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Abstract

We focus on estimating human head and body orientations which are crucial social cues in
free-standing conversational settings. Automatic estimations of head and body orientations
enable downstream research about conversation involvement, influence, and other social
concepts. However, in-the-wild human behavior and long interaction datasets are difficult
to collect and expensive to annotate. Our approach mitigates the need for large number of
training labels by casting the task into a transductive low-rank matrix-completion problem
using sparsely labelled data. We differentiate our learning setting from the typical data-
intensive setting required for existing supervised deep learning methods. In situations
of low labelled data availability, our method takes advantage of the inherent properties
and dynamics of the social scenarios by leveraging different sources of information and
physical priors. Our method is (1) data efficient and uses a small number of annotated
labels, (2) ensures temporal smoothness in predictions, (3) adheres to human anatomical
constraints of head and body orientation differences, and (4) exploits weak labels from
multimodal wearable sensors. We benchmark this method on the challenging multimodal
SALSA dataset, the only large scale dataset that contains video, proximity sensors and
microphone audio data. When only using 5% of all the labels as training samples, we report
65% and 76% averaged classification accuracy for head and body orientations, which is an
8% and 16% respective increase compared to previous state-of-the-art performance under
the same transductive setting.

Keywords: Human orientation estimation, matrix completion, weak labels, free-standing
conversations

1. Introduction

Studying social scenes that have free-standing conversation groups (FCGs) is of great in-
terest. FCGs are a type of focused encounters that emerge in many social occasions, such
as a cocktail party, a coffee break, a networking event, etc (Setti et al., 2015). We find
relevance in studying these social entities in order to study human interactions as part of
the complex social dynamics. Prominent non-verbal cues that depict the social interplays
are participant head and body orientations. With accurate estimations of head and body
orientations, high-level social concepts such as conversation group formations and schisms
can become more explainable.

Head and body orientations of participants are necessary prerequisites for many down-
stream tasks such as turn-taking patterns, conversation group memberships, estimation of
social attention, etc (Ba and Odobez, 2009). Some tasks may only require either the head
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Figure 1: Examples of head and body orientation estimation challenges from the SALSA
dataset (Alameda-Pineda et al., 2016) as highlighted in red: (a) low resolution, (b) low
visibility, (c) background clutter, and (d) occlusion.

or body orientation. When identifying addresser/addressee or speaker/listener in conversa-
tions, head orientations are the primary cues (Huang et al., 2011). When estimating group
memberships, body orientations are the primary cues (Kendon, 1990). However, Langton et
al. (Langton et al., 2000) have shown that head and body orientations are both important
cues for estimating social attention. In social scenes such as Figure 1, eye gaze direction
cannot be reliably observed; the attention target positions are not fixed throughout time,
and the number of attention targets is not predefined. Under these adverse circumstances,
attention direction is difficult to estimate. Hence, the importance of robust and accurate
head and body orientations becomes more evident.

While there are many successes in human pose estimation and orientation estimation
using deep learning frameworks (Güler et al., 2018; Wei et al., 2016; Toshev and Szegedy,
2014; Tompson et al., 2014), these methods only work well when human faces and body
parts are easily discernible. Head and body orientation estimation remain challenging, es-
pecially for crowded scenes with relatively static subjects captured by videos from elevated
side-views which result in low resolution, low light visibility, background clutter and occlu-
sions (Figure 1 for example) (Hu et al., 2004). In these settings, off-the-shelf deep learning
methods are not effective (Carissimi et al., 2018) and retraining/finetuning them requires
a considerable number of labelled samples. This motivates our proposed method under the
transductive and few-labels setting which simultaneously estimates head and body orienta-
tions by leveraging wearable sensor data in addition to videos.

Recent advances have shown the efficacy in using a multi-view camera and multi-sensor
scenario (Alameda-Pineda et al., 2016; Tan et al., 2021). The multi-view camera setting
offers different viewpoints on people in the scene for better acquisitions of head and body ori-
entations. More interestingly, wearable sensors such as inertial measurement units (IMUs),
microphones, infrared or Bluetooth proximity sensors, etc. have demonstrated an ability
to recover subject orientations independently of the video modality (Canton-Ferrer et al.,
2008; Kok et al., 2017; Kok and Schön, 2019). In scenarios where video and microphone
audio data are both recorded, a multimodal approach of head orientation estimation can be
more accurate and robust than a unimodal one, as shown by Canton-Ferrer et al. (2008).
Microphone data indicate who the speaker is at a given moment, and it is well known that
the speaker tends to be the center of visual focus of a conversation group (Massé et al.,
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2018). Considering these two aspects and given the ground positions of the interactants in
free-standing scenarios, head orientations can be more reliably predicted in a complemen-
tary manner, especially when video data is partial or missing.

Despite the benefits that multimodal data from wearable sensors may offer, it is chal-
lenging to work with them. This is illustrated most evidently by the lack of in-the-wild
datasets capturing natural interactions and emphasizing ecological validity in this domain,
as it requires monumental effort to collect and annotate. Malfunctions of wearable sensors
during data collection are more difficult to notice compared to those of video cameras. The
types of different sensor noise are also hard to characterize. The resulting data could be
of low quality, partial and/or missing due to periodic dropouts in sensor data streams, etc.
(Higger et al., 2013; Newman et al., 2018). However, we argue that these difficulties are
not reasons to deter from exploiting multimodal data from wearable sensors because the
available data could still be of great value, as shown by literature (Alameda-Pineda et al.,
2016; Tan et al., 2021).

In this work, we highlight the possibility and advantage of working with a small number
of human annotated orientation labels, along with sparse, noisy but automatically acquired
labels from wearable sensors. As mentioned previously, wearable sensors are hard to work
with. While it is possible to estimate labels from wearable sensors, the label quality varies
depending on raw wearable sensor data quantity and quality. Hence we refer them as weak
labels in this paper. Our results show that having information provided by other modalities
like wearable sensors can indeed improve the performance of head and body orientation
estimations in this free-standing conversation setting.

This study simultaneously addresses the following context where: 1) there is a relatively
small number of head and body orientation samples (∼ 102 − 103) for each subject, 2) we
jointly predict head and body orientation classification labels for unobserved samples only
using a very small number (∼ 5%) of sparsely distributed ground truth labels, 3) we take
advantage of the temporal structure within the orientation label data and improve upon a
previously suggested model based on Gaussian process regression (GPR) (Tan et al., 2018),
and 4) most importantly, we fully exploit the utility of head and body orientation weak
labels in addition to very few ground truths to improve performance.

2. Related Work

2.1. Human pose estimation

Recent developments of deep learning methods (Cao et al., 2017; Fang et al., 2017; Kreiss
et al., 2019; Bazarevsky et al., 2020) had greatly advanced 2D human pose estimation.
Even though results are promising, addressing existing challenges such as low resolution and
heavily occluded targets (Carissimi et al., 2018), and cluttered and crowded backgrounds,
is an active research topic. Popular off-the-shelf pose estimation methods such as Openpose
(Cao et al., 2017) use a bottom-up approach to first detect body joints and later form
associations to estimate a full skeleton model for each person in the frame. However,
having only body part locations does not provide enough information to directly estimate
the orientations of those body parts.

Using 3D pose estimation methods or converting 3D pose datasets (Ionescu et al., 2013)
allows for extraction of orientations. Recent methods focusing on 3D pose estimations
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(full body, hand+body, etc.) Rong et al. (2020); Sárándi et al. (2020); Choutas et al.
(2020) could be promising to directly infer orientations from 3D skeletal poses. However,
orientation estimation could be decoupled and simplifed from 3D pose estimation problem
as there is evidence showing orientation estimations for objects can perform better when
using 2D image features than 3D landmarks (Ghodrati et al., 2014). 3D poses may be
difficult to infer due to occlusion or low resolution body parts, which are relevant scenarios
in crowded social interactions in-the-wild. To address occlusion for 3D poses is an ongoing
topic with (Veges and Lőrincz, 2020) showing initial success on the MuPoTS dataset through
localization and pose estimation with temporal smoothing.

2.2. Head and body orientation estimation: RGB data

Previous works (e.g., Sigal and Black 2006; Ba and Odobez 2009) in head and body orien-
tation estimation saw successes in using methods based on probabilistic frameworks (e.g.
dynamic Bayesian networks, hidden Markov models, etc.). Taking advantage of the physical
constraint of relative head and body pose and walking direction, Chen et al. (2011) focus on
the joint estimation of head and body orientation to achieve improved results. This body of
work targets orientation estimations in a specific context by exploiting facial landmarks or
motion priors; while this paper differentiates itself by focusing on the task in the surveillance
setting with relatively static subjects. Without large movement towards one direction as a
cue, orientation estimation becomes more difficult. Overall, there is more previous work on
head orientation estimation compared to that of the body in the surveillance and crowded
setting. In this particular context, human heads can be more easily seen and therefore head
orientations are easier to predict. Human bodies can be occluded, making body orienta-
tions predictions more difficult. Lee et al. (2017) proposed CRPNet that works well with
low resolution images. However, their design goal favors speed over accuracy.

We acknowledge that there is a number of deep learning based methods (Beyer et al.,
2015; Prokudin et al., 2018) for head and/or body orientation estimation problems. Most
available methods are trained on datasets (Tosato et al., 2012) that contain facial views.
Applying Beyer et al.’s method (Beyer et al., 2015) to SALSA is not straightforward because
of the multi-camera setting and the extent of facial and body part occlusions. A body
orientation estimation method proposed by Choi et al. (2016) also faces similar challenges
as head orientation estimation methods. Raza et al. (2018) reported a joint head and body
orientation estimation model using a hierarchical convolutional neural network. This pre-
trained model trained with relatively small datasets (e.g., Human3.6M, Ionescu et al. 2013)
would most likely only be suitable for estimating orientations for pedestrians, and not for
crowded and static social scenes like SALSA. Overall, the development of generalizable
deep learning solutions for head and body orientation estimations are held back because of
the lack of large scale datasets and the lack of environment/context variety in the training
images. This constraint was only recently pointed out and addressed by the release of the
COCO-MEBOW dataset (Wu et al., 2020), which would enable future new data-intensive
head and body orientation estimation methods.

Previous works (Beyer et al., 2015; Hasan et al., 2018) showed that regression of head
orientations can be achieved. Tasks such as predicting social attention (Massé et al., 2017)
and personality traits (Subramanian et al., 2013) may benefit from more fine-grained orien-
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tation estimations. While regression is more descriptive, it is also challenging compared to
orientation classification. As indicated by Tan et al. (2021), the annotation noise for head
orientation labels from video annotations is around 17◦, which is more than the bin-width of
class in our setting. Further experiments show that regression could be more advantageous,
but the increase in performance on average is small compared to the variance. For the
scope of this work, we reduce the orientation estimation problem to an 8-class classification
problem (i.e., dividing 360◦ into eight sectors).

2.3. Head and body orientation estimation: depth and wearable sensors

Depth images can be used in estimated orientations. However, many works in this area
(e.g., Fanelli et al. 2011; Shinmura et al. 2015; Okuno et al. 2018) rely on the detection of
the face and/or localization of facial and body landmarks. Works such as Liu et al. (2013)
combines RGB and depth data to estimate human body orientations. It is still challenging
for subjects in crowded social scenes because of heavy occlusions with little motion cues.

In the sensor signal processing community, it is common practice to use wearable systems
that house IMU sensors. To estimate orientations, IMU data serve as inputs to algorithms
such as quaternion-based Extended Kalman Filtering and more recently reinforcement learn-
ing based methods (Kok et al., 2017; Kok and Schön, 2019; Laidig et al., 2021; Hu et al.,
2021). Ahmed and Tahir (2017) showed that errors in estimating body part orientations
while doing multi-axial actions such as waving and walking are generally as low as 2◦. More
recently, Webber and Rojas (2021) showed the efficacy of using IMUs for human activity
recognition without explicitly recovering the orientations (i.e., through gyroscopes). While
IMU data could be valuable information for multimodal head and body orientation ap-
proaches, existing resources (Alameda-Pineda et al., 2016; Cabrera-Quiros et al., 2018) that
focus on social scenes only contain accelerometer data, which is not enough for orientation
recovery.

One approach to obtain estimations of head and body orientations is to use the proximity
and audio information. Proximity sensors and microphones are already incorporated in
the implementation of wearable badges that are common in the social signal processing
and affective computing community (i.e., sociometric badges - Olguın and Pentland 2007,
OpenBadge - Lederman et al. 2017, etc.). In turn, head and body orientations can be
indirectly extracted. Previous work (Alameda-Pineda et al., 2015) used subject ground
positions along with speaker/non-speaker correlations and proximity pings to estimate labels
of head and body orientations, respectively. Compared to orientation labels from video or
IMU, these estimated labels are less reliable since they are derived information from noisy
sources. Nonetheless, they can still be explored and it is the focus of this paper.

3. Overview of the approach

Our approach combines 4 kinds of inputs: 1) head and body visual features extracted from
head and body image patches, 2) estimated head orientation labels from audio recordings,
3) estimated body orientation labels from infrared proximity sensors, and 4) manually
annotated labels of some, but not all, frames. Note that the subject ground positions are
assumed to be given for acquiring inputs 2 and 3. The goal of this study is to jointly
predict head and body orientations as an 8-class classification problem (dividing 360◦ into
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Figure 2: Overall work flow of automatic orientation estimation. The focus of this paper is
outlined in red.

eight sectors) using matrix completion in a transductive learning setting. Matrix completion
attempts to fill in missing entries in a matrix, which correspond to unobserved orientation
labels. It is often solved by iterative optimization. Due to the sparsity and noise in the
labels, the underlying challenge is to predict the head and body orientations which are
temporally smooth. They also have to be consistent with the manual labels, weak labels
(from wearable sensors), and the physical constraints that tend to couple the head and
body behavior. For the purpose of this study, we consider multi-person tracking in videos,
head and body detection, and appearance-based visual feature extraction as upstream tasks
(Figure 2). The core of the proposed model (joint head and body orientation estimator in
Figure 2) based on matrix completion is discussed in Section 4, followed by details on
experimental conditions in Section 5.

4. Proposed Model

In the supervised learning setting for a linear classifier, the objective is to learn the weight
matrix W ∈ Rc×(d+1) by minimizing the loss on a training set Ntrain as

argmin
W

∑
i∈Ntrain

Loss

(
Yi,W

[
Xi

1

])
. (1)

W maps the d-dimensional features space X ∈ Rd×T to the c-dimensional (number of
classes) output space Y ∈ Rc×T where T denotes the number of samples in time.

When dealing with noisy features and fuzzy labels, previous research (Bomma and
Robertson, 2015; Cabral et al., 2011; Goldberg et al., 2010) have empirically shown the
practicality of casting a classification problem into a transductive learning setting such as
matrix completion. For our specific task, borrowing from the linear classifier setting, a
heterogeneous matrix is built by concatenating the orientation labels Y ∈ Rc×T , visual
features X ∈ Rd×T , and a row of 1’s (to model for bias) as

J =

YX
1

 , (2)

where J ∈ R(c+d+1)×T .

Note that in (2), Y is a vectorized one hot representation of orientation labels. Dividing
360◦ into eight sectors means that there are eight possible classes and each orientation
belongs to one of the eight classes. For example, an angle θ that is 45◦ ≤ θ < 90◦would
be indicated by the vector [0, 1, 0, 0, 0, 0, 0, 0]⊤ ∈ Rc×1. Head and body label matrices are
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Figure 3: Graphical representation of the feature-label matrix. Head and body orientations
are detemined by 2D projections of yaw orientations.

denoted by Yh ∈ Rc×T and Yb ∈ Rc×T respectively. The feature matrices Xh ∈ Rdh×T and
Xb ∈ Rdb×T contain the visual features from head and body crops of each person, where
dh and db denote the respective feature dimensionality. Following the definition in (2), the
visual features and corresponding labels are concatenated into two heterogeneous matrices

Jh =
[
Y ⊤
h ,X⊤

h ,1⊤
]⊤

and Jb =
[
Y ⊤
b ,X⊤

b ,1⊤
]⊤

for head and body orientation estimation

respectively (Figure 3). In addition, a projection matrix Ph = [IcT×cT ,0cT×(dh+1)T ] is
introduced to extract only the head orientation labels from the heterogeneous matrix Jh.
In a similar manner, a projection matrix Pb = [IcT×cT ,0cT×(db+1)T ] is defined to extract
body orientation labels.

The unobserved orientation labels can either be initialized by information provided by
external sources or simply set to zero. In this study, we take the first option. The initial
matrices for head and body orientations are denoted by J0,h and J0,b respectively. The
label matrix in J0,h, denoted by Yh, is further divided into a training set Ytrain,h and a test
set Ytest,h. Similarly, the label matrix in J0,b , denoted by Yb, is divided into Ytrain,b and
Ytest,b. Each training set consists of observed labels, while the test set consists of labels to
be predicted. We assume that the training and test set samples are interleaved, as shown
in Figure 3. We chose this assumption because this could be reflective of real-life scenarios
of having observed and unobserved samples intermittently. For the sake of brevity, the
subsequent discussion focuses on the head orientation matrix. The body orientation matrix
and its corresponding optimization formulation are analogous.

The following discussion outlines the proposed matrix completion method based on the
aforementioned setting. We formulate it as an optimization problem, consisting of four
components: 1) enforcement of feature-label linear dependency, 2) temporal smoothing,
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3) regularization by weak labels, and 4) head-body coupling. Each component applies
to completing matrices for estimating head and body orientation respectively. The joint
completion of the head and body matrices are further explained in Section 4.5.

4.1. Rank minimization

Following the linear classifier assumption from (2), previous work Goldberg et al. (2010)
has shown that the matrix Jh should be low rank. The linear classifier in (1) requires that
there is row dependency in (2), hence low rank. The objective is to recover the missing
orientation labels such that the rank of the heterogeneous matrix Jh is minimized. Rank
minimization is a non-convex problem (Goldberg et al., 2010). However, Candes and Tao
(Candes and Tao, 2010) showed that rank(Jh) can be relaxed to its tightest convex envelope
which is the nuclear norm, ∥Jh∥∗, i.e.

rank(Jh) ≈ ∥Jh∥∗. (3)

In practice, the optimization problem then becomes a minimization of the nuclear norm of
Jh.

4.2. Temporal smoothing

If samples in the heterogeneous matrix are temporally sorted, one can take advantage of the
temporal structure between the columns. Orientation labels are, to an extent, temporally
smooth, as head and body poses are not expected to change drastically within a short time
period. This can be seen as a column-wise regularization. An interpolated time series of
orientation labels Ỹh can be generated using an appropriate interpolation scheme to estimate
the unobserved orientation labels. In the proposed method, Gaussian process regression
(GPR) is chosen as the interpolation scheme. Also known as Kriging, GPR has the same
objective as other regression methods, which is to predict the value of a function at some
point using a combination of observed values at other points. Rather than curve fitting
using a polynomial function for instance, GPR assumes an underlying random process,
more specifically a Gaussian process (Bachoc et al., 2017), from which the observed values
are sampled. A new posterior distribution is computed based on the assumed (Gaussian
process) prior and Gaussian likelihood functions (Williams, 1998). The Gaussian process
prior is characterized by a covariance function which measures the similarity between data
points; and thus the choice of a suitable covariance function is an essential component
in GPR. More details of Gaussian processes and Kriging can be found in Rasmussen and
Williams (2005).

Following this procedure, we denote YGP,h ∈ Rc×T as the label matrix where the missing
values are imputed by the prediction of GPR. After acquiring the interpolated labels, a new
matrix JGP,h is defined as

JGP,h =

YGP,h

Xh

1

 . (4)

We introduce an additional squared loss term ∥Ph(Jh−JGP,h)∥2F to the optimization prob-
lem, where ∥ · ∥2F is the Frobenius norm. It is a regularization to ensure that the predicted
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labels do not deviate drastically from those obtained using temporal interpolation. The
projection matrix Ph ensures that the loss is only considered over the orientation labels.

Note that GPR is an example of a regression method that works well in this setting.
Alternative regression methods such as Laplacian smoothing (Alameda-Pineda et al., 2015),
piece-wise linear interpolation and polynomial regression can also be applied. Our justifi-
cation for this choice is presented in Section 6.

4.2.1. Gaussian Process Regression Kernels

The basis of GPR is Gaussian Process (GP). A GP is defined to be a random process f(t)
for t ∈ T , such that for every finite subset of selected time steps {t1, t2, ...tN}, {f(ti); i =
1, 2, . . . , N} is jointly normally distributed. A GP is necessarily defined by its mean func-
tion m(t) = E[f(t)] and its covariance function, also called kernels, k[ti, tj ] = E[(f(ti) −
m(ti))(f(tj − m(tj))]. While the mean function is often chosen to be zero, the choice of
kernels in GP Regression is critical, and is known to affect performance to a great extent.
It controls the degree to which data are smoothed when estimating the unknown function
(Paciorek and Schervish, 2004). In GP, the kernel represents distance or similarity between
two latent variables f(ti) and f(tj) given inputs ti and tj , i ̸= j. Intuitively, It describes
how output f(tj) can be affected by output f(ti). There are many options for these kernel
functions. The radial basis function (RBF) kernel is most commonly used and is represented
as follows

k(ti, tj) = σ2
fe

− 1
2

(ti−tj)
2

σ2
l , (5)

where σl denotes the characteristic length scale that controls the smoothness of the function
and σf determines the vertical variation .

Matérn kernels are a class of kernels that provide extra flexibility compared to the
RBF kernels in controlling the differentiability of the sample functions drawn from the GP
distribution. Matérn kernels are of the form

k(ti, tj) = σ2
f

21−ν

Γ(ν)

(√
2ν | ti − tj |

σl

)ν

Kν

(√
2ν | ti − tj |

σl

)
(6)

where ν is the differentiability parameter and Kν is the modified Bessel function of the
second kind. Sample functions drawn from GP with Matérn kernels are (⌈ν⌉ − 1) times
differentiable, whereas a GP with RBF kernels lead to sample functions that are infinitely
differentiable. The parameter ν is usually chosen to be 3

2 or 5
2 , and (6) can be simplified,

respectively, as

K 3
2
(ti, tj) = σ2

f

(
1 +

√
3(ti − tj)

σl

)
e
−

√
3(ti−tj)

σl , (7)

and

K 5
2
(ti, tj) = σ2

f

(
1 +

√
5(ti − tj)

σl
+

5(ti − tj)
2

3σ2
l

)
e
−

√
5(ti−tj)

σl . (8)

The kernels in (7) and (8) lead to once and twice differentiable sample functions in GP. In
the subsequent discussion, we refer to (7) and (8) as Matérn 3/2 kernel and Matérn 5/2
kernel, respectively.
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The GP kernel function is often chosen based on a qualitative understanding of the
underlying data (Vandenberg-Rodes and Shahbaba, 2015). Though RBF kernels are most
commonly used, it has been shown that Matérn kernels are more suitable to model physical
processes (Stein, 2012; Mertens et al., 2018). Sample functions tend to be less smooth when
using Matérn kernels due to finite differentiability, allowing for more realistic capturing of
the process. In the context of head and body orientations, it is unlikely that the unknown
function would be very highly differentiable.

4.3. Regularization by weak labels

Weak labels estimated from sources such as wearable sensors could be informative though
they might be less precise than ground truth (GT) labels. They could still provide additional
information that assists in the classification task. We propose a regularization term that
incorporates weak labels of head and body orientation. The regularization term can be
written as

∥Pw,h(Jh − Jw,h)∥2F , (9)

where Pw,h is a projection map that extracts the portions where weak label readings are
available. The formulation of Jw,h is analogous to (4), where weak labels are treated as
approximations of the actual labels. Note that multiple regularization terms of the same
form as (9) can be added to the formulation depending on the number of weak labels
sources. This highlights the flexibility and modularity of the proposed model in the context
of multimodal head and body orientation estimation.

4.4. Head and body coupling

Previous research (Chen et al., 2011; Alameda-Pineda et al., 2015; Varadarajan et al., 2018)
has shown that coupling head and body orientation estimation is advantageous for improving
accuracy. The proposed formulation also captures the physical constraints between head
and body orientations. Since head and body orientations are jointly estimated, this relation
fits in nicely as an additional regularization to the optimization problem. It is reasonable
to model that head and body orientations cannot be too different at any given time step.
Though hinge loss would probably be more appropriate, the relation can also be captured
by squared loss, for the ease of analytical derivation and numerical optimization. The
regularization term can therefore be written as ∥PhJh − PbJb∥2F .

4.5. Optimization problem

To summarize, the entire optimization problem, considering all the regularizations and
indicating terms associated with both head and body (described in Sections 4.1-4.3), is
given by
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J∗
h ,J

∗
b

= arg min
Jh,Jb

νh∥Jh∥∗ + νb∥Jb∥∗︸ ︷︷ ︸
matrix low-rankedness

+
λh

2
∥Ph(Jh − JGP,h)∥2F +

λb

2
∥Pb(Jb − JGP,b)∥2F︸ ︷︷ ︸

temporal smoothing

+
γh
2
∥Pw,h(Jh − Jw,h)∥2F +

γb
2
∥Pw,b(Jb − Jw,b)∥2F︸ ︷︷ ︸

weak label regularization

+
µ

2
∥PhJh − PbJb∥2F︸ ︷︷ ︸
head-body coupling

,

(10)

where νh, νb, λh, λb, γh, γb and µ are weights that control the trade-off between the different
terms. The equation in (10) can be solved iteratively by an adapted Alternating Direction
Method of Multipliers (ADMM) (Boyd et al., 2011; Alameda-Pineda et al., 2015) to jointly
solve the minimization problem for the head and body orientation matrices.

Derivation and implementation details are included in Appendix A of the supplemen-
tary material. Note that an advantage of the weak labels regularization is that we don’t
need to study in great detail the quality of the weak labels beforehand. Hyper-parameter
optimization will determine the coefficients such that high quality weak labels boost the
performance and low quality weak labels get disregarded automatically in squared loss term
in (9).

5. Experiments

This section provides a brief introduction of the SALSA dataset (Alameda-Pineda et al.,
2016) that was used to obtain the experimental results, and an overview of the experimental
protocol. Note that since the premise of our learning problem is transductive and we target
a setting with very small number of training samples and labels as well as using multimodal
data, we do not compare our method to existing deep learning methods (for head and body
orientation estimation) which rely on (re)training on much larger number of labeled data
that contain images only and are not multimodal.

5.1. SALSA dataset analysis

5.1.1. Summary

The SALSA dataset is a multimodel dataset that was captured at a social event that
consists of a poster presentation session and a mingling event afterwards, involving 18
participants. For this study, we focus on the video recordings, proximity sensor pings,
and audio data of the poster presentation session (∼17 minutes). Ground truth labels of
head and body orientation of each participant were manually annotated every 3 seconds.
Additional details on annotations can be found in Alameda-Pineda et al. (2016). Head and
body orientations were extracted from audio and proximity data respectively, independent
of the video (Alameda-Pineda et al., 2015). These are treated as weak labels in our context.
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Figure 4: Overall class distribution of head (left) and body (right) GT labels in the SALSA
dataset.

The SALSA dataset is a challenging dataset for head and body orientation estimation
due to the low resolution of targets, cluttered background, and occlusions. The class distri-
bution of the GT labels is shown in Figure 4. We discretized the GT labels, which are labeled
with respect to the ground plane, into 8 angular bins [0,45), [45,90), [90,135), [135,180),
[180,225), [225,270), [270,315), and [315,360) in degrees in the room coordinate system; and
labeled serially from class 1 to class 8. The majority of GT labels correspond to non-frontal
views of the subjects, hence making it difficult to estimate head and body orientations
(Varadarajan et al., 2018). Overall, the dataset is relatively balanced except for class 5 and
6. However, person-wise data among the 18 subjects could be heavily imbalanced.

5.1.2. SALSA weak labels analysis

The weak labels estimated for each subject during the poster session of the SALSA dataset
are sparse and/or noisy. Head orientation weak labels are extracted by correlating the
speaking status between subjects. Body orientation weak labels are extracted based on
proximity pings. Both procedures rely on the ground position and relative proximity of the
subjects. Weak labels are 28% and 87% sparse for head and body, respectively. Hence,
body orientation weak labels are unavailable for most of the poster session. The reason for
weak label absence is unclear.

To quantify the quality of the available weak labels, we calculate the difference between
the weak labels and GT labels. Since angles are periodic (i.e. repeat every 360◦), we take
the circular difference δ between the two discretized sets of labels

δ = min (|Gi −Wi|, N − |Gi −Wi|) , (11)

whereGi denotes the i
th GT label , Wi the i

th weak label, andN the total number of possible
classes, which is 8 in the context of this paper. Therefore, the maximal difference does not
exceed 4. If the difference is 0, then weak labels match with the GT labels. The distribution
of differences in orientation labels are shown via historgrams in Figure 5. As illustrated in
the class difference distribution plots, there is generally a considerable discrepancy of class
difference of 2 or 3 classes between weak head labels and ground truth. This is expected
because microphone data are generally noisy, which can cause errors in estimating speaker
and listener status. On the other hand, the class difference in body labels concentrated at
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0 is obtained after adding 180◦ to all weak body labels. This is an artifact that has not
been explicitly stated in the original SALSA dataset paper (Alameda-Pineda et al., 2016).

(a) (b)

Figure 5: Distribution of class difference between ground truth and weak labels for head
(left) and body (right) orientations.

Poster sessions include moments of high crowd density which compromises the quality of
these weak labels, as auditory signals are cross-contaminated and infrared sensors may pick
up pings from multiple directions in the vicinity. Previous work (Alameda-Pineda et al.,
2015) considered weak labels to be the same quality as GT labels whenever they are avail-
able. Also another previous work (Tan et al., 2018) considered head and body orientation
estimation as an isolated problem based on only video data. Unlike the aforementioned
previous works, this paper exploits the potentially useful information provided by available
weak labels. The regularization term in the formulation allows us to circumvent the associ-
ated intrinsic noisiness and sparsity (Section 4.3). We also report some investigatory results
by simulating labels of different qualities and show how incorporating them via regulariza-
tion can enhance the model performance. The purpose of this exercise is to provide further
insight into future multimodal orientation estimation approaches.

5.2. Experimental setup

We used the Histogram of Gradients (HOG) visual features for head and body crops of
each participant from the SALSA dataset poster session, which aligns with the choice in
Alameda-Pineda et al. (2015). Similar to the approach proposed by Alameda-Pineda et al.
(2015), visual features from the four cameras are concatenated and Principle Component
Analysis (PCA) was performed to keep 90% of the variance as dimensionality reduction
preprocessing. This results in a 100-dimensional feature vector. Training data are the
observed labels and test data are the unobserved labels to be predicted. In a transductive
learning setting, since the objective is to predict labels for the unobserved entries only and
not generalize to further unseen data, weights are not explicitly learned. Training data and
test data partitions are determined by random sampling of columns (over time). Because
of this randomness, training and test data are interleaved and we take advantage of this
inherent structure in our formulation.

Previously, a person specific training and test scheme, in which a model is trained for
every subject, was presented in Tan et al. (2018). A caveat of performance from this type of
scheme is that there can be large inter-subject variation. The model trained on one subject
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may not generalize to other subjects. To investigate the generalizability of the proposed
model in this paper, we introduce a person independent training/test protocol. Due to
the small subject-wise sample size (18 subjects) of the SALSA dataset, we use a nested
leave-one-person-out cross validation (LOPOCV) protocol to conduct the experiments. One
subject is left out for each test fold, resulting in 18 folds overall. Within each training fold
of 17 subjects, we use a 3-fold cross validation to select the hyperparameters (via Bayesian
optimization) in the optimization problem (10). For each subject, the head and body
orientation samples are arranged temporally and a random fraction of them are chosen to
be training samples. Due to the randomness in this step, we repeat the process of randomly
selecting the training samples five times within each of the three folds. We use Bayesian
optimization to identify the hyperparameters with the negative of the sum of body and
head orientation estimation classification accuracy averaged across the 17 subjects as the
objective function.

The model performance on the test subject from each LOPOCV fold is evaluated using
the best set of hyperparameters and averaged results from 18 folds are reported. For
experimental conditions investigating the influence of the model parameters (Section 6),
the model is retrained using the same protocol.

6. Model Analysis

A comprehensive model analysis is conducted considering various possibilities in training
schemes, kernel options, and a combination of regularization terms.

6.1. Results

Table 1 reports two sets of baseline results along with results obtained from the proposed
model trained using LOPOCV. To obtain the first naive baseline, we simply set the unob-
served samples to the value of the mode of the selected samples. The second baseline is
the set of person specific results which is reported in Tan et al. (2018). Table 1 shows the
averaged-across-subject head and body orientation estimation results for different fractions
of manual annotations. There is a notable increase in performance for the proposed model
with respect to the two baselines. We also report performance of the proposed model with-
out using the regularization based on the weak labels and observe that including the weak
labels has a positive contribution to the performance.

The hyperparameters in the proposed model (10) are {νh, νb, λh, λb, γh, γb, µ}. We arbi-
trarily set νb = 1 as the contribution of the other terms can be considered relative to νb.
At 5% manual labels, hyperparameter optimization yields νh = 7.4, λh = 6.4, λb = 5.6,
γh = 1.7, γb = 1.3, and µ = 5.2 averaged across 18 folds of LOPOCV. Comparing νh and
νb, the low rankness of Jh carries more weight than that of Jb in (10). This corroborates
the intuition that there is considerable occlusion of subjects’ body and less occlusion of
subjects’ head. We also note that temporal smoothing in both head and body orientations
(λh and λb), and head-body coupling (µ) are important to model performance.

Figure 6 shows a detailed subject-wise comparison at 5% manual labels (i.e., observed
samples) fraction. For the majority of the subjects, we notice a consistent improvement
with respect to the two baselines. Improvement with respect to the results from Tan et al.
(2018) is attributed to the optimization of the GP kernel and weak label regularization
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Table 1: Averaged classification accuracy (%) for different fractions (%) of manual annota-
tions. Standard deviation (%) in accuracy performance across all people (in the LOPOCV
framework) is shown in the parenthesis. State-of-the-art performance (Alameda-Pineda
et al., 2015) at 5% manual annotation is 56.7% and 59.7% for head and body, respectively.

Fraction Mode Baseline Tan et al. Tan et al. (2018)
Ours

no weak labels weak labels

Head

5 40 (13) 63 (13) 64 (13) 65 (13)
30 41 (13) 68 (13) 72 (13) 74 (13)
50 41 (13) 70 (13) 77 (9) 76 (12)
70 41 (13) 71 (13) 77 (11) 77 (12)

Body

5 45 (18) 70 (13) 72 (13) 76 (12)
30 47 (17) 79 (11) 81 (11) 83 (9)
50 47 (17) 81 (10) 85 (11) 86 (9)
70 47 (17) 83 (10) 86 (9) 86 (9)

which were not considered previously. For some subjects such as subject 2 and 8, the mode
baseline already performs well, especially for body orientation estimation. This is because
orientation variation and diversity are relatively low for these subjects. Larger orientation
diversity can lead to lower performance and higher variation across subjects (Tan et al.,
2018). On a higher level, this can be related to the personality and role functions of subjects,
the dynamics between subjects, and the context of the social scene. For the other manual
label fractions, the observations are similar.

(a) (b)

Figure 6: Comparisons of head (left) and body (right) orientation estimation at 5% manual
annotation across four setups: mode baseline, Tan et al. (2018), and our formulation without
and with regularization by weak labels. The plots are best viewed in color.

6.2. Kernel choice

The choice of the kernel is a critical decision during the modeling process of GPR. Kernel
functions encode the underlying behavior of the data such as its periodicity and smoothness.
Since we are working with head and body orientation angles, the important feature to take
into account is the smoothness. Even though head and body turns could be seen as smooth
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in general, we hope to capture sudden head and body turns which are more interesting for
social scene analysis.

We focus on choosing among the RBF, Matérn 3/2 and Matérn 5/2 kernels. During the
hyperparameter optimization, the Matérn 3/2 kernel was found to be the optimal option
for all the different fractions of manual annotations listed in Table 1. It further supports
with the assumption that head and body orientations are only mildly smooth over time.
The RBF kernel assumes that the learned smoothing function is infinitely differentiable
which doesn’t appear to be as fitting in this particular modeling process. Similarly, the
Matérn 5/2 kernel is twice differentiable while the Matérn 3/2 kernel is once differentiable.
Further optimization of kernel parameters pertaining to the Matérn 3/2 kernel option was
also performed. Signal variance σf is a scaling factor that describes the variation of the
regressed values to their mean. Characteristic length scale σl describes the smoothness of
the function. The averaged hyperparameters σf and σl are 4.6 and 45 respectively.

6.3. Regularization by weak labels

In this section, we discuss model performance with two different kinds of weak label inputs
for the regularization term in (9). These inputs are used to populate the label portion of
Jw,h and Jw,b. First, we use the weak labels provided in the SALSA dataset. Despite the
issues with the quality of weak labels as explained in Section 5.1.2, we include the results
for instructive purposes. If a weak label is not available at a given timestep, we use the
nearest available weak label in time.

The second kind of weak label inputs is artificially generated. We want to investigate
how the performance changes with the quality of weak labels. To simulate a set of noisy
weak labels, we generate a set of artificial labels by perturbing the GT labels. In practice,
we add Gaussian noise with zero mean and standard deviation equal to 15, 30, 60, 90 and
120 degrees. This set of artificial weak labels acts in place of the actual weak labels from
SALSA.

In Figure 7, we report the results obtained with these two types of weak labels. Artificial
weak labels have been created with Gaussian noise of standard deviation equal to 30 degrees.
The baseline model represents the case when no weak labels are included. We observe that
using true weak labels decreases the performance compared to the baseline. This is expected
given the poor quality of the actual weak labels. However, with artificial weak labels, there
is a notable increase compared to the baseline. This shows that weak labels of decent quality
can be exploited, especially when the manual annotation fraction is low. With an increasing
number of observed samples, the number of unobserved samples becomes fewer, reducing
the dependence on weak labels. As a result, the value of using weak labels diminishes with
an increasing number of observed samples. But as we are especially interested in the regime
of few observed samples, we highlight the fact that weak labels can indeed boost model
performance.

Figure 8 shows the improvement in performance due to noisy weak labels with respect
to the baseline model. We set 5% of the data as manual annotations or observed samples.
When weak labels become increasingly noisy, the model performance falls below that of the
baseline. This demonstrates that weak labels need to be of a reasonable quality to contribute
positively to performance and justifies the poor performance when the true SALSA weak
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labels are included. Furthermore, the improvements in body orientation estimations are
more consistent compared to those of the head. Hence, we emphasize that head orientation
estimation is a more difficult task, possibly because head orientations vary more than body
orientations over short time scales. A different approach such as classification with finer
granularities could be promising for better head orientation estimations.

(a) (b)

Figure 7: Performance comparison for head (left) and body (right) orientation estimation
without (baseline) and with weak label regularizations. Artificial weak labels have been
created using Gaussian noise of standard deviation equal to 30 degrees.

15 30 60 90 120

Standard deviation of noise added to GT (degrees)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

(a)

15 30 60 90 120

Standard deviation of noise added to GT (degrees)

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

P
e

rf
o

rm
a

n
c
e

 i
m

p
ro

v
e

m
e

n
t

(b)

Figure 8: Improvement in performance of head (left) and body (right) orientation estimation
for different magnitudes of noise in artifically generated weak labels. The improvement is
reported with respect to the baseline (i.e., no weak labels) in the 5% observed samples
setting. The error bars indicate subject wise standard deviation in improvement.

6.4. Contribution of head-body coupling

To study the contribution from head-body coupling regularization term, we remove this
from the best model (i.e. with artifical weak labels) and compare the performance differ-
ence. Figure 9 shows the extent to which the performance decreases without head-body
coupling, which is more prominent when the manual annotation fraction is low. Similar
to the observation made for the weak label regularization, when there is more observed
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(a) (b)

Figure 9: Performance comparison for head (left) and body (right) orientation estimation
without and with head-body coupling regularization.

samples, GP smoothing becomes advantageous and dominant, making the head-body cou-
pling term less important. However, when the observed sample size is small, the head-body
coupling contributes positively to the performance. In particular, the effect is prominent in
body orientation estimation where an increase of 4.7% in accuracy is obtained when 5% of
the data is manually labeled.

7. Discussion and Conclusion

In this paper, we present a model that utilizes few labeled samples to classify unlabeled
samples for head and body orientation estimation in a transductive setting using matrix
completion. The formulation of the model combines rank minimization of the joint feature-
label matrix, temporal smoothing over labels (based on GPR), weak labels regularization
that takes advantage of weak labels from wearable sensors, and head-body coupling to ensure
physical restraints of head and body orientation estimates. Since we are especially interested
in investigating multimodal orientation estimation, we primarily test our method on the
challenging SALSA dataset. SALSA is the largest annotated dataset that contains multiple
overlapping video recordings and wearable sensor readings along with ground positions,
and head and body orientations of each subject. In Section 5.1, we describe some issues
and challenges with working with weak labels acquired from wearable sensors. We do not
compare to existing deep learning methods for head and/or body orientation estimation
(e.g., Prokudin et al. 2018; Beyer et al. 2015; Raza et al. 2018; Choi et al. 2016) because of the
fundamental difference in learning setting and the lack of multimodal comparisons. Future
extension of studies based on deep learning approaches could be developed to accomodate
multimodal data for this task, upon further ablation studies to verify the efficiency of
wearable sensing data.

Notable conclusions from our experimental results are – (i) the person independent
model achieved by the proposed formulation outperforms the person specific model, which
shows promising generalization ability; (ii) a more suitable kernel for GPR when modeling
head and body orientation series is the Matérn 3/2 kernel, as opposed to the more popular
RBF kernel; (iii) weak labels of low quality may impair performance but in the case where
better quality weak labels are used, model performance is boosted; and (iv) head and body
coupling indeed improves head and body orientation. The increase in performance due
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to (iii) anf (iv) is especially notable in the few manual annotations or observed samples
regime.

There are some limitations to this model. The performance would depend on the spacing
(availability) of observed samples in order for temporal smoothing to be effective. The
method does not apply to independent and isolated unseen samples. It would not perform
well if the period of interest is far away in time compared to the observed samples. On the
other hand, this provides initial guidelines on selecting which samples to annotate if there
are financial constraints. Performance would also depend on the methods applied to the
sensor signals as acquiring head and body orientation estimates from wearable sensors is
challenging in itself.

Future work entails addressing the aforementioned limitations. On the other hand, given
the flexibility of the model, possible topics to explore include but are not limited to matrix
completion with missing features, feature representation across different modalities, and
joint head and body matrix completion of several subjects, given prior information such
as group membership assignments. In the case of a large number of unlabeled samples in
a dataset, results from the proposed model would give competitive rough estimates of the
actual labels as a data augmentation technique. This is a viable option if obtaining manual
labels becomes expensive or impossible. Acquiring results from the model is relatively
computationally inexpensive, and we can use them as a springboard for deep neural networks
or other models that require a larger number of labeled samples to achieve better head and
body orientation estimations.
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Benôıt Massé, Silèye O. Ba, and Radu Horaud. Tracking gaze and visual focus of attention
of people involved in social interaction. CoRR, abs/1703.04727, 2017.
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