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Abstract

Non-verbal behaviours play an indispensable role in social interaction. People tend to use
a wide range of non-verbal channels, including eye gaze, body, and facial gestures, to com-
municate their intentions and emotions to their interacting partners. Such social signals
encourage verbal messages of the communicator can be transmitted to other interlocutors
in a facile and transparent manner. On the other hand, an essential aspect of communi-
cation behaviours is the dynamic exchange of non-verbal signals among interlocutors for
adapting current social norms and building a common ground. This factor suggests that
data observed from the interacting partners should be considered when modeling the tar-
get individual’s behaviours. Our paper introduces a generative framework with context
awareness that captures the influence of the interacting partner’s non-verbal signals on the
target individual. The model consists of three components, namely, Context Encoder, Gen-
erator, and Discriminator. Context Encoder is employed to extract social signals observed
from the interacting partner while Generator and Discriminator are utilized to gener-
ate and optimize the target person’s gestures. We verify the efficiency of the framework
on two different dyadic interaction datasets. The experimental results demonstrate that
compared to baselines, our solution can produce human-like gestures better supporting
interaction contexts. Undoubtedly, in dyadic interaction, the influence of the interacting
partner’s social signals on the target individual is observable, and the proposed approach
can efficiently capture those effects. The source code of our framework can be found at
https://github.com/sairlab/Context-Aware-Human-Behavior-Forecasting.

Keywords: dyadic social interaction, non-verbal behaviour generation, motion forecasting,
generative adversarial networks.

1. Introduction

People tend to use a wide range of non-verbal channels, including eye gaze, body, and facial
gestures, to communicate their intentions and emotions to their interacting partners. These
modalities help to transmit verbal messages to other interlocutors in a facile and trans-
parent manner in social interaction (Knapp et al., 2013). Motivated by the importance of
human non-verbal behaviours, considerable attention has been paid to non-verbal behaviour
generation tasks for virtual agents (Feng et al., 2017) and social robots (Ahn et al., 2018;
Tuyen et al., 2020). Similarly to human interaction, communicative gestures endow vir-
tual agents and robots with abilities to emphasize their speech and express their intentions
or emotions. Consequently, non-verbal cues could help to improve the user’s perception

© 2022 N.T.V. Tuyen & O. Celiktutan.

https://github.com/sairlab/Context-Aware-Human-Behavior-Forecasting


Context-Aware Human Behaviour Forecasting

of robots’ behaviours and positively contribute to interaction outcomes (Saunderson and
Nejat, 2019).

On the other hand, an essential aspect of communicative behaviours is the dynamic
exchange of such non-verbal signals among interlocutors for adapting to interacting social
norms (Lakin et al., 2003) and building a common ground (Noy et al., 2011). This factor
suggests that data observed from their interacting partners should be considered when
modeling the target individual’s behaviours. It would ensure output gestures can convey
the communicator’s intentions, at the same time, conform to the interaction context. The
research presented in this paper sheds light on motion forecasting with context awareness.
This problem is addressed by a generative framework that captures the influence of the
interacting partner’s non-verbal signals on the target individual during dyadic interaction.

The main contributions of this work can be summarized as follows:

(i) We suggest a new research question in motion forecasting domain: context-aware
human gesture forecasting in dyadic interaction. This topic has not been intensively
investigated in previous works in spite of its potential applications in many different
areas.

(ii) We introduce a new generative framework that consists of multiple generators to
handle the variations of joint distribution across different parts of human body.

2. Related Works

2.1. Non-verbal Behaviour Generation

The problem of non-verbal behaviour generation can be broadly categorized into two groups,
namely, motion synthesis and motion forecasting.

Motion Synthesis. In recent years, there has been a growing interest in this research
topic, where the connections between non-verbal signals of the communicator (or a robot)
and their synthesized data (e.g., speech, emotion, etc.) are determined via a rule-based (Cas-
sell et al., 2004) or data-driven approach (Ahn et al., 2018; Tuyen et al., 2020; Kucherenko
et al., 2019; Wu et al., 2021). In particular, co-speech gestures are naturally performed
when speaking and they are applied to convey the communicator’s emotion, intention, or
verbal contents of their speech. The semantic contents of the communicator’s speech could
be implemented to develop body gestures. This problem is addressed by a Generative Ad-
versarial Network (GAN) based on Sequence to Sequence (Seq2Seq) model (Ahn et al.,
2018) or a Conditional Generative Adversarial Network (cGAN) designed with Convolution
Neural Network (CNN) operation (Tuyen et al., 2020). In other studies (Kucherenko et al.,
2019; Wu et al., 2021), non-verbal gestures are estimated via the communicator’s speech
features using an auto encoder-decoder (Kucherenko et al., 2019) or a GAN network (Wu
et al., 2021).

Motion Forecasting. This task aims to comprehend the non-verbal signals of the indi-
vidual and generates future motion sequences. Motion forecasting is commonly addressed
by a Seq2Seq framework. In Martinez et al. (2017), human motion inputs are encoded
into internal representations and forwarded to a decoder to produce a maximum likelihood
estimate for prediction. Residual connections are added to the encoder-decoder network
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for better modeling the velocity of motions. A similar approach can be found in Gui et al.
(2018), where discriminators are additionally equipped for the designed framework. It is
suggested that the accuracy of predicted motions can be further enhanced by adding the
adversarial loss to the training phase.

2.2. Non-verbal Behaviour Generation with Context Awareness

The subsection reviews previous studies in the non-verbal generation task where the data
observed from the interacting partners are considered to model gestures of the communicator
(called the target person).

Motion Synthesis. Huang and Khan (2017) focused on the problem of facial expres-
sions produced during interactions between an interviewee and an interviewer, and they
introduced a framework based on cGAN. The method generated the interviewer’s facial
gestures that were appropriately contextualized and responsive to the interviewee’s facial
expressions. Similarly, the authors in Feng et al. (2017) suggested a Variational Auto
Encoder-Decoder network to handle the generation of facial cues between a user and an
embodied agent. In terms of triadic human communication, the authors (Joo et al., 2019)
presented a generative approach that acquires non-verbal signals from interacting partners
and encodes them into latent vectors. The encoded features were utilized to estimate the
target person’s body gestures.

Motion Forecasting. This line of research deals with forecasting short-term future mo-
tions of the target person by gathering non-verbal signals exchanged among interlocutors.
This problem has been illustrated in Gupta et al. (2018) through a social navigation sce-
nario where two pedestrians need to avoid each other when deciding their future motion
paths. The problem is tackled by a GAN framework that observes the motion history of
all pedestrians. It should be emphasized that not only in scenarios of social navigation,
the dynamic exchange of non-verbal behaviours is unavoidable in scenarios of human so-
cial communication (Lakin et al., 2003; Noy et al., 2011). Recently, the authors (Raman
et al., 2021) introduced a socially aware sequence-to-sequence model to forecast nonverbal
cues (e.g., speaking status, and head pose) of two or more than two people involved in a
group conversation. However, to the best of our knowledge, this research topic has not been
intensively investigated, especially for producing high-dimensional human-like gestures in
dyadic interactions that could be particularly useful for virtual agents and social robots.

3. Methodology

In this section, we first formulate the problem of non-verbal behaviour forecasting in dyadic
interaction. Then, we present an overview of the approach, which is followed by details of
the individual model components, including Context Encoder E, Generator G, and Dis-
criminator D. We finalise with describing the designed loss functions and training process.

3.1. Problem Formulation

Considering the interaction between a target person Sfo and their interacting partner Sob,
let P 0:k

fo denotes the motion data of the target person Sfo, within a temporal window,
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Figure 1: The proposed framework to forecast the upper body motion P̂ k+1:T
fo of the target

person Sfo in dyadic interaction. The model takes into account their current data
P 0:k
fo , and the signal P 0:k

ob , A0:k
ob collected from the interacting partner Sob.

namely, (t ∈ [0, k]). We can also observe audio A0:k
ob and motion features P 0:k

ob of the
interacting partner Sob simultaneously. This paper aims to forecast a possible short-term
future motion (a response non-verbal behaviour) P̂ k+1:T

fo (t ∈ [k+1, T ]) of the target person
Sfo. Hence, the goal of non-verbal behaviour forecasting is to find a mapping function F

that receives P 0:k
fo , P 0:k

ob , A0:k
ob as inputs, and predicts the output P̂ k+1:T

fo .

3.2. Background: Generative Adversarial Networks

GAN was originally introduced by Goodfellow et al. (2014). The model is designed with
a Generator G and a Discriminator D. GAN operates based on a min-max game of two
players. G attempts to capture the real data distribution and create fake data that can fool
D. In contrast, D tries to differentiate between real and fake data produced by G. cGAN
(Mirza and Osindero, 2014) is an extension of GAN that receives c as a conditional input to
regulate generated data. The min-max game between G and D in cGAN can be formulated
as follows:
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min
G

max
D

V (D,G) = Ex,c∼pdata [logD(c, x)] + Ec∼pdata,z∼pz [log(1−D(G(c, z), c))] , (1)

where z is a random noise vector sampled from a prior distribution function.

This adversarial training provides GAN and its extensions capabilities of producing
realistic high dimensional outputs, which are difficult to determine via manually designed
features (Reed et al., 2016). As a result, GAN has been widely used in many application
domains, in particular, non-verbal behaviour generation task (Gui et al., 2018; Ahn et al.,
2018; Tuyen et al., 2020; Wu et al., 2021).

3.3. Overview of the Proposed Approach

Fig. 1 illustrates the proposed training framework to forecast P̂ k+1:T
fo (t ∈ [k + 1, T ]). The

process starts with encoding face, body, and hand landmarks P 0:k
ob (t ∈ [0, k]) of the in-

teracting partner into cP , and their corresponding audio features A0:k
ob into cA. cP is then

combined with cA, and injected into both Generator G and Discriminator D as the contex-
tual input c. In terms of P 0:k

fo , it is divided into three motion parts, namely face P 0:k
fo f , body

P 0:k
fo b, and hands P 0:k

fo h, and fed to Gface, Gbody, and Ghands, respectively. Here, Generator

receives the contextual input c and a corresponding data P 0:k
fo to forecast a possible motion

P̂ k+1:T
fo . Finally, generated data including face P̂ k+1:T

fo f , body P̂ k+1:T
fo b , and hands P̂ k+1:T

fo h are

combined again into a single form P̂ k+1:T
fo . Both P k+1:T

fo and P̂ k+1:T
fo are injected into the

Discriminator network. In the sequel, we present the details of the proposed approach.

3.4. Context Encoder: Motion Encoder and MFCCs Encoder

Context Encoder E consists of Motion Encoder and MFCCs Encoder. The network receives
the motion P 0:k

ob and the audio data A0:k
ob acquired from Sob as the inputs . More explicitly,

the input P 0:k
ob is fed to Motion Encoder while A0:k

ob is handled by MFCCs Encoder. Motion
Encoder is constructed with a Long-Short TermMemory (LSTM) layer and a fully connected
layer. This network encodes the interacting partner’s motion P 0:k

ob consisting of face, body,
and hands into a latent vector cP . On the other hand, the audio data A0:k

ob is fed to MFCCs
Encoder to create a representation output cA. Here, we extract MFCC features from A0:k

ob

(see Section 5.1 for further details). MFCCs are well known to encode signal frequencies
according to how humans perceive sounds, these low-level features are widely utilized in
speech recognition or identification tasks (Vergin et al., 1999; Murty and Yegnanarayana,
2005). The extracted MFCC features are passed through a series of three 1D convolutions
and a fully connected layer. On each layer, batch normalization is applied and followed by
Rectified Linear Unit (ReLU) activation. Finally, c denotes the contextual vector formed
by concatenating cA encoded by MFCCs Encoder with cP encoded by Motion Encoder.

3.5. Generator

Generator G consists of three networks, namely Gface, Gbody, and Ghand, to handle the
generation of face, body, and hand motions, respectively. We address the problem of varia-
tions in joint distribution among different body parts by separating a Generator into three
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smaller networks. Each network concentrates on a specific body area to better imitate a
particular joint distribution. Each Generator receives the contextual information c provided
by Context Encoder and the target person’s motion as the inputs to predict the short-term
future motion, P k+1:T

fo .

The three Generator subnetworks, Gface, Gbody and Ghands, are shown in Fig. 1. Each
subnetwork consists of GEncoder and GDecoder. For instance, in the case of Gface, GEncoder

is constructed with two LSTM layers, it receives P 0:k−1
fo f as the input and generate the

internal representation he : he ← GEncoder(P
0:k−1
fo f ). On the other hand, GDecoder plays

the role as a conditional generative network which is built upon two LSTM layers and a
fully connected layer. GDecoder receives the resulting vector he encoded by GEncoder as an
initial hidden state, and P k

fo f as an initial pose input. At the time stamp t, GDecoder takes

the combined vector between its own prediction P̂ t−1
fo f and the contextual information c to

forecast the next motion frame P̂ t
fo f . Additionally, a residual connection (Martinez et al.,

2017) is added between the input and the output of each LSTM cell of GDecoder to foster
the continuity of generated motions. The same generation pipeline is implemented in Gbody

and Ghands. Finally, face P̂ k+1:T
fo f , body P̂ k+1:T

fo b , and hands P̂ k+1:T
fo h are concatenated into

P̂ k+1:T
fo representing an action of the target person.

3.6. Discriminator

Both real P 0:k
fo and fake action P̂ 0:k

fo are injected into the Discriminator network, D. The
role of D is to tell whether the inputs are sampled from real or generated distribution.
Additionally, Discriminator also takes the contextual vector c as a conditional input; c
delivers information allowing Discriminator to validate the synthesis of input motion and
the interaction context. This idea has been shared across non-verbal behaviours generation
studies (Ahn et al., 2018; Sun et al., 2020; Wu et al., 2021). The motion sequence input and
the contextual vector c are concatenated and fed to D, which is designed with two LSTM
layers and a fully connected layer. The output value is passed through a sigmoid function
to produce a probability indicating whether the input motion is real or fake. Here, D works
as a smart adaptive loss function, this adversarial loss encourages Generator to produce
more realistic motions in alignment with the interaction context.

Overall, the framework demonstrated in Fig. 1 is trained with the loss functions LG and
LD, where LMSE = 1

T−k−1

∑T
t=k+1 ||P t

fo− P̂ t
fo||22. We used LG to train the Context Encoder

and Generator, while LD is utilized for optimizing Discriminator. Here, LMSE
face , LMSE

body ,

and LMSE
hands are the reconstruction losses indicating mean square errors between the ground

truth and the generated data of face, body, and hands, respectively. α1, α2, α3, and β are
parameters to control the weights of the loss terms. The training pipeline is summarized in
Algorithm 1.

LG = α1 ∗ LMSE
face + α2 ∗ LMSE

body + α3 ∗ LMSE
hand + β ∗ log(1−D(c, P̂ k+1:T

fo )) (2)

LD = −log(D(c, P k+1:T
fo ))− log(1−D(c, P̂ k+1:T

fo )) (3)
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Algorithm 1: Generating Nonverbal Social Signals with Context-Aware GAN

Input: Interacting partner gesture P 0:k
ob , interacting partner audio features A0:k

ob ,
target person gesture P 0:k

fo , training steps S

for s← 1 to S do
cP ← MotionEncoder(P 0:k

ob );

cA ← MFCCsEncoder(A0:k
ob );

c ← concat(cP , cA);

P̂ k+1:T
fo f ← Gface(c, P

0:k
fo f );

P̂ k+1:T
fo b ← Gbody(c, P

0:k
fo b);

P̂ k+1:T
fo h ← Ghand(c, P

0:k
fo h);

P̂ k+1:T
fo ← concat(P̂ k+1:T

fo f , P̂ k+1:T
fo b , P̂ k+1:T

fo h );

yr ← D(c, P k+1:T
fo );

yf ← D(c, P̂ k+1:T
fo );

Update D with LD;
Update G, E with LG;

end

4. Evaluation Metrics

Generated motions are quantitatively evaluated by analyzing the differences between gen-
erated motions P̂ k+1:T

fo and the ground truth ones P k+1:T
fo . The closer values to 1, the more

similar to the ground truth motions. As given in Eq. 4, the score of Face is computed
based on the Area Under the Curve (AUC) of the Cumulative Error Distribution (CED) as
implemented by Huang et al. (2021). Body score is determined as AUC of the Percentage of
Correct Keypoints (PCK) (Andriluka et al., 2014). Lastly, the score of Hands is calculated
based on the AUC of the Success Rate (SR) (Yuan et al., 2018) on both left and right hand.

Face = AUC
Pk+1:T
fo f

CED(0:0.25) Body =
1

N

Nb∑
i=0

AUC
Pk+1:T
fo b

PCKi(0:0.5)
Hands = AUC

Pk+1:T
fo h

SR(0:0.5) (4)

5. Experimental Results on the UDIVA Dataset

5.1. Data Pre-processing

The designed framework is first validated on the UDIVA v0.5 dataset (Palmero et al., 2021,
2022). UDIVA is the time-synchronized multimodal, multi-view dataset of dyadic human
interactions recorded in different communication scenarios. In this experiment, we used the
data collected from participants involved in talk scenarios. The participants are instructed
to talk about any topics while upper body gestures are naturally performed to support their
communication. UDIVA can be considered as a communication-oriented dyadic interaction
dataset, allowing us to forecast non-verbal gestures performed in social communication
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Table 1: Low-level features extracted from the audio input.

Feature Dimension

Mel Frequency Cepstral Coefficients (MFCC) 13
delta-MFCC (1st) 13
delta-MFCC (2nd) 13

Total 39

contexts. At the same time, we can verify the contribution of the interacting partner’s
non-verbal signals to the forecasting of the target individual’s signals.

The dataset consists of 116 sessions for training, 18 sessions for validating, and 11 ses-
sions for testing. Each interaction session was recorded in 5 minutes with a frame rate of
25 fps. For pre-processing, we segmented interaction sessions into equal size instances of
150 frames (6 seconds) with a sliding window of 20 frames. The forecasting problem was
formulated as the prediction of the last 50 frames (2 seconds), given the first 100 frames (4
seconds) in an interaction segment. In terms of the motion data P 0:T ∈ R150×2×78, it com-
prised 150 motion frames and each skeleton frame was constructed by 78 joint coordinates
(face = 28, body = 10, and hands = 40) defined in 2D space. Motion data was normal-
ized by taking into account the mean and standard deviation values over the whole time
sequence. From the audio A0:T

ob , we extracted the low-level features with a total dimension
of 39 as depicted in Table 1. The audio was processed at a frame rate of 100 fps. The ex-
tracted MFCC features were normalized and down-sampled to match the motion frequency
of 25 fps. We finally obtained 30964 samples for training, 1196 samples for validating, and
556 samples for testing.

5.2. Implementation Details

The training data was fed to the framework with a batch size of 256. We used the Adam
optimizer with a learning rate of 0.0005 and parameters β1 = 0.9, β2 = 0.999 for training.
Weights for the loss functions LG and LD were chosen empirically (α1 = 10, α2 = 5,
α2 = 10, γ = 1). During the first 50 warm-up epochs, the adversarial loss was not applied
in the loss function LG.

5.3. Ablation Study

In this section, we perform detailed ablation experiments to evaluate the impact of indi-
vidual model components on the generated motions P k+1:T

fo of the target person. Table 2
summarises the key components of seven ablation models implemented in this experiment.
The description of individual framework can be detailed as follows:

1. full model : This is our proposed solution as illustrated in Section 3. The framework
consists of E, G, and D. Here, G is designed with three networks: Gface, Gbody, and
Ghands to handle the generation of face, body, and hand motions, respectively .
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Table 2: The comparison of seven models evaluated in the ablation study.

No Model
Components

Generator
Context Encoder

Discriminator
Motion MFCCs

1 full model ✓ ✓ A0:k
ob ✓

2 singleGenerator ✓ ✓ A0:k
ob ✓

3 w/o Discriminator v1 ✓ ✓ A0:k
ob none

4 full model v2 ✓ ✓ A0:k
fo ✓

5 w/o Discriminator v2 ✓ ✓ A0:k
fo none

6
w/o Audio Encoder
Tan Viet Tuyen and Celiktutan (2021)

✓ ✓ none
✓

(no c input)

7
Seq2Seq
Martinez et al. (2017)

✓ none none none

Table 3: Prediction scores of seven models reported on the UDIVA dataset in terms of
Face, Body, and Hands metrics introduced in Eq. 4. The closer values to 1, the
more similar to the ground truth values.

No Model Face Body Hands

1 full model 0.263 0.867 0.392

2 singleGenerator 0.194 0.859 0.319

3 w/o Discriminator v1 0.179 0.825 0.209

4 full model v2 0.238 0.863 0.327

5 w/o Discriminator v2 0.174 0.814 0.170

6 w/o Audio Encoder 0.204 0.850 0.316

7 Seq2Seq 0.050 0.801 0.186

Ground Truth 1 1 1

2. singleGenerator : Rather than dividing the motion data into three different areas (body,
face, and hands) in which each of them is handled by a specific Generator as employed
in full model, in singleGenerator, the entire motion data of S0:k

fo is managed by a single
Generator.

3. w/o Discriminator v1 : This network is designed similar to full model except that D
is withdrawn. In other words, the adversarial loss is not contributed to the training
process.

4. full model v2 : This model investigates a possibility of combining audio features A0:k
fo

of the target person with the motion data P 0:k
ob of the interacting partner to create the

contextual information c.
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5. w/o Discriminator v2 : It is implemented similar to w/o Discriminator v1. However,
MFCCs Encoder receives A0:k

fo collected from Sfo as the input, rather than A0:k
ob as applied

in the w/o Discriminator v1.

6. w/o Audio Encoder (Tan Viet Tuyen and Celiktutan, 2021): Similar to full model, this
framework is designed with Context Encoder E, Generator G, and Discriminator D.
G also consists of Gface, Gbody, and Ghand. However, E is not equipped with MFCCs
Encoder, and D does not receive the conditional input c provided by E.

7. Seq2Seq : Using the motion data P 0:k
fo only, P k+1:T

fo can also be estimated by the well-
known Seq2Seq network introduced by Martinez et al. (2017). This approach is affiliated
with the conventional motion forecasting task mentioned in Section 2.

Table 3 presents the prediction scores of face, body, and hands using the evaluation
metrics defined in Section 4, where values closer to 1 (i.e., similar to the ground truth) are
desirable. Overall, it can be seen that full model yields the best performance with respect
to face, body, and hands. Further details about differences between generated motions of
full model and ground truth are visualised in Fig. 2.

Looking at Table 3, body scores are not much different among ablation models. This
result could be interpreted by the nature of the UDIVA dataset in which all interactions
were recorded when participants were sitting down around a table. This interaction setup
may have constrained participants to perform extensive gestures except for hand and facial
movements. As a result, body joints could be easily predicted. The prediction scores of
face and hands are highly different among implemented models. In the following, we take
into consideration of Face and Hands metrics illustrated in Eq. 4 to discuss in more detail
about the model performances.

5.3.1. Generators vs a Single Generator

As compared to singleGenerator, full model can further improve the accuracy of generated
motions. On the UDIVA dataset, joint distributions are significantly different among face,
body, and hand areas. For instance, the upper body is sparsely exhibited by 10 mark-
ers, while 28 landmarks are densely located in a small area to portray facial movements.
This factor implies that different Generators are needed to treat different body parts ap-
propriately. With the full model approach, the problem is addressed by creating three
Generators, namely, Gface, Gbody, and Ghands. Then, the features generated by the three
networks are combined again into a completed form P k+1:T

fo before feeding to D. In the
fully implemented model, Discriminator D works as a smart adaptive loss function for the
whole training framework. The adversarial loss allows G to optimize realistic features of
generated motions. The results in Table 3 suggest that the accuracy of generated gestures
is reduced when removing D out the training framework.

5.3.2. The Contribution of Context Encoder to Generated Motions

In this experiment, full model and full model v2 share the same network architecture.
However, they receive audio input from different sources. The results demonstrate that using
audio features extracted from A0:k

ob further improve the model performance as compared to
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(a) Face

(b) Body (c) Hands

Figure 2: Normalized distances between ground truth and the motion features generated
by full model. The experiment was conducted on the UDIVA dataset.

the audio features provided by Sfo. This result implies that the concatenated information
encoded from A0:k

ob and P 0:k
ob is more informative for the generative framework than the

combination between A0:k
fo and P 0:k

ob . This is probably because A0:k
ob and P 0:k

ob are better
correlated to each other in both temporal and spatial dimension as those are provided by
the same source (the person Sob), and the same time sequence (t ∈ [0, k]).

In the scenario where Context Encoder E and Discriminator D are removed from the
full model, the problem of non-verbal behaviours forecasting can be addressed by a well-
known Seq2Seq approach introduced by Martinez et al. (2017). With Seq2Seq, information
of the interacting partner is not used to forecast the target user motions, and it is interesting
to notice that face and body scores are significantly reduced compared to the full model.
Fig. 3 and Fig. 4 quantitatively demonstrate differences among predicted actions produced
by the two models in two different interaction sessions. A closer look at Fig. 3(c), it is
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observed that facial landmarks representing eyebrows and mouth are not neutrally displayed
as can be seen in the ground truth. Concerning hand markers, both full model and Seq2Seq
fail to predict the future trajectory compared to the true motion presented in Fig. 3(a).
However, generated hand gestures created by full model appear to be more natural than
the ones created by Seq2Seq. This problem could be explained by the lack of adversarial
loss provided by Discriminator, and the drawback of using a single Generator network for
modeling different body areas.

The low accuracy in the facial movements generated by Seq2Seq can be further explained
by the lack of contextual information provided by Context Encoder E. It should be revisited
that with the Seq2Seq solution, the network only receives the current non-verbal data of
the target person Sfo to predict a possible short-term future motion. This approach might
be inappropriate for scenarios of dyadic social interaction where the dynamic exchange of
non-verbal signals among interlocutors is unavoidable. Fig. 4 depicts a simple case that the
interacting partner’s gesture may contribute to the generation of the target user’s motion.
In Fig. 4(a), at the time stamp t = 3, Sfo looks at elsewhere. In the next two seconds
(t ∈ [4, 5]), Sfo turns their head back to look at the interacting partner, possibly, for
maintaining an eye-contact during interactions. At the time stamp t = 4, generated facial
movements of full model and the Seq2Seq are almost similar to each other since both receive
the same initial pose input. However, differences can be clearly observed at t = 5. With the
full model, Sfo also turns their head to look at Sob as observed in the ground truth. Vice
versa, the head orientation generated by Seq2Seq remains unchanged as it solely relies on
the history of motion of Sfo to predict the next motion sequences.

6. Experimental Results on the AIR-Act2Act Dataset

6.1. Data Pre-processing

In contrast to the UDIVA communication-oriented dataset discussed in Section 5, in this
experiment, we validate the designed framework on the Act2Act (Ko et al., 2021) dataset.
Broadly speaking, this dataset includes a series of task-oriented dyadic interactions. Similar
to the UDIVA dataset, AIR-Act2Act is the time-synchronized multi-view dataset of human
social interaction. The dataset consists of 10 interaction scenarios with 100 participants
involved in the data collection phase to create a total of 5000 interaction sessions. Since
this dataset features a large number of subjects and interaction sessions, a greater variation
in the motion data within interaction scenarios can be observed. As a task-oriented dataset
of dyadic interaction, this dataset allows us to examine better the influence of the interacting
partner behaviours on the target person.

On each interaction section, we collected the motion data of two interlocutors at a frame
rate of 15 fps. By considering the common length of dyadic interactions conducted in AIR-
Act2Act, we segmented interaction sessions into equal sizes of 60 (4 secs) frames with a
sliding window of 10 frames. The first 30 frames were used as an observed window, and
the forecasting task was to predict the remaining, last 30 frames. In AIR-Act2Act, raw
motion data included 25 joint coordinates representing the entire body motion defined in
3D. We used 14 joints that correspond to the upper body motion (P 0:T ∈ R60×3×14). This
dataset contains several locomotion actions. To eliminate the effects of camera distance and
body size, we reconstructed and normalized all joint coordinates with respect to the central
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Partner Target Target

t=0 t=3 t=4 t=5

(a) GT

Partner Target Target

(b) full model

Partner Target Target

(c) Seq2Seq

Figure 3: Visualisation of the ground truth motions (GT) and predicted motions using the
fully implemented model (full model), and the framework introduced in Martinez
et al. (2017) (Seq2Seq). The last two windows (t ∈ [4, 5]) depicts generated
motions.

hip. Additionally, motion frames were transformed to the frontal view to disregard camera
orientations. The audio source was not provided in this dataset, so MFCCs Encoder was
not applied in the fully implemented model.

6.2. Implementation Details

The network architecture was designed similar to the fully implemented model illustrated
in Section 5. The model consists of Context Encoder, Generator, and Discriminator. In
AIR-Act2Act, Generator only handles body motions, so it was constructed with a single
Generator Gbody. The model was optimized by minimizing the losses LG and LD. The
network was trained with a batch size of 512. The Adam optimizer was used with a learning
rate of 0.001 and parameters β1 = 0.9, β2 = 0.999. In the loss function LG, α2 and β were
set to 5 and 1, respectively. In the first 50 training epochs, the adversarial loss was not
applied in the loss function LG.

6.3. Ablation Study

To evaluate the contribution of context awareness, w/o Context Encoder model was con-
structed similarly to full model except that Motion Encoder was removed. Table 4 sum-
marizes model components of the two designed framework, and their performance on the
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Partner Target Target

t=0 t=3 t=4 t=5

(a) GT

Partner Target Target

(b) full model

Partner Target Target

(c) Seq2Seq

Figure 4: Visualisation of GT and predictions from full model and Seq2Seq, demonstrating
that full model performs better than Seq2Seq in predicting facial cues.

Table 4: Ablation study conducted on the AIR-Act2Act dataset.

No Model
Components

Body
Generator

Context Encoder
Discriminator

Motion MFCCs Encoder

1 full model ✓ ✓ none ✓ 0.772

2 w/o Context Encoder ✓ none none ✓ 0.636

Ground Truth 1

testing data. Further details about accuracy individual joints generated by full model are
illustrated in Fig 5.

Overall, the body scores produced by the AIR-Act2Act dataset seem to be lower than the
ones validated on the UDIVA data. That could be explained by the differences in interaction
scenarios between the two datasets, where AIR-Act2Act concentrates on body modality to
communicate interlocutors’ intentions. Consequently, variations on body channels are more
significant than the UDIVA dataset. There are also several differences in the pre-processing
steps between the two datasets. Those factors imply that the evaluation scores can only be
used to analyze the network performances within the same dataset.
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Figure 5: Normalized distances between ground truth and the body joints generated by full
model. The experiment was carried out on the AIR-Act2Act dataset.

Partner Target Target

t=0 t=1 t=2 t=3

(a) GT

Partner Target Target

(b) full model

Partner Target Target

(c) w/o Context Encoder

Figure 6: Differences among the ground truth motions (GT), the fully implemented model
(full model), and the framework without Context Encoder (w/o Context Encoder).
The last two windows (t ∈ [2, 3]) displays generated motions.
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6.3.1. The effect of interacting partner gestures on the target person

The results presented in Table 4 demonstrate that the fully implemented model yields better
performance than the one without Context Encoder. It should be remarked that AIR-
Act2Act covers a series of predefined interaction scenarios in which the effects of initiating
behaviours performed by Sob on the responsive behaviours of the person Sfo are clearly
observable. Consequently, the nature of the AIR-Act2Act dataset allows us to better verify
the contribution of the context c to the generation of P̂ k+1:T

fo . Fig. 6 presents an interaction
snippet from the test data, illustrating this phenomenon. In this example, Sob initializes an
interaction by raising their two hands above their shoulder for a “high five”. In the next
two seconds (t ∈ [2, 3]), Sfo responds to the “high five” of Sob by raising their two hands

into the air. A closer look at the action P̂ k+1:T
fo in Fig. 6(b), the result indicates that by

observing the Sob motion as the contextual input c, fullmodel is able to reason about a
generated gesture in the next 2 seconds. In contrast, without obtaining c as a conditional
input for the generative framework, it is challenging for w/o Context Encoder to accomplish
the forecasting task as the temporal information presented in P k:0

ob is not sufficient to reason
an appropriate motion. As shown in Fig.6(c), w/o Context Encoder ends up in a such way
that the body movement P̂ k+1:T

fo remains static over the time sequence.

7. Conclusion

This paper investigated a generative framework with context awareness to forecast human
non-verbal gestures in dyadic interaction. The model was constructed with Context En-
coder, Generator, and Discriminator networks. We conducted an ablation study on the
UDIVA dataset to verify the impact of each model component. The experimental results
indicated that by creating a network consisting of three different Generators to handle three
different body parts, the accuracy of generated motion can be enhanced. Indeed, the model
equipped with Context Encoder yielded better performance than the one without observ-
ing information encoded from the interacting partner. The proposed model was further
evaluated on the AIR-Act2Act dataset, where the impact of the non-verbal signals of the
interacting partner on those of the target person were clearly visible. Again, the results
confirmed the efficiency of the fully implemented model to capture the interacting contexts.

In social interaction, non-verbal behaviours are essential channels to convey the in-
terlocutor’s intentions or emotions. Undoubtedly, the dynamic exchange of social signals
among interlocutors should be investigated when modeling their non-verbal gestures. This
paper contributes a generative framework that can effectively forecast the human upper
body, including face, body, and hand gestures in dyadic interaction. Importantly, our ap-
proach treats social signals observed from the interacting partners as essential information
to forecast the future motions of the target individual.

There are several unexplored points that could be investigated as future works, including
a subjective evaluation of generated motions and modeling a wider range of social signals
acquired from two interlocutors (e.g., semantic contents of speech, eye gaze, etc.). Finally,
the proposed approach can be implemented for social robots to better support scenarios of
human-robot interaction.
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