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Abstract

Previous research has revealed differences in personality traits among different genders,
age groups, and even cultures. However, existing methods have focused on one-fits-all ap-
proaches only and performed personality recognition without taking into consideration the
user’s profiles. In this paper, we propose to learn personalised models of self-reported big
five personality traits. Our proposed approach automatically learns deep learning archi-
tectures for different user profiles using Neural Architecture Search (NAS) for predicting
the Big Five personality traits from multimodal behavioural features. We experiment with
two different user profiling criteria, namely, gender and age, and compare the results of our
approach with the state-of-the-art methods. Overall, our results show that personalised
models improve the performance as compared to the generic model. Particularly, gender-
based user profiling combined with bimodal features reduces the prediction error by 0.128,
achieving the state-of-the-art performance on the UDIVA dataset.

Keywords: Automatic personality recognition; Neural Architecture Search; personalised
models; multimodal human behaviour analysis; personality computing

1. Introduction

Smart phones, voice assistants, and home robots are becoming more intelligent every day
to support humans in their daily routines and tasks. Achieving the user acceptance and
success of such technologies makes it necessary for them to be socially informed, adap-
tive, responsive, and responsible. They need to understand human behaviour and socio-
emotional states and adapt themselves to their user’s profiles (e.g., personality, gender, age)
and preferences. Motivated by this, there has been a significant effort in the development of
personality computing frameworks in the last decade (Vinciarelli and Mohammadi, 2014a;
Silveira Jacques Junior et al., 2019). The success of machine learning, especially deep learn-
ing techniques in learning complex patterns of multimodal data as well as the availability
of large-scale datasets for personality recognition (e.g., collected from YouTube) has also
revamped the development of such frameworks.
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Existing approaches in personality computing employ non-verbal behaviours as predic-
tors of personality (Celiktutan and Gunes, 2017; Salam et al., 2016; Fang et al., 2016; Zhang
et al., 2019). Most of these approaches consider one-fits-all paradigms. However previous
research has revealed differences in personality traits among different user profiles, i.e., age
groups, genders, and even cultures (Akyunus et al., 2021; Weisberg et al., 2011b; Hang
et al., 2021). For example, females assess their personality traits differently from males.
A study showed that females reported higher Big Five Extroversion, Agreeableness, and
Neuroticism scores than males (Weisberg et al., 2011a). Similarly, there were also differ-
ences in self-assessment from childhood to adulthood (McCrae et al., 1999; Hang et al.,
2021; Akyunus et al., 2021). A study by Roberts et al. (2006) including 92 participants
investigated personality mean-level change patterns throughout the life course. The study
revealed that measures on Conscientiousness and Neuroticism increased in young adult-
hood, whereas Openness increased in adolescence but then decreased in old age. On the
other hand, personality is strongly coupled with nonverbal behaviours (Gallaher, 1992). For
example, extroverted people talk more, louder, and faster and have a higher hand or facial
gesture frequency. Introverted people, in contrast, avoid making eye contact and display
less gestures (Jensen, 2016). In some cultures, people use gestures differently and even more
or less frequently (Archer, 1997). This means that the way personality is expressed via non-
verbal behaviours can differ across cultures as well (Archer, 1997). Therefore, personalised
models that can take into account the individual profiles or differences seem to be the most
promising approach.

Motivated by this, in this paper, we propose to learn personalised models for different
user profiles (i.e., age and gender) and compare age-wise and gender-wise personalisations.
For each user profile, the proposed model learns individual neural network architectures for
different modalities (i.e., visual, textual, and audio) and fuses them at the decision level.
The proposed approach was our response to the ChaLearn LAP Challenge on Understand-
ing Social Behaviour in Dyadic and Small Group Interactions (DYAD) at ICCV 2021 -
Automatic Self-reported Personality Recognition Track (Palmero et al., 2022). The main
contributions of this work can be summarized as follows:

1. We propose to build personalised models for automatic self-reported personality. To
this end, we create user profiles based on gender and age and use a Neural Architecture
Search framework for designing and training separate models per user profile.

2. We evaluate our approach with a rich set of multimodal features including visual,
textual, and audio features singly as well as fusing the best performing two features
at the decision level.

3. Our experimental results show that personalised models improve the recognition per-
formance in general, and achieve the state-of-the-art performance on the UDIVA
dataset (Palmero et al., 2021, 2022).

2. Related Work

In this section, we review relevant work in personality computing, personalized models in
the field of affective computing, and the applications of Neural Architecture Search (NAS).
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2.1. Personality Computing

Personality is a set of habitual patterns of behaviours, thoughts or emotions that can char-
acterise a certain individual (Soto and John, 2017). The predominant paradigm in per-
sonality computing research (Vinciarelli and Mohammadi, 2014b; Dhelim et al., 2021) is
called the Big Five Model (McCrae and John, 1992) (also called as OCEAN). It defines
personality traits along five broad dimensions: (1) extroversion (assertive, outgoing, ener-
getic, friendly, socially active), (2) neuroticism (tendency to experience negative emotions),
(3) openness (inclination towards experiences, adventure, novelty), (4) agreeableness (coop-
eration, compliance, trustworthiness), and (5) conscientiousness (self-discipline, high orga-
nization, consistency). Training personality recognition models requires the acquisition of
the personality ground truth labels. These can be collected through subjective or objective
assessment. Subjective assessment entails self-reporting or self-assessment, where the indi-
viduals report their perception of their personality by answering personality questionnaires.
Objective assessment is conducted by asking external observers to provide their impressions
regarding others’ personality. This work is situated in the category of self-reported big five
personality traits.

Existing personality computing approaches have focused on the extraction of non-verbal
behaviours from different modalities including visual, audio, textual, and contextual, which
are then used as predictors of the different personality trait scores. In recent years, deep
learning approaches have particularly gained success in the personality computing literature
due to their ability to learn complex hidden behavioural patterns from raw data or from
non-verbal features.

Unimodal. Unimodal approaches based on the visual modality have been extensively
reviewed in a recent survey (Junior et al., 2019). Among these approaches, Romeo et al.
(2021) exploited body language cues extracted from the visual modality with state-of-the-
art deep architectures such as 3D Residual Network (3DResNet), 3D Convolutional Neural
Networks (3DCNN), a modified version of VGG-16 (VGG DAN+), and a combination of
CNN and Long Short-Term Memory Network (CNN+LSTM). Deep learned facial dynamics
in conjunction with Artificial Neural Networks were proposed by Song et al. (2021). In terms
of textual modality, word-level embeddings were used as an input to deep models (Xue et al.,
2021). Audio-based models exploited prosody, speech activity, voice quality, interaction
features, and OpenSMILE speech features (Eyben et al., 2010).

Multimodal. Multimodal approaches fused different modalities to obtain personality
trait predictions. A special emphasis on incorporating interpersonal features from interac-
tion partners is apparent in the most recent approaches. Examples include the work by
Palmero et al. (2021), where a transformer-based method was proposed to learn high level
deep audiovisual and contextual features for inferring OCEAN scores. In their formula-
tion, contextual features included features learned from the interaction partner. Various
deep learning architectures were employed to learn the multimodal deep features, such as
R(2+1)D network for visual features, VGGish for audio, which were then fused with con-
textual features and used as input to a Transformer network implementing multiheaded
attention units. Similarly, Aslan et al. (2021) designed specialised sub-networks for ambi-
ent appearance (scene), facial appearance, voice, and transcribed speech modalities. The
modality-specific representations were then fused via an attention mechanism. Another
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approach (Curto et al., 2021) focused on implicitly learning individual and interpersonal
features from the interaction partners via a multimodal multi-subject Transformer architec-
ture using variable time windows. The proposed network included a cross-subject layer with
attentional operations allowing a joint modeling of the interactants’ behaviours. Although
these approaches give us a positive outlook, they follow a one-fits-all approach as a fixed
architecture is designed and trained on a pool of user profiles.

2.2. Personalized Models in Affective Computing

There is a recent trend to use personalised predictive models in various affective computing
tasks. Personalising machine learning models can be performed at the (1) user level, or (2)
user profile level.

User level. Personalising models at the user level entails learning adaptive models
tailored towards each user. Using multitask learning to take into account individual differ-
ences for mood, stress, and health prediction showed improved performance over one-fits-all
machine learning approaches for these tasks (Taylor et al., 2017; Jaques et al., 2016). Simi-
larly, multitask learning was used with Gaussian process regression models for personalising
self-reported pain prediction (Liu et al., 2017). The underlying motivation for multitask
learning was the ability of this methodology to account for individual differences while lever-
aging data across the population. Supervised domain adaption with mixture of experts for
personalising deep CNN models for expression recognition has also proven efficient as com-
pared to non-personalised models (Feffer et al., 2018). User-level personalisation for facial
emotion recognition was accomplished by learning and propagating individual deep facial
features for each subject via a CNN architecture followed by a spatial attention map, which
was then fused into a CNN (Shahabinejad et al., 2021).

User profile level. Personalisation at the user profile level entails profiling users
according to a certain criteria, and then building adaptive models that takes into account
these user profiles. Profile-level personalisation were less explored in the literature. In a
human-robot interaction (HRI) autism therapy framework, personalised deep models were
proposed for learning child-specific models of valence, arousal, and engagement (Rudovic
et al., 2018a). The proposed deep architecture used specific layers to nest the children
based on their culture and gender, which was followed by individual network layers for
each child. Rudovic et al. (2018b), in the HRI for autism therapy setting, introduced the
CultureNet, a deep learning architecture which leverages on the culture data to adapt to
the target culture and child.

Although the current trend seems to be building personalised models for recognising
affective states, such as mood, engagement, there has been a little effort for investigating
personalisation for personality recognition. Only Shao et al. (2021) employed Neural Ar-
chitecture Search (NAS) to model a subject’s cognitive process. An optimal person-specific
CNN architecture was learned based on the audio-visual non-verbal cues displayed by the
conversational partner to predict the target subject’s facial reactions. The results of the
optimal CNN architecture were then used to create a person-specific graph representation
for recognising the target subject’s personality. However, this method was limited to inter-
active scenarios only, as it requires the nonverbal cues of the interacting partner. Moreover,
it proposed to train a specific model for each subject, which may be computationally ex-
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pensive. In contrary, our proposed approach depends on features extracted from the target
subject only and proposes to assign users to pre-defined profiles for designing and training
individual models for different user profiles.

2.3. Neural Architecture Search

Neural architecture search (NAS) has been proposed to automatically adjust deep neural
networks, without the need for manually designing the architecture (Ren et al., 2020; Elsken
et al., 2019). Existing search algorithms include NASNet (Feurer et al., 2019), PNAS (Liu
et al., 2018), and Efficient NAS (ENAS) (Jin et al., 2019). NAS has been applied in the
literature for training personalised models in various domains of application. These include
personalised human pose estimation, efficient object recognition, and heart rate estimation
from faces, among others. For instance, Xu et al. (2021) proposed a novel NAS method,
called ViP-NAS, to search networks in both the spatial and temporal domains for fast
online video pose estimation. The approach of Chen et al. (2021) was based on a binarised
neural architecture search (BNAS) framework, with a binarised convolution search space
for efficient object recognition. In the work by Lu and Han (2021), facial regions of interest
(ROI) defined based on facial landmarks were used to extract RGB-ROI temporal pulse
signals, which were fed into a NAS architecture for heart rate estimation. In the field of
personality computing, as mentioned above, Shao et al. (2021) employed NAS to learn and
train person-specific models. To the best of our knowledge, this work is the first to tackle
personalisation of personality computing models using NAS based on users profiles.

3. Proposed Approach

The overview of the proposed approach is shown in Figure 1. We first cluster the participants
into two profiles and then use Neural Architecture Search (NAS) to automatically design
a model for each profile to recognise their self-reported personality traits. We explore
profiling users based on two characteristics, namely, gender (female and male), and age (≤
30 and > 30). A separate network is then designed and trained with visual, audio, and text
features. The final prediction is obtained by aggregating the results of video, audio and
text modalities.

3.1. Dataset

In this work, we use the UDIVA (Understanding Dyadic Interactions from Video and Audio
signals) dataset (Palmero et al., 2021) as it comprises a large number of synchronised
multi-sensory, multi-view recordings collected in a face-to-face dyadic interaction scenario,
together with demographics data (age, gender, and ethnicity) and self-reported Big Five
personality trait scores.

The dataset contains 188 dyadic human-human interactions between 147 participants,
resulting in 90.5 hours of recordings. The dataset is balanced with respect to gender (55.1%
male) and the age of the participants ranges from 4 to 84 years old. Participants represent
22 different nationalities, with the majority coming from Spain (68%). The dominant
speaking language is Spanish, followed by Catalan and English. Recordings take place in
5 different interaction contexts: (1) Talk : Participants talk about any subject during 5
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Figure 1: Overview of the proposed approach: The videos are first divided into 1 minute
short clips and the participants are clustered into two profiles based on their
gender or age, namely, female vs. male, or ≤ 30 vs. > 30. A set of visual, audio
and text features are then extracted, which are given as input to the Neural
Architecture Search (NAS) framework to automatically design a model for each
profile and for each modality to recognise personality. For each user profile, the
final prediction is obtained by aggregating the results of the different modalities.
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minutes. (2) Animals game: Participants play a guessing game, where they have to ask
10 yes/no questions to guess the animal on their forehead (3 difficulty levels). (3) Lego
building : Participants build a Lego together (4 difficulty levels). (4) Ghost blitz card game:
Participants compete in a cards selection game. (5) Gaze events: Participants were directed
to look at the other interactant’s face, at an object, or somewhere else in the room, while
performing head and eyes movements.

3.1.1. Data Pre-processing

Each participant’s video and corresponding transcript and audio file were divided into 1
minute data slices. To split the videos into 1 minute video clips, the number of frames was
considered. As the videos were recorded at 25 frames per second, 1500 frames corresponding
to 1 minute video slices were extracted. The speech transcripts and audio files were divided
into 1 minute transcripts based on the provided timestamps.

A single turn is presented in the speech transcript files as follows:
1
00:00:00,115 –¿ 00:00:01,865
PART.2: Preguntas
de ”śı” o ”no”, ¿eh? Acuérdate.

Here, “1” in the 1st line corresponds to the turn number. This is followed by timestamps
of the start and end of the talk turn. The timestamp is in HH:MM:SS,SSS format. The
MM value is used to split the transcripts per minute. If a dialogue spans across a minute
boundary, it is assigned to the previous minute (when started). “PART.2” indicates that
the talk turn corresponds to that of person 2 in the respective video. This value is used to
split the dialogues in a person-specific manner.

3.2. Multimodal Feature Extraction

In this work, multimodal features are extracted from the video, audio, and text modalities.
In the following, the feature extraction process is described in detail.

3.2.1. Video-based features

Both facial and body pose landmarks are considered for personality prediction. These video-
based features were extracted from the annotations provided in the UDIVA dataset (Palmero
et al., 2022), which were obtained in a semi-automatic manner. The features taken into
consideration are:

Facial landmark statistics – 68 facial landmarks are provided for each video frame along
3 dimensions. The data was first flattened to obtain a facial landmark array of dimension
204. The mean and standard deviation is then computed for each facial landmark point
over all the frames in a 1 minute video clip, resulting in a feature vector of 408.

Body landmark statistics – 24 three-dimensional body landmarks were provided for
each video frame. The data was first flattened to obtain an array of dimension 72. The
mean and standard deviation is then computed for each of the body pose landmark points
over all the frames in each 1 minute video clip, resulting in a feature vector of 144.
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Both the face and body landmarks statistics were concatenated, resulting in a feature
vector of dimension 552 for each 1 minute video clip. This feature vector is referred to as
FaceBody in the rest of the paper.

3.2.2. Text-based features

The transcripts of the interactions were analyzed based on each talk turn. The extracted
features include talk turn duration, content, speech rate, and sentiment. Moreover, text
embeddings were extracted for each talk turn using a sentence transformer model, namely,
Sentence Bidirectional Encoder Representations from Transformers (SBERT).

Talk turn duration – The duration of the interaction for each person in a single minute
was analyzed to generate a 5 dimensional feature set consisting of the following:

• Minimum turn duration: the minimum time (at the turn level) for which a person
talked.

• Maximum turn duration: the maximum time (at the turn level) for which a person
talked.

• Average turn duration: the average time across all turns for a particular person in a
single minute.

• Standard deviation of turn duration: The standard deviation of the time taken in each
turn for a single person over a 1 minute segment. This gives an idea of the variation
in the time spent on different interactions.

• Total duration of turns: The total amount of time a person spoke in a single minute.

Talk turn content – The number of turns and the content of every dialogue were ana-
lyzed and 5 features were generated, which consist of the following:

• Turn percentage: the percentage of turns for a particular person out of the total
number of turns in a single minute.

• Average words per turn: the average number of words spoken by a person in a turn
across a 1 minute window.

• Longest turn: the largest number of words among all the turns over a minute for a
particular person.

• Total number of words: the total number of words uttered over all the turns in a
minute for a particular person.

• Standard deviation of words per turn: the standard deviation of the number of words
per turn was computed to quantify the variance of the amount of vocal interaction by
a particular person over a minute.
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Talk turn sentiment – Each of the 1 minute transcripts was analyzed to generate 10
sentiment-based features. Since the majority of the conversations was in Spanish (68%)
(Palmero et al., 2021), a Spanish sentiment recognition library was used (Bello, 2021).
Moreover, to the best of our knowledge, there is no sentiment recognition system for Catalan
language. The generated sentiment values ranged between 0 and 1, where 0 corresponds to
fully negative and 1 corresponds to fully positive sentiment. The following sentiment-based
features were computed:

• Most negative turn: The sentiment of texts across the turns over a minute for each
person was computed and the smallest value was extracted.

• Most positive turn: The sentiment of texts across the turns over a minute for each
person was computed and the largest value was extracted.

• Average sentiment: The average sentiment over all the turns in one minute was com-
puted.

• Sentiment variation: The standard deviation of the sentiment values across the turns
for a person over a minute was computed. This gives an idea of the variation of
sentiment over successive expressions.

• Sentiment range: The sentiment range was divided into 5 equi-spaced classes corre-
sponding to highly negative, negative, almost neutral, positive, and highly positive.
The number of turns across a minute over these classes was computed and then nor-
malized with the total number of turns by the person in that particular minute. This
resulted in a 5-dimensional feature vector.

• Overall sentiment: The sentiment value was computed over the 1 minute segment per
person, without dividing into turns.

Talk turn speech rate – The speech rate statistics of every talk turn was computed,
resulting in 5 features:

• Minimum speech rate: the minimum speech rate (at the turn level) for which a person
talked.

• Maximum speech rate: the maximum speech rate (at the turn level) for which a person
talked.

• Average speech rate: the average speech rate across all turns for a particular person
in a single minute.

• Standard deviation of speech rate: the standard deviation of the speech rate taken in
each turn for a single person over a 1 minute segment.

• Total speech rate: the total speech rate of a person’s utterance in a single minute.
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SBERT – In addition to the high-level features described above, we use a Bidirec-
tional Encoder Representations from Transformers (BERT)-based model called sentence-
transformer (Reimers and Gurevych, 2019) to extract text embeddings. Sentence-BERT
(SBERT) is a modification of the pretrained BERT network that uses siamese and triplet
network structures to derive semantically meaningful sentence embeddings, which can be
compared using cosine-similarity. This reduces the effort for finding the most similar pair
from 65 hours with BERT / RoBERTa to approximately 5 seconds with SBERT, while
maintaining the accuracy of BERT. The weights are pretrained for multi-lingual sentence
embeddings (Reimers and Gurevych, 2020) with the main advantage of aligned feature
space. More explicitly, vector spaces are aligned across languages, i.e., identical sentences
in different languages are close. Vector space properties in the original source language from
the teacher model are adopted and transferred to other languages.

3.2.3. Audio-based features

We extract Mel-frequency cepstral coefficients (MFCCs) as audio features, which are com-
monly used in the area of personality computing (Celiktutan and Gunes, 2017). The spectral
envelope of an audio signal possesses a particular shape which models the perceived sounds
by humans (Warren et al., 2005). While the actual sound is linear, the human auditory
system does not perceive pitch linearly (Rao and Manjunath, 2017). MFCC features are
designed to model the audio cepstrum energies in a non-linear scale known as the mel-scale.
MFCC coefficients represent an estimation of the speech tone variation (Janse et al., 2014),
which is highly correlated with emotional speech. The expression of emotions in speech dif-
fers among different personality traits. Using the timestamps from the speech transcripts,
we separate the speech corresponding to each participant in the interaction. MFCC features
are then computed over each one minute audio clip. A frame size of 256 points with 100
points overlap is used. We extract n dimensional MFCC per frame for each of the audio
signals (MFCCn, n = 20 ). Each dimension, MFCCn, is termed as a frequency band (B).
For instance, MFCCn has n frequency bands, where Bi corresponds to the ith frequency
band of an n dimensional MFCC. The frequency bands B1, B2, . . . , Bn are then analysed
to find the energy distribution E1, E2, . . . , En across each of them. Energy for ith band is
presented below for N frames where Cik corresponds to the MFCC of the kth frame for the
ith band:

Ei =
N∑
k=1

Cik (1)

The resulting energy sequence E1, E2, . . . , En is used to generate the transformed order
of bands BO1, BO2, . . . , BOn, which are used as a feature. The transformed order of bands
is generated by simply sorting the energy sequence in descending order, and getting their
index. In addition, the standard deviations and the median values of the MFCC values of
each frequency band are computed and used as features.

3.3. Personalised Neural Architecture Search Strategy

In order to train personalised personality prediction models, we created different profiles
by grouping the individuals in the dataset into different user profiles: gender-wise (females
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vs. males), and age-wise (≤ 30 vs. > 30). An adaptive neural architecture was designed
automatically with Neural Architecture Search (NAS) and trained for each profile.

We used the NAS framework proposed by Jin et al. (2019) due to its efficiency. The
approach employs an efficient training during search via network morphism, which keeps
the functionality of a neural network while changing its neural architecture through mor-
phism operations (e.g., inserting a layer). The framework uses Bayesian optimization to
guide the network morphism to enable efficient neural architecture search. To this end, a
neural network kernel based on edit distance was designed and an algorithm was proposed
to optimise the acquisition function in a tree-structured space. The algorithm was also
implemented in an open-source AutoML system called Auto-Keras (Jin et al., 2019).

3.3.1. Implementation details

We used Auto-Keras (Jin et al., 2019) to perform the neural architecture search. For all
modalities, visual, audio, and text, we used two dense layers with 32 units as the default
architecture. The original training data was divided into training and validation sets using
an 85−15% split strategy. The best models were searched by employing network morphism
operations such as inserting new layers, expanding existing layers, or adding skip connec-
tions. We use the Mean Squared Error as loss function. Each network was trained with
ADAM optimiser. The number of epochs was set to 1000. The number of trials was set to
100. Finally, we used an early stopping with patience equal to 30.

3.4. Decision Fusion

We applied decision fusion to predict the personality of an individual. The scores obtained
per minute were averaged over all the sessions. Thereafter, the resulting values were aggre-
gated across different modalities using the average predictions.

4. Experimental Results

4.1. Evaluation Metric

We computed the prediction accuracy for each personality trait using the Mean Squared
Error (MSE). To obtain an average accuracy over all personality traits, we used the average
MSE (AMSE). Let pi,j , (1 ≤ i ≤ 5) be the Big-Five personality trait prediction scores and
gi,j the associated ground truth label for each sample (j). The AMSE is defined as:

AMSE =
1

N

N∑
j=1

1

5

5∑
i=1

(pi,j − gi,j)
2 (2)

where N is the number of samples in the test set.

4.2. Performance Evaluation

Once we learn the individual neural architectures per profile and per feature modality, we
train our models on the training and validation sets provided in (Palmero et al., 2022). For
inference, we use the trained models on the unseen test set partition as given in (Palmero
et al., 2022).
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4.2.1. Performance evaluation of different modalities and their fusion

Table 1 presents the comparison of the proposed approach for different feature modalities
individually as well as the fusion of feature modalities for each personality trait. Unimodal
features (FaceBody, Speech Rate, Sentiment, Content, Duration, Audio, and SBERT) were
used individually to train generic as well as gender-wise and age-wise personalised models.
Moreover, models were trained on the early fusion of features obtained from the textual talk
turn modality (Speech Rate, Sentiment, Content, Duration) with and without the senti-
ment feature. The evaluation of the talk turn features excluding the sentiment feature was
performed since we suspected that the sentiment feature might decrease the performance.
This is due to the fact that we used a Spanish sentiment recogniser to extract the talk turn
sentiment of the dataset that includes English and Catalan languages. Two decision level
fusion strategies were performed: (1) fusion of the predictions obtained from the two best
performing modalities; and (2) fusion of all modalities where the average of the predictions
from each of the modalities (FaceBody, Speech Rate, Sentiment, Content, Duration, Au-
dio, and SBERT) was computed to obtain a final prediction. Finally, we compared the
AMSE of these fusion strategies to the AMSE obtained by taking the predictions of the
best performing model for each personality trait.

Looking at Table 1, the personalised models improved the performance as compared to
the generic model in general. Age-wise personalisation performed slightly better than the
non-personalized model for both fusion strategies, as well as compared to the best unimodal
strategy. The fusion of two best performing modalities outperformed other strategies with
an AMSE of 0.796. Gender-wise personalisation performed better than the age-wise models.
The bimodal fusion strategy decreased the AMSE by 0.106 and 0.128 with respect to the
age-wise model and the generic model, respectively.

Regarding the prediction of individual personality traits, we observed that there was
no consistency among the best performing modalities across the different personalisation
strategies. For instance, for the Openness trait, Duration worked best in the case of
non-personalisation and gender-wise personalisation, while SBERT outperformed the other
modalities for the age-wise personalisation. For Consciousness, SBERT performed the best
using non-personalisation, while the Talk Turn features without sentiment performed the
best in the gender-wise personalisation, and the Speech Rate yielded the smallest AMSE
in the age-wise personalisation. For the remaining traits, the best performing modalities
across personalisations are as follows: Extroversion (generic: Talk Turn without sentiment,
gender-wise: Duration, age-wise: FaceBody), Agreeableness (generic: Content, gender-wise:
SBERT, age-wise: Content), Neuroticism (generic: Speech Rate, gender-wise: Sentiment,
age-wise: SBERT). In line with existing work in personality computing such as (Celiktutan
and Gunes, 2017), our results showed that the most informative features changed from one
trait to another but also across different user profiles.

4.2.2. Comparison with the state-of-the-art

Table 2 presents the comparison of the approaches of the teams that partook in the
ChaLearn LAP Challenge on Understanding Social behaviour in Dyadic and Small Group
Interactions (DYAD) at ICCV 2021 - Automatic Self-reported Personality Recognition
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Table 1: Performance evaluation of the proposed approach using different modalities and
their fusion. Bold: best performance; Underline: second best performance. WS:
With Sentiment; No Sentiment: NS.

Personalisation Feature O C E A N AMSE

No FaceBody 0.748 1.027 1.069 2.665 1.118 1.325
Talk Turn (NS) 0.833 0.807 0.909 0.689 1.130 0.874
Talk Turn (WS) 0.854 0.809 1.014 0.658 1.373 0.942
Speech Rate 0.864 0.912 1.039 0.664 1.067 0.909
Sentiment 1.337 0.808 0.959 0.742 1.349 1.039
Content 1.389 0.826 0.952 0.606 1.163 0.987
Duration 0.723 0.832 1.180 0.672 1.230 0.927
Audio 0.740 0.976 0.968 0.608 1.309 0.920
SBERT 1.07 0.796 0.975 0.677 1.332 0.970
Best of each modality 0.723 0.796 0.909 0.606 1.067 0.820
Fusion of best two modalities 0.731 0.768 0.926 0.575 1.088 0.818
Fusion of all modalities 0.850 0.839 0.962 0.641 1.183 0.895

Gender FaceBody 0.727 0.765 0.846 0.604 0.965 0.781
Talk Turn (NS) 1.141 0.563 0.887 0.624 1.005 0.844
Talk Turn (WS) 0.712 0.691 0.877 0.688 0.953 0.784
Speech Rate 0.732 0.666 0.886 0.605 0.923 0.762
Sentiment 1.235 0.745 0.883 0.644 0.874 0.876
Content 0.715 0.630 0.925 0.668 1.053 0.798
Duration 0.681 0.745 0.824 0.670 1.075 0.799
Audio 0.749 1.111 0.979 0.593 1.208 0.928
SBERT 0.711 0.826 0.985 0.535 0.879 0.787
Best of each modality 0.681 0.563 0.824 0.535 0.874 0.695
Fusion of best two modalities 0.684 0.588 0.830 0.550 0.796 0.690
Fusion of all modalities 0.699 0.758 0.883 0.600 0.905 0.769

Age FaceBody 0.799 0.823 0.824 0.836 1.554 0.967
Talk Turn (NS) 0.976 0.728 0.838 0.710 1.161 0.883
Talk Turn (WS) 1.059 1.352 1.00 0.766 1.193 1.074
Speech Rate 0.957 0.711 0.840 0.741 1.135 0.877
Sentiment 0.926 0.719 0.878 0.726 1.075 0.865
Content 0.952 0.988 1.031 0.782 1.210 0.993
Duration 0.892 0.801 0.968 0.682 1.189 0.906
Audio 0.937 1.18 0.957 0.800 1.143 1.003
SBERT 0.769 0.758 0.873 0.731 1.053 0.837
Best of each modality 0.769 0.711 0.824 0.682 1.053 0.808
Fusion of best two modalities 0.716 0.705 0.763 0.695 1.100 0.796
Fusion of all modalities 0.828 0.764 0.857 0.738 1.128 0.863
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Table 2: Comparison of the proposed approach against other approaches presented in the
challenge (Palmero et al., 2022). Our previous approach presented in the challenge
was the fusion of the models trained on FaceBody features and Talk Turn features
(including sentiment) only.

Team O C E A N AMSE

SMART-SAIR (Ours) 0.711 (1) 0.723 (3) 0.867 (1) 0.548 (1) 0.997 (1) 0.769 (1)
Baseline 0.744 (2) 0.794 (4) 0.886 (2) 0.653 (2) 1.012 (2) 0.818 (2)
FGM Utrecht 0.752 (3) 0.687 (2) 0.917 (3) 0.671 (3) 1.098 (3) 0.825 (3)
FGM Utrecht 0.759 (4) 0.677 (1) 0.955 (4) 0.677 (4) 1.163 (4) 0.846 (4)
STARS Inria 0.839 (5) 0.976 (5) 1.359 (5) 0.864 (5) 1.252 (5) 1.058 (5)
Crisie Lab 4.401 (6) 4.671 (6) 1.998 (6) 3.534 (6) 5.523 (6) 4.025 (6)

Dyadformer (Curto
et al., 2021)

– – – – – 0.722

Gender-wise Bimodal
NAS

0.684 0.588 0.830 0.550 0.796 0.690

Track1, including our presented solution (Salam et al., 2021), which was ranked first in
the challenge. For further details regarding the challenge, please refer to (Palmero et al.,
2022). Our approach presented in the challenge was the fusion of the models trained on
the FaceBody features and Talk Turn features (including sentiment), but not on the au-
dio features. We also compared our best performing approach presented in Table 1 (aka
Gender-wise Bimodal NAS) with the Dyadformer proposed by Curto et al. (2021).

The table shows that our approach (Gender-Wise Bimodal NAS) outperforms that of
Curto et al. (2021) by reducing the AMSE from 0.722 to 0.690. Gender-wise Bimodal NAS
performs better than our previous approach (winning solution in the challenge) by a margin
of 0.079 in overall (i.e, the AMSE decreases from 0.769 to 0.690), as well as surpasses all
other approaches for all personality traits except for Agreeableness, where our previous
approach performs better slightly (by a margin of 0.002).

4.3. Analysis of Automatically Designed Architectures

Table 3 summarises the characteristics (number of parameters and layers) of the auto-
matically designed architectures for the best performing modality for each personality trait.
Even though the multimodal models performed better than the unimodal ones, they did not
exhibit a unified architecture, which made the analysis of the architecture characteristics
non-trivial. Nevertheless, our investigation revealed that designed personalised architec-
tures significantly differed from each other as well as from generic models. However, we
were not able to observe any trend in the automatically designed architectures considering
neither the different personality traits, nor the different user profiles. We conjectured that
this could be due to the fact that different network architectures may be obtained even with
the same data as the network was initialised by different weights each time.

Table 4 further presents network architectures for each personality trait. For the Extro-
version dimension, as the best performing modalities are both FaceBody (age-wise personal-

1. https://competitions.codalab.org/competitions/31326
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Table 3: Characteristics of the automatically designed architectures for the best performing
modalities for each personality dimension (number of parameters (P) & layers
(L)). The best performing personalisation architecture is indicated in bold. NS:
No Sentiment

No Gender Age
Female Male ≤ 30 > 30

Label Feature P L P L P L P L P L

O Duration 78,348 13 2,892 9 3,745 14 36,481 10 142,092 10
C Talk Turn (NS) 576 6 3,168 8 1,057 8 576 5 1,601 9
E Duration 9,804 9 1,292 7 236 6 1,292 8 1,292 8

FaceBody 302,866 11 18,962 6 142,930 7 19,958 8 38,742 7
A SBERT 16,449 5 281,281 9 17,761 9 70,850 9 34,850 8
N Sentiment 25,622 10 1,718 9 51,126 13 1,718 10 774 10

Table 4: Automatically designed architectures for the best performing modality for each
personality trait. IL: Input Layer, ME: Multi-Category Encoding, N: Normaliza-
tion, BN: Batch Normalization, RL: ReLU, D: Dense, DO: Dropout. The numbers
within the brackets represent the layer’s output shape.

O C E A N

Duration Talk Turn (NS) FaceBody SBERT Sentiment

Female Male Female Male ≤ 30 > 30 Female Male Female Male

IL (5) IL (5) IL (15) IL (15) IL (554) IL (554) IL (512) IL (512) IL (10) IL (10)
ME (5) ME (5) ME (15) ME (15) ME (554) ME (554) ME (512) ME (512) ME (10) ME (10)
N (5) D (16) N (15) D (32) N (554) N (554) D (512) D (32) N (10) N (10)
D (64) BN (16) D (64) RL (32) D (32) D (64) BN (512) BN (32) D (32) D (256)
BN (64) RL (16) RL (64) DO (32) RL (32) RL (64) RL (512) RL (32) BN (32) BN (256)
RL (64) DO (16) D (32) D (16) D (32) D (32) D (32) D (32) RL (32) RL (256)
D (32) D (64) RL (32) RL (16) RL (32) RL (32) BN (32) BN (32) D (32) D (32)
BN (32) BN (64) DO (32) DO (16) DO (32) D (1) RL (32) RL (32) BN (32) BN (32)
RL (32) RL (64) D (1) D (1) D (1) DO (32) DO (32) RL (32) RL (32)
D (1) DO (64) D (1) D (1) D (1) D (1024)

D (32) BN (1024)
BN (32) RL (1024)
RL (32) DO (1024)
DO (32) D (1)
D (1)

isation) and Duration (gender-wise personalisation), we provide the FaceBody architecture
only due to space restrictions. Looking at the table, one trend is that the male architectures
are deeper than the female ones for the Openness and Neuroticism dimensions, which is
the case for most of the features, including the worse performing ones. To gain further in-
sights, one promising direction would be to use tools for explaining and interpreting network
decisions, which has been left as a future work.
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5. Discussion and Limitations

The proposed system has several advantages. It combines multiple modalities to predict the
personality of an individual. The system is scalable and can adapt itself to changing trends
in the data as the neural architecture search-based approach enables generation of a deep
learning model depending on the user profile. Yan et al. (2020) showed that bias exists in
self-reported personality recognition systems, and they demonstrated biases from different
modalities and data fusion strategies. To mitigate bias, the authors proposed data balancing
and adversarial learning strategies. We argue that our approach inherently deals with the
unbalanced distribution of data across gender and age and takes into account the differences
across different populations by creating and learning a separate model for different user
profiles. However, further experiments are needed to conclude whether training personalised
models is a better approach for achieving fairness as compared to traditional strategies such
as data balancing, which is an interesting future research direction.

While advantageous for the above-mentioned viewpoints, the proposed approach has two
main limitations. First limitation is that the system requires the meta-data regarding gender
and age to assign a user to a certain profile and make inference about their personality.
However, as reviewed by a recent survey (Di Mascio et al., 2022), there are many off-the-
shelf-methods for age and gender recognition, which can be used as input to the proposed
system. Second limitation is that our approach assumes the gender is binary. However,
gender is highly complex construct, and existing gender diversity needs to be taken into
account to ensure fairness (Lindqvist et al., 2021).

6. Conclusion

In this paper, we have presented an approach for personalising personality recognition
models. The proposed approach automatically learns neural architectures for different user
profiles using NAS to predict the Big Five personality trait scores from multimodal be-
havioural features. Two personalisation criteria are tested: gender-wise and age-wise. We
further propose a decision level fusion strategy, which combines the prediction results of the
two best performing modalities via mean aggregation. The proposed approach outperforms
the-state-of-the-art approaches evaluated on the UDIVA dataset (Palmero et al., 2021).

In our current approach, the models are separately trained on 1 minute segments for
each modality and after their predictions are aggregated. As a future work, we plan to
apply more sophisticated techniques and explore feature level fusion strategies to train a
single model that can leverage all the data pertaining to an individual for predicting their
personality.
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