ChaLearn First Impression Challenge, designed with the purpose of advancing the
research on the field, introduced one of the largest publicly available datasets on the topic of
personality perception, i.e., the First Impressions (Ponce-Lopez et al., 2016) dataset. It is
composed of 10K short-video clips (around 15s long) of people talking to the camera, anno-
tated with Big-Five (apparent) personality traits. It was further extended (Escalante et al.,
2017) with the inclusion of transcripts, gender, ethnicity annotations, and an additional
“Invite to interview” variable. Although different kinds of bias have been found (Escalante
et al., 2020; Jacques Junior et al., 2021) in the First Impressions dataset, from the classi-
cal unbalanced distribution bias problem with respect to different attributes to perception
(subjective) biases with respect to gender, age, ethnicity and face attractiveness coming
from crowdsource based annotations, it is still being broadly used to advance the research
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on this field. It should be emphasized that being able to identify, understand and explain
those biases can be part of the problem.

Multimodal personality perception has been addressed and studied by the computational
research community in different ways. In the work of Giirpinar et al. (2016), a pre-trained
Convolutional Neural Network (CNN) was employed for extracting facial expressions as
well as scene information. Visual features representing facial expressions and scenes were
combined and fed to a Kernel Extreme Learning Machine (ELM) regressor. The work has
been extended in (Kaya et al., 2017) to consider audiovisual information. Principi et al.
(2019) studied different sources of biases affecting personality perception also using the First
Impressions dataset, including emotions from facial expressions, attractiveness, age, gender,
and ethnicity, as well as their influence on prediction ability of apparent personality. Li
et al. (2020) presented a deep Classification-Regression Network (CR-Net) based on visual,
acoustic, and textual information. In their work, both the entire scene and the face of the
person are analyzed using ResNet-34 (He et al., 2015) as the backbone. The authors also
introduced a Bell Loss function to address inaccurate predictions caused by the regression-
to-the-mean problem.

More recently, Palmero et al. (2021) introduced UDIVA, a non-acted dataset consist-
ing of 90.5 hours of face-to-face dyadic interactions, where both self-reported and apparent
personality labels are given. As a baseline, they proposed a transformer-based method for
regressing the self-reported personality traits of a target person, taking into account mul-
timodal information from both participants in the interaction obtained from 3-sec video
segments. The work was extended in (Curto et al., 2021) by considering variable time
windows, which allowed the modeling of longer-term interdependencies, and a cross-subject
layer, which enables the network to explicitly model interactions through attentional op-
erations. They also proposed to model the behavior of both individuals simultaneously,
through a two-stream cross-attentional Transformer, to predict their personalities jointly
eventually.

Different from the above works, where raw visual information or deep features obtained
from raw data are given as part of the input to the network to regress the (apparent or self-
reported) personality of a subject, we use Action Units (AUs) as “visual” input, being more
generic and thus allaying possible sources of bias coming from appearance-based features.
Although AU-based features are not a standard when it comes to personality recognition
or perception, Wu et al. (2020) have already proposed to exploit it. In addition of using
acoustic and textual information, they proposed to extract a set of visual features including
facial action units, facial landmarks, head pose, gaze tracking and HOG features, proposing
a many2many interaction scheme to perform time-dependent interactions explicitly inside
single modality and across different modalities. Similarly, we adopt AUs as one of the main
sources for visual information. Furthermore, and as far as we know, there is no similar study
evaluating an efficient linear transformer for the task of multimodal personality perception.

3. Methods

First, we review the key components of the multimodal Transformer architecture. Then,
we compare the quadratic and linear attention modules that will be evaluated in this work.
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Finally, we briefly describe the method that extends the architecture to self-supervised
pre-processing networks.

Each task is trained/evaluated individually on different datasets, as detailed in Sec. 4.
Fach evaluated architecture has been adapted to have a final layer responsible for regressing
either the sentiment score or the personality trait values. The latter, in a multi-task fashion
or trait-wise, depending on the training strategy (detailed in Sec. 4.3).

Next, we highlight the underlying main concepts followed by relevant details of the
evaluated architectures.

3.1. Transformer architecture: the key components

The essential element of a cross-modal transformer is called single-head transformer (Fig. 1),
which builds upon the attention model made of (i) queries of the modality to be transformed
to, and (ii) keys and values of the modality being the source of the transformation. Single-
head transformer is repeated many times, giving rise to a multi-head system (Fig. 2(a)).
Multi-head unit receives normalized embedded input modulated by a genuine positional
encoding method (Vaswani et al., 2017). Multi-head outputs are combined with their inputs
via skip connections followed by additions, normalization, and a position-wise feedforward
network, crucial for extracting temporal information from different time instants.

The key thought that simplifies the quadratic transformer (Tsai et al., 2019) to its
linear version is described next. Additional details about the linear version of the quadratic
transformer, beyond the ones presented here, can be found in (Katharopoulos et al., 2020).

3.2. Comparison of the Quadratic and the Linear Transformers

In our work, we consider three data modalities: acoustic, visual and textual components.
For each target modality, we can generate two cross-modal transformers (using the other
two inputs as sources), which outputs are combined by concatenation before going through
a self-attention transformer (Fig. 2(b)). Self-attention highlights and weights the related
elements, giving a combined representation. This procedure is repeated for each modality.
Then, the outputs of the three self-attention modules are combined before a fully-connected
layer with linear activation producing the final prediction of the multimodal transformer.

3.2.1. MULTIMODAL TRANSFORMER (MULT)

The Multimodal (Quadratic) Transformer (Tsai et al., 2019) is an end-to-end model that
extends the standard Transformer network (Vaswani et al., 2017) to a multimodal setting.
The model is built up from multiple stacks of pairwise and bidirectional attention blocks,
that effectively implement the fusion process.

In the following, we compare the quadratic attention network of MulT with the linear
version (Lin-MulT) of attention (Katharopoulos et al., 2020). First, the input sequences
are passed through a 1D temporal convolution layer to preserve the local structure:

X() — Conle(X(,), k()) € Rl(‘)Xd7 (1)
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Figure 1: Single head of a transformer. Transformers translate one information source
(e.g., B, here associated with the acoustic modality) to another one (e.g., «, here
associated with the visual modality). Embeddings indicated by darker striped
columns can be features derived from the raw data or the outputs of a pre-
trained deep model. Transformers learn keys (K3) and values (V3) of modality
B and the queries (Q,) from the a modality. These three quantities denoted by
lighter striped columns form the core of the attention system of a single head.
Attention is computed differently in linear and quadratic transformers, sketched
in the boxes on the right.

where k() are kernel sizes of the convolutional layers and (-) stands for acoustic (A), visual
(V) or textual (T') modality. Positional encoding is added for implicitly encoding temporal
information (Vaswani et al., 2017).

For cross-modal attention translating modality 5 to modality «, inputs are transformed
to a-queries, -keys, and [-values by means of trainable matrices as follows

~

Qo) = X()WQ ()
K(B) = X(B)WK(B)’
Vig) = X(5) Wi, (2)

QK /;
V('a) :softmax((j/)d?(ﬁ) V(B)'
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Figure 2: (a) Standard Multi-head attention unit. (b) Multimodal transformer: source
modalities ¢ and j are transformed to target modality k. Such two units are
combined by another transformer network that utilizes self-attention to fuse the
information pieces to form a branch within the multimodal network before out-
putting the predicted score(s).

3.2.2. MULTIMODAL TRANSFORMER WITH LINEAR ATTENTION (LIN-MULT)
Multimodal Transformer with Linear Attention reformulates and generalizes Eqs. 2 by in-

troducing the notation sim(q, k), the similarity function between the query and the key as
the exponentiation of the dot product:

sim(q, k) = exp (%Z) . (3)

Given that subscripting a matrix with i returns the i** row as a vector, Katharopoulos
et al. (2020) generalized attention equation for any similarity function as follows:

, 22 sim (Qqay, K(ﬁ);) Vo,
T T i (@ Ky )
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The only constraint for the “sim” function is its non-negativity. Kernel k(x,y) : R?*4 —
R satisfies this constraint and writing k(x,y) = (®(x), ®(y)) one can rewrite Eq. 4 as

!
oo ©(Qa),) " 2501 (K (5),)V . (5)
()i — !
D(Q),) " X2 ®(K(g),)

!
Considerable speed gain arises since one may compute Zj(i )1 (K (ﬂ)j)V(E)j only once
and reuse these quantities in every query. We followed (Katharopoulos et al., 2020) and

applied ®(z) = elu(z) 4+ 1 in the computations.

3.2.3. SELF SUPERVISED EMBEDDING FUSION TRANSFORMER (SSE-FT)

Self Supervised Embedding Fusion Transformer (Siriwardhana et al., 2020) uses a modified
version of the fusion technique described in MulT. While the cross-modal multi-head atten-
tion unit is the same, the differences are (i) in the application of independently pre-trained
Self-Supervised Learning models for feature extraction (ii) in the self-attention method ap-
plied for two of the inputs, speech and video, before the multi-head attention module, (iii) in
the compressed trainable extension of the SSE called CLS (classification) token, being part
of the input and used as Query instead of the full sequence, and (iv) Hadamard product is
used for CLS token fusion before the final prediction.

The first token of each sequence is the CLS token, which can aggregate the information
embedded in the entire sequence. The idea of CLS token is also motivated by NLP literature;
it is used by RoBERTa (Liu et al., 2019) to represent an entire sequence. Therefore, only
acoustic and visual embeddings are prepended by this unique token.

The cross-modal attention module called IMA is basically the same as described in Eq. 2,
with one difference: the Query (Q) vector are created from the CLS token of one modality,
while Key (K) and Value (V) vectors are computed from the entire sequence of the other
modality within a pair.

The modality pairs of cross-modal units within a branch are the same as in MulT and
Lin-MulT. Source modalities (i, j) are transformed to a target modality (k): i — k and
j — k. It is repeated for all the pairs (i.e., audio-visual, audio-text, and visual-text).

The CLS token can be used as a compressed representation to solve downstream tasks.
In the case of the three input modalities, the six CLS tokens of the three branches are
used as inputs to a straightforward late fusion mechanism. However, the CLS tokens are
not just concatenated, as mutual information is extracted more efficiently among pairs of
CLS representations (using the same target modality) with the Hadamard product. The
resulting representations are concatenated and sent through the prediction layer.

We are including SSE-FT method in our comparison because of the potential benefits of
SSE features (described in Sec. 4.3), the use of its end-to-end architecture in future works
and most importantly, the added value of its facial features information.

4. Experimental Setup

In this section, we describe the feature extraction methods (Sec. 4.1), the datasets and
evaluation protocol used for each task (Sec. 4.2), and the training strategy (Sec. 4.3).
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4.1. Data Preprocessing
4.1.1. AcousTiC FEATURES

eGeMAPS: extended Geneva Minimalistic Acoustic Parameter Set (Eyben et al., 2015)
contains the FO semitone, loudness, spectral flux, MFCC, jitter, shimmer, F1, F2, F3,
alpha ratio, Hammarberg index, and slope VO features. Only low-level audio descriptors
are used, considering voiced and unvoiced regions. The audio signals are extracted from
the videos using FFmpeg with 44100 sampling frequency. Then, eGeMAPS LLDs are
generated using OpenSMILE (Eyben et al., 2010), resulting in 25 features for every audio
frame. Standardization is applied as a preprocessing step.

Wav2Vec: A multi-layer CNN called Wav2Vec (Schneider et al., 2019) is used as deep
audio feature extractor. It was trained on 960 hours of audio taken from the Lib-
rispeech (Panayotov et al., 2015) dataset. Self-supervised training leverages the concept
of Contrastive Predictive coding. The 512-dimensional context representation of Wav2Vec
efficiently represents the raw audio waveform!.

4.1.2. VISUAL FEATURES

AUs: Action Units are used to avoid introducing unnecessary sources of bias to the model
by excluding the background and other appearance-based information that could be re-
trieved from raw visual data such as gender, age, or ethnicity. Action Units (AU) (Bal-
trusaitis et al., 2015) construct facial expressions encoded in the Facial Action Code System
(FACS). These AUs can be described in two ways: presence (indicating whether a particular
AU is detected in a given time frame) and intensity (indicating how intense an AU is at
a given time frame). For this purpose, we used OpenFace (Baltrusaitis et al., 2018), an
open-source toolkit. We extracted 35 Action Unit presence and intensity values per frame,
which are standardized before further usage. A possible alternative to OpenFace is FACET
(used in Han et al. (2021)), however, FACET module from the commercial iMotion software
is not publicly available for research purposes.

FAb-Net: Facial Attributes-Net (Wiles et al., 2018), a visual deep feature extractor,
trained on VoxCelebl and VoxCeleb2 video datasets?. The network learns embedding that
encodes facial attributes like landmarks, poses, and emotions without any labels in a self-
supervised manner. It is used on all the frames of a given video (30 fps) where the speaker’s
face is detected. The extracted embedding has a size of 256 for each frame.

4.1.3. TEXTUAL FEATURES

BERT: Bidirectional Encoder Representations from Transformers (Devlin et al., 2018)
is a powerful transformer architecture with self-attention that learns contextual relations
between words (or sub-words) in a text. It is bidirectional, which exploits the context from
both left and right to extract patterns or representations during training. BERT is applied
for extracting high-level representations from textual data. We use the HuggingFace® im-

1. Pre-trained weights are available at https://github.com/pytorch/fairseq
2. The model with the pre-trained weights are available at https://github.com/ocawiles/FAb-Net
3. https://github.com/huggingface
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plementation, which computes 768-dimensional context-dependent word embeddings from
the transcripts.

RoBERTa: Robustly optimized BERT approach (RoBERTa) (Liu et al., 2019) is pre-
trained on raw texts using a set of large English-language datasets without human annota-
tions.

RoBERTa is available using the Fairseq sequence modeling toolkit!. As tokenization,
Byte-Pair Encoding (BPE) is applied to the transcript, then a 1024-dimensional feature
vector represents context-aware semantic information of each word.

4.1.4. SELF-SUPERVISED EMBEDDINGS (SSE)

Self-Supervised Embeddings are features extracted from pre-trained Self-Supervised Learn-
ing (SSL) models. In our experiments, three frozen SSL models, namely Wav2Vec (Schnei-
der et al., 2019), FAb-Net (Wiles et al., 2018), and RoBERTa (Liu et al., 2019) are used
for extracting the acoustic, visual, and textual SSE embeddings, respectively. The models’
pre-trained weights are publicly available, no further finetuning is applied. The generated
input representations are then combined in different ways, as detailed in Sec. 4.3.

4.2. Datasets and Evaluation Protocol

The architectures detailed in Sec. 3 have been trained and evaluated on different tasks and
databases, as detailed next.

CMU-MOSI: Multimodal Opinion-level Sentiment Intensity (MOSI) dataset (Zadeh
et al., 2016b) contains 93 videos with a total of 2199 utterances. Each utterance has a
continuous sentiment intensity label in the range of [—3, +3]. The original split was used in
the experiments: 52, 10, and 31 videos in the training, validation, and test sets, with 1151,
296, and 752 utterances, respectively.

CMU-MOSEI: Multimodal Opinion Sentiment and Emotion Intensity (MOSEI) (Amir
et al., 2018) is one of the largest datasets for multimodal emotion and sentiment recognition.
CMU-MOSEI consists of over 23,500 utterances created by extracting review videos from
YouTube. Each utterance is annotated for the sentiment with a continuous score in the range
of [=3,+3]. The samples are also annotated with seven emotion class labels. However, we
only consider sentiment annotation in this work. We followed the original train, valid, test
split available in CMU-Multimodal-SDK*.

First Impression: For personality perception, we used the Chal.earn First Impressions
(FI) database (Ponce-Lopez et al., 2016), which is the largest publicly available in-the-wild
dataset on the topic. The FI dataset was released in the context of a computational chal-
lenge, where the goal was to automatically recognise the Big-Five (OCEAN) apparent per-
sonality traits of single individuals in videos: Openness to experience, Conscientiousness,
Extraversion, Agreeableness, and Neuroticism®. The dataset comprises 10K short video

4. https://github.com/A2Zadeh/CMU-MultimodalSDK
5. Neuroticism was labelled in Ponce-Lopez et al. (2016) as “Emotion stability”, which is the opposite of
Neuroticism. This will be represented later in Sec. 5 as N.
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clips (average duration of 15s each, divided into training, validation, and test sets) ex-
tracted from more than 3K different YouTube videos of people talking to a camera. It was
annotated using crowdsourcing through pairwise comparisons, which were further converted
to continuous values (Chen et al., 2016). That is, the adopted method individually converts
the ordinal ratings of each dimension into continuous values (such as the level of “Extraver-
sion”) by fitting a Bradley-Terry-Luce (BTL) model with maximum likelihood, which is
further scaled to be in the range of [0,1]. This way, each video sample in the dataset will
have a continuous value associated with each trait dimension, which can be used by any
supervised learning method in a classification or regression task. In a nutshell, the labels
correspond to human annotators’ impressions. Therefore, the Big-five traits are consid-
ered as first impressions or perceived personalities. This is a different task than evaluating
self-reported personality traits (as in Palmero et al. (2021)), yet it is just as important in
human interactions. Later, the FI dataset was extended (Escalante et al., 2017) with the
inclusion of transcripts in addition to an “invite to interview” variable, gender, and ethnic-
ity information, aiming to advance research on explainable machine learning. The original
training/validation/test split has been used for our experiments.

Evaluation Metrics: Following the state-of-the-art works on each task and dataset, we
use the following metrics:

e CMU-MOSI/CMU-MOSEI: we use 7-class accuracy, 2-class accuracy (binary),
Mean Average Error (MAE), F1-score, and Pearson correlation between the prediction
and target;

e First Impressions: “1-Mean Absolute Error” is the performance metric, and R?
represents the coeflicient of determination;

4.3. Training Strategy

Taking into account computational and memory restrictions, we use different sets of features
(Table 1) for the experiments based on the adopted architecture, detailed in Sec. 5.

Set Features
OOB eGeMAPS, AUs, BERT
WFR Wav2Vec, FAb-Net, RoBERTa
OO-WFR eGeMAPS, AUs, Wav2Vec, FAb-Net, RoBERTa

Table 1: Multimodal feature sets: we shall use the “OOB” shorthand for the OpenSMILE
(for the eGeMAPS features), OpenFace (for the Action Units based features),
and BERT feature combination, and “WFR” for the Wav2Vec, FAb-Net, and
RoBERTa feature combination. “OO-WFR” is used as the combination of hand-
crafted and deep features (introduced in Sec. 4.1).

For CMU-MOSI and CMU-MOSEI, we set a maximum sequence length of 10 seconds for
audio-visual modalities. For the Chal.earn FI dataset, we consider 15 seconds as sequence
length. Sequences shorter than 10 (or 15) seconds are padded with zeros and longer ones
are truncated. We trained Lin-MulT in a multi-task (MT) and trait-wise (TW) manner to
measure the performance gain of either procedure in combating the regression-to-the-mean
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problem, which is unique to the FI dataset dataset, taking into account the adopted ones.
While multi-task learning benefits from shared early representations in general, this claim
does not necessarily hold for the First Impressions dataset.

MulT and Lin-MulT: For the input sequences, we use 1D convolution to capture tem-
poral information and reduce dimensionality for further computations. We chose 32 as the
number of kernels and 8 the number of attention heads. We consistently used five stacked
transformer layers with dropout (0.2 chance) throughout the experiments related to differ-
ent tasks. The only architectural difference between MulT and Linear-MulT is the attention
type: MulT uses the quadratic, while Linear-MulT applies a linear attention mechanism (de-
tailed in Sec. 3.2). Both models were trained using Adam optimizer (8; = 0.9, B2 = 0.999,
€ = le — 8) and a learning rate of 2e — 3. We used the Bell Loss (Li et al., 2020) to further
combat the regression-to-the-mean problem. When the loss on the validation set plateaus,
the learning rate is divided by a factor of 10.

SSE-FT: The full architecture is implemented from Fairseq code-base®. We used Adam
optimizer (81 = 0.9, 52 = 0.98, € = le — 6) with warm-up updates, learning rate of 3e — 4
and polynomial decay as a learning-rate scheduler. Transformer hyperparameters for CMU-
MOSI/MOSEI are the same as in (Siriwardhana et al., 2020).

5. Experiments and Results

This section compares the results obtained by the different models described in Sec. 3
on different tasks and databases. The compared methods are the Multimodal Trans-
former (MulT), the Multimodal Transformer with Linear Attention (Lin-MulT) and the
Self-Supervised Embedding Fusion Transformer (SSE-FT).

We present results on sentiment regression using the CMU-MOSI and CMU-MOSEI
datasets in Sec. 5.1. We compare and discuss MulT wvs. Lin-MulT on the same task, to
demonstrate the competitiveness of the linear attention mechanism. In Sec. 5.2, we present
and discuss obtained results on the personality perception task, using the First Impressions
dataset. Linear transformer offers efficient fusion methods, and we exploit this property by
combining OOB and WFR features (detailed in Sec. 4.3). This would be infeasible for the
quadratic transformers, taking into account computational and memory requirements. The
importance of individual target modality branches in cross-modal transformers is tested
in Sec. 5.3. State-of-the-art results on different tasks and datasets are also reported and
briefly discussed. Finally, we conclude the experimental section with a short discussion
regarding real-time considerations, computational and memory constraints of the performed
experiments in Sec. 5.4.

5.1. Sentiment Analysis

First, we compare Lin-MulT and MulT on both CMU-MOSI and CMU-MOSEI and demon-
strate performance scaling with respect to dataset size. Then, we analyze and discuss the
obtained results of all evaluated methods for the same task and datasets. Note that the
methods here evaluated for sentiment estimation use either OOB or WFR features, detailed

6. https://github.com/shamanez/Self-Supervised-Embedding-Fusion-Transformer
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in Sec. 4.3. The obtained results on CMU-MOSI and CMU-MOSEI are shown in Table 2
and Table 3, respectively.

Method (Feature) Acc7?t Acc2t F11t MAE| Corrt
MulT (OOB) 0.382 0.803  0.803 0.889  0.597
Lin-MulT (OOB) 0.354 0.784 0.864 0.956 0.679
SSE-FT (WFR) 0.463 0.838 0.835 0.76 0.75
MARN (Zadeh et al., 2018) 0.347 0.771  0.770 0.968  0.625
MulT (Tsai et al., 2019) 0.401 0.833  0.829 0.832 0.745
SSE-FT (Siriwardhana et al., 2020)  0.465 0.839 0.835 0.776 0.768
BBFN (Han et al., 2021) 0.450 0.843 0.843 0.776 0.755

Table 2: Results for multimodal sentiment analysis on CMU-MOSI. The rows on top: eval-
uated methods. The rows at the bottom: state-of-the-art results obtained from
the literature. Notations: | (1) shows that lower (higher) values are better. Best
results (per metric) for both the evaluated methods and those found in the litera-
ture are highlighted in bold.

Method (Feature) Acc7t Acc2t F11 MAE | Corrt
MulT (OOB) 0.416 0.671  0.671 0.76 0.240
Lin-MulT (OOB) 0.417 0.741  0.743 0.778  0.476
SSE-FT (WFR) 0.540 0.850 0.820 0.580 0.570
MulT (Tsai et al., 2019) 0.511 0.845 0.845 0.570  0.758
SSE-FT (Siriwardhana et al., 2020) 0.557 0.873 0.870 0.529 0.792
BBFN (Han et al., 2021)1L 0.548 0.862 0.861 0.529 0.767

Table 3: Results for multimodal sentiment analysis on CMU-MOSEI. The rows on top:
evaluated methods. The rows at the bottom: state-of-the-art results obtained
from the literature. Notations: | (1) shows that lower (higher) values are better.
Best results (per metric) for both the evaluated methods and those found in the
literature are highlighted in bold.

In the case of MOSI (Table 2), Lin-MulT achieved better performance on F1 and Corr
metrics, while being slightly worse on Acc7 and Acc2. MulT outperformed Lin-MulT on
MAE by a high margin. We hypothesize that Lin-MulT achieved better precision/recall
trade-off between all classes, illustrated by a higher F1/Corr score. This, in turn, is less
favorable if accuracy metrics are preferred.

In the case of MOSEI (Table 3), results follow a similar trend when MulT and Lin-MulT
are considered. That is, MulT performed better than Lin-MulT on MAE metric. Never-
theless, an improvement of at least 6% in Acc2, F1 and the Corr metrics can be observed
in favor of Lin-MulT. These results highlight the benefits of linear attention in terms of
performance scalability with respect to the number of samples in a dataset, taking into
account that CMU-MOSEI is a much larger database, as well as in the the precision/recall
trade-off.

Performance of SSE-FT was closely reproduced on CMU-MOSI (Table 2), compared
with the original method (Siriwardhana et al., 2020). Although, this was not the case for
CMU-MOSEI (Table 3). Hyperparameter tuning may explain the difficulty of reproducing
their results. Overall, SSE-FT model obtained the best results on CMU-MOSI and CMU-
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MOSEI, taking into account the evaluated architectures (and features). The only exception
was the case of the F1 score (on CMU-MOSI), where Lin-MulT obtained slightly better
performance. One possible reason for SSE-FT high performance is the use of Self-Supervised
Learned features, since MulT and Lin-MulT rely on handcrafted ones. However, it should be
noticed that SSE-F'T model relies on the quadratic attention network, being computationally
and memory expensive.

In comparison with state of the art, MulT and Lin-MulT obtained overall better results
than MARN (Zadeh et al., 2018), which also uses AU as visual input (i.e., appearance-
invariant features). However, neither MulT nor Lin-MulT obtained better results than
BBFN (Han et al., 2021) on CMU-MOSI (Table 2) and CMU-MOSEI (Table 3). Never-
theless, BBFN method uses a bi-bimodal fusion consisting of two (quadratic) Transformer-
based bimodal learning modules, being also computationally /memory expensive.

5.2. Personality Perception

Table 4 shows the results for personality perception on the Chalearn First Impres-
sions (Ponce-Lopez et al., 2016) dataset, obtained from distinct architectures and feature
sets. We also analysed two different training strategies, i.e., multi-task (MT) and trait by
trait training, or simply trait-wise (TW) for short.

First, it should be noted that all evaluated methods presented a similar performance on
the FI dataset, as shown in Table 4. This is a well known problem related with the First
Impressions dataset, where most personality scores are centered in a very small region close
to the mean. For the sake of comparison, a prior model obtained directly from the training
labels (by averaging) on this dataset was capable of obtaining close to 0.88 of accuracy
at test stage (Escalante et al., 2020) due to the highly centralized distribution. In turn,
changes in the third digit are relevant.

To ease the analysis, we discuss the results of Table 4 in a pairwise manner, given
the method (MulT, Lin-MulT and SSE-FT), feature set (OOB, WFR and OO-WFR) and
training strategy (MT or TW).

e OOB wvs. WFR: surprisingly, the worse results in the case of personality perception
were obtained using the WFR features, specifically when using Lin-Mult and SSE-FT
architectures, both trained in a multi-task fashion. Following this tendency and the
same training strategy, Lin-MulT (OOB) obtained overall better results than Lin-Mult
(WFR). These results were not observed for the case of sentiment analysis, previously
discussed. Contrary, SSE-FT with WFR features obtained the best results for senti-
ment estimation. This suggests that different tasks may be better modeled /captured
by different feature sets and model architectures.

e MulT wvs. Lin-MulT: in this scenario, MulT performed overall slightly better than
Lin-MulT, using the same set of features (OOB) and training strategy (MT). Never-
theless, we consider Lin-MulT still competitive as it saves computational and memory
resources, motivating us to exploit different feature combinations such as OO-WFR
(discussed next). Note that feature fusion like OO-WFR could be prohibitive when
the quadratic attention module is combined with limited computational resources.
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e MT vs. TW: before discussing OO-WFR, feature fusion, we evaluated training some
of the models for personality perception trait-wise, instead of multi-task. We observed
that the trait-wise helped to improve the results, for instance, if we compare Lin-MulT
using OOB feature set on both cases. This is reinforced when we combine different
features as mentioned above (OO-WFR) using the same method. That is, Lin-MulT
using OO-WFR set obtained even better performance when trained trait by trait,
compared to multi-task training, also suggesting that both feature sets (OOB and
WFR) bring complementary information. Nevertheless, this improvement is not typ-
ical as multi-task training usually benefits training with complementary information
from the different tasks (or traits, in our case). We hypothesize this may be related
with the fact that the FI dataset has the scores centered in a very small region close
to the mean.

Method (Feature) Strategy o 1 C 1 E 1 AT N 1 Avg + RZ 7
Lin-MulT (WFR) MT 0.9007 0.8967 0.8966 0.9019 0.8941 0.8980 0.24
SSE-FT (WFR) MT 0.9022 0.8954 0.8972 0.9046 0.8982 0.8995 0.26
Lin-MulT (OOB) MT 0.9041 0.8960 0.9037 0.9005 0.8988 0.9006 0.27
MulT (OOB) MT 0.9033 0.8975 0.9036 0.9024 0.9010 0.9016 0.29
Lin-MulT (OOB) TW 0.9052 0.8979 0.9045 0.9031 0.9008 0.9023 0.30
Lin-MulT (OO-WFR) MT 0.9074 0.9004 0.9073 0.9043 0.9021 0.9043 0.32
Lin-MulT (OO-WFR) W 0.9078 0.9007 0.9077 0.9058 0.9041 0.9050 0.33
CR-Net(t) (Li et al., 2020) MT 0.9195 0.9218 0.9202 0.9177 0.9146 0.9188 -

Table 4: Personality perception results on the First Impressions (Ponce-Lopez et al., 2016)
dataset: 1 shows that higher values are better. Best results for both the evaluated
methods and those found in the literature are highlighted in bold.

In comparison with the state of the art, CR-Net (Li et al., 2020) still gives better results
compared to the evaluated architectures, feature sets and training strategies. However,
CR-Net works under a particular and different condition we are trying to avoid, i.e., it
uses raw visual data (from the entire scene and the person’s face) that can be sensitive
to appearance-based features. In contrast, the evaluated approaches use Action Units and
FAb-Net (Wiles et al., 2018) features as visual inputs that do not capture identity-specific
information according to the literature (Agarwal et al., 2020). Moreover, the evaluated
approaches/features may promote cross-dataset/domain/scenario generalization.

5.3. Cross-modal ablation

We measured the importance of individual target modality branches in cross-modal trans-
formers on MulT and Lin-MulT using the ChaLearn First Impressions dataset. According
to Table 5 and R? metric, cross-modal transformer with video as target modality had the
best results for MulT, whereas the one with audio as the target was the winner for Lin-
MulT. We found no specific target modality whose cross-modal transformer outperformed
the rest.
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Source — Target Method Avg (1I-MAE) 1 R2 1
A+V —» T MulT 0.902 0.151
Lin-MulT 0.894 0.143

T+A -V MulT 0.900 0.244
Lin-MulT 0.899 0.221

V4T — A MulT 0.900 0.239
Lin-MulT 0.901 0.246

Table 5: Cross-modal ablation on the First Impressions (Ponce-Lopez et al., 2016) dataset,
given a source and target modality.

5.4. Computational and memory constraints

Real-time evaluation constrains memory consumption. Linear transformers scale better
than quadratic ones, and drastic changes may rise in computational depending on the avail-
able GPU units since most computations can be parallel. Nevertheless, energy consumption
will scale linearly and quadratically in the two methods, a considerable difference in some
IoT applications.

Beyond the scaling properties, exact numbers can change quickly due to the quick tech-
nological advances. In turn, our description is restricted. We used an RTX Titan unit with
24 GB RAM. Computation of a 10-second sample took 48 ms and 52 ms for the linear and
the quadratic transformers, respectively. For a 30-second (100-second) sample, we had 51
ms (61) for the linear and 150 ms (1400 ms) for the quadratic one, respectively. The drastic
change in time means that the quadratic method ran out of parallel computational units.
Beyond these computations, preprocessing also limits the number of available GPU units.

Progress in technology may offer solutions. For example, FPGA accelerators are about 7
times to 45 times faster than comparable systems using high-end GPUs, and the FPGAs may
consume ten times less energy for deep CNN networks, like YOLOv3 (Hesse, 2021; Wei et al.,
2021). Tensor Processing Units (TPUs) can alleviate constraints on real-time computations.
In addition, cloud computing can also mitigate the problem, although privacy issues may
arise. In all of these cases, the problem of energy consumption remains.

To close this discussion, it should be mentioned that our RTX Titan unit with 24 GB
RAM was insufficient to test the MulT (quadratic) method for more than three channels
to be fused; we quickly ran out of memory. The advancements of deep technology will give
rise to more sophisticated and efficient transformer-based fusion methods. Nonetheless, the
linear advantage will hold.

6. Final Remarks

Transformer models are state-of-the-art in deep learning technology; they are overcoming
Convolutional Neural Networks (CNNs) on different tasks (Dosovitskiy et al., 2020). We
compared the fusion capabilities of state-of-the-art transformer models, the Transformer-
Based Self Supervised Feature Fusion Model (SSE-FT) (Siriwardhana et al., 2020) and
the Multimodal Transformer Model (MulT) (Tsai et al., 2019) on sentiment estimation and
personality perception databases. We also compared the performance of quadratic attention
of these models and the case when we replaced these attention models with the linear
version in MulT. We restricted our studies to methods that are appearance invariant, with
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the purpose of mitigating possible sources of bias coming from appearance-based features.
Our main findings are summarized as follows:

e On sentiment estimation, MulT, and SSE-FT performed similarly, but with the in-
crease of the database, SSE-FT performed better;

e On personality perception, where the distribution of the data is very narrow, MulT
was better than SSE-FT;

e The linear attention version of MulT (Lin-MulT) was competitive in all cases;

e Lin-MulT is computationally efficient. The linear scaling of its memory requirement,
instead of the quadratic one, enabled the fusion of the features that gave better results
for the case of personality perception;

All in all, memory, speed, accuracy, and fusing capabilities of the Lin-MulT architecture
make it an attractive choice for real-time sentiment analysis and personality perception.
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