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Abstract

Literature on machine learning for multiple
sclerosis has primarily focused on the use of
neuroimaging data such as magnetic resonance
imaging and clinical laboratory tests for disease
identification. However, studies have shown
that these modalities are not consistent with
disease activity such as symptoms or disease
progression. Furthermore, the cost of col-
lecting data from these modalities is high,
leading to scarce evaluations. In this work,
we used multi-dimensional, affordable, phys-
ical and smartphone-based performance out-
come measures (POM) in conjunction with
demographic data to predict multiple sclero-
sis disease progression. We performed a rig-
orous benchmarking exercise on two datasets
and present results across 13 clinically action-
able prediction endpoints and 6 machine learn-
ing models. To the best of our knowledge,

∗ These authors contributed equally
† Data used in the preparation of this article were ob-
tained from the Multiple Sclerosis Outcome Assessments
Consortium (MSOAC). As such, the investigators within
MSOAC contributed to the design and implementation of
the MSOAC Placebo database and/or provided placebo
data, but did not participate in the analysis of the data or
the writing of this report.

our results are the first to show that it is
possible to predict disease progression using
POMs and demographic data in the context
of both clinical trials and smartphone-based
studies by using two datasets. Moreover, we
investigate our models to understand the im-
pact of different POMs and demographics on
model performance through feature ablation
studies. We also show that model perfor-
mance is similar across different demographic
subgroups (based on age and sex). To enable
this work, we developed an end-to-end reusable
pre-processing and machine learning framework
which allows quicker experimentation over dis-
parate MS datasets.

Data and Code Availability This paper
uses two publicly available datasets: Mul-
tiple Sclerosis Outcome Assessments Con-
sortium (MSOAC) (Rudick et al. (2014),
https://c-path.org/programs/msoac/) and
Floodlight (Baker et al., https://floodlightopen.
com/en-US/for-scientists). While our code is
not available at this time, we plan to open-source it
in the future.
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1. Introduction

Multiple sclerosis (MS) is a neurological disease that
affects around 2.8 million people worldwide and is
the leading cause of non-traumatic disability in young
adults (The Multiple Sclerosis International Federa-
tion, 2020). The primary goal of a clinician treating
MS is to manage disease activity and reduce the risk
of disability. As such, the ability to accurately pre-
dict MS disease progression has the potential to guide
therapy and may inform decisions about the most ef-
fective care. While machine learning (ML) models
have been developed for predicting disease progres-
sion in MS (Pinto et al., 2020; Zhao et al., 2017; Ro-
driguez et al., 2012; Seccia et al., 2020; Tommasin
et al., 2021), these approaches primarily rely on us-
ing clinically-acquired information such as magnetic
resonance imaging (MRI) (Zhao et al., 2017), clini-
cal laboratory tests or clinical history (Seccia et al.,
2020). A lack of association between disease activ-
ity and these modalities has previously been iden-
tified (Whitaker et al., 1995), which in turn led to
the development of multi-dimensional performance
outcome measures (POMs) such as Multiple scle-
rosis functional composite (MSFC) scores to accu-
rately track MS disease progression (Rudick et al.,
2002). POMs are time-stamped responses collected
from MS subjects either through assessment tests or
questionnaires, which are used to track disease pro-
gression. These include tests to quantify walking
ability, balance, cognition, and dexterity – physio-
logical functions that are adversely affected by MS.
The frequency of data collection may vary with in-
tervals ranging from a day to multiple months. In
addition, they also reduce costs related to personnel,
equipment, space, and time requirements compared
to neuroimaging or clinical laboratory tests. POMs
have also been used alongside neuroimaging-derived
data for predicting disability in MS (Law et al., 2019).
Moreover, while POMs and demographic data have
been used to diagnose MS (Schwab and Karlen, 2021),
these have not been used for continually predicting
MS disability progression.

In this work, we investigate the possibility of using
POMs (physical or electronic) and demographic data
for predicting disease progression (in particular dis-
ability scores), in MS subjects, in both a clinical and
at-home setting. We proof-test this idea using two
openly accessible MS datasets: MSOAC (LaRocca
et al., 2018) and Floodlight (Baker et al.). Our con-
tributions are as follows:

1. Novel ML Health solution: We present for the
first time (to the best of our knowledge) that the
conjunction of POMs and demographic data can
be used to successfully and continually predict
long- and short-term MS disease progression for
clinical and smartphone-based datasets.

2. Additional analysis: We show that model per-
formance is similar across different demographic
subgroups (based on age and sex), and perform
multiple feature ablations to understand the con-
tributions of different POMS and demographics
to the predictions.

3. Reliability and scalability: We present a reusable
end-to-end pre-processing and machine learning
modelling framework that enables benchmark-
ing on different MS datasets. Our proposed
framework focuses on reliable dataset ingestion
through a common format, scalable label cre-
ation and metrics computation.

We envision that our work will not only serve as
a first step towards development of machine learning
models for monitoring MS, but also spur more ML
research in this application area.

2. Methods

2.1. Data description

We looked at two datasets for benchmarking, one
recorded in a clinical trial setting (MSOAC), and
one from a mobile app in a clinically unsupervised
manner (Floodlight). The MSOAC dataset records
POMs from physical MSFC tests which were per-
formed by the subjects in-clinic as a part of clini-
cal trials, while the Floodlight dataset records out-
come measures collected via an electronic equivalent
of MSFC tests taken by the subjects on a smartphone.
Both have been previously used for machine learning
explorations (Schwab and Karlen, 2020; Walsh et al.,
2020). A comparison of the two datasets can be seen
in Table 1 and a set of statistics on the data can be
found in Appendix E.

MSOAC Placebo Database: The Multiple Scle-
rosis Outcome Assessments Consortium (MSOAC,
(Rudick et al., 2014)) was launched in 2012 to col-
lect, standardize, and analyze data about MS. To
that end, their Placebo Database collects data from
the placebo arms of 9 different clinical trials (LaRocca
et al., 2018) with 2,465 individual patient records.

It contains information on: demographics, medical
history, POMs (e.g. timed walk test, dexterity tests,
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Table 1: Comparison of the MSOAC and Floodlight datasets.
MSOAC Floodlight

Modality Clinical visit Smartphone
Cohort MS subjects only MS subjects + control
Frequency of assessment 3-monthly Continuous

Test type
Physical Multiple Sclerosis
Functional Composite (MSFC) scores

Smartphone-based

Clinician annotation Expanded Disability Status Scale (EDSS) None
Number of patients 2,465 2,339

auditory and visual acuity tests), patient reported
outcome measures (e.g. health survey), relapse in-
formation and the MS sub-type, and clinically vetted
measurements such as the Expanded Disability Sta-
tus Scale (EDSS) (Kurtzke, 1983a).
Floodlight: Floodlight is a mobile app developed
by Roche and Genentech (Baker et al.) designed to
combat the infrequent measurements observed dur-
ing clinical visits and allow healthcare professionals
to have a greater understanding of the disease. It con-
tains a set of active tests that measure brain function
(daily mood question, symbol matching), hand func-
tion (draw a shape, on-screen pinching) and mobility
(timed two minute walk, balance, u-turn). Unlike
MSOAC, it does not contain any clinically or expert
defined labels.
The app is still active at the time of writing and

the number of enrolled patients is constantly growing.
The data snapshot we use was taken on the 15th of
June 2021 and has a total of 2,339 subjects, including
both MS patients (n = 1, 236) and control subjects
(n = 1, 103).

2.2. Data processing

Since the type and structure of the data contained
in the two datasets are quite different, typically all
data processing would be done individually for each
dataset. This can lead to slight differences in the re-
sulting model input, making direct comparison be-
tween datasets difficult. To avoid this pitfall, we
have devised a general data processing, modelling and
evaluation pipeline (shown in Figure 1) which enables
us to reuse a number of downstream components and
do a reliable cross-dataset comparison.

2.2.1. Pipeline overview

The raw data is taken through a set of processing
steps into a common representation called Subject,
inspired from (Tomašev et al., 2021). Once both the

clinical dataset and the smartphone-based dataset are
transformed into the Subject representation, a La-
bel Creator runs on all processed data and enriches
it with labels (see Sec. 2.3 for a description of the
tasks), after which it gets transformed into model
input. The labels can be dataset-specific, or com-
mon across multiple different datasets. The proposed
pipeline is feature agnostic i.e. there is no specific
pre-processing in one dataset or the other.

After training, a prediction format (Table A7, Ap-
pendix) is used to save all model output. This in turn
gets fed into the metrics pipeline which can provide
results at both population and subgroup levels.

2.2.2. Common format

A full description of each field present in this rep-
resentation can be found in Appendix A. At a high
level, each subject has some information that is con-
stant across time (static) such as the medical history
or the subject’s sex 1, but also timestamp-based infor-
mation (dynamic) encompassing all medical events -
either outpatient or inpatient. Multiple such Events
can be grouped into an Episode, but an individual
Event can also form an Episode on its own.

The part that enables each dataset to be processed
individually is the concept of Resources. These can
be functional tests, questionnaires, medications or
more, depending on the types of data available in
each dataset. Each medical event has a set of re-
sources associated with it, and since the types of re-
sources depend on the dataset, this leaves a common
overall structure while still allowing for variability.

To better illustrate this structure we can look at
what this means for our two datasets. In the case
of MSOAC, an Episode corresponds to a visit to the
clinic, including all the tests performed. The data
available at each visit consists of functional tests,

1. In MSOAC this is clinician reported, while in Floodlight
it is self reported.
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Figure 1: Dataset processing pipeline with common downstream modelling infrastructure

questionnaires and medications. Each of these is rep-
resented as a Resource. Given that MSOAC does
not provide timestamps for these resources, they are
considered as part of the same Event. For Flood-
light, the dataset contains less but more frequent and
timestamped measurements. In this case, we define
an Episode as 24 hours of data, and each Event cor-
responds to a new POM. The two types of resources
available are functional tests and questionnaires.
We emphasise that the datasets are not merged,

but separately converted into the common Subject
representation. Our goal is to demonstrate that ML
modelling for disability prediction in MS is possible
for two disparate datasets using the same modelling
framework.

2.3. Prediction tasks

The disability prediction tasks are selected such that
they are clinically actionable in the context of the
particular dataset they are defined in.

2.3.1. MSOAC

2.3.1.1. EDSS: For MSOAC our primary predic-
tion endpoints are derived from clinician-annotated
EDSS scores which is a commonly used measure of
long-term MS disability (Kurtzke, 1983b). The EDSS
scale ranges from 0 to 10, in 0.5 unit increments.
EDSS scores can be divided into distinct severity cat-
egories: 0-1 for no disability, 1.5-2.5 for mild disabil-
ity, 3-4.5 for moderate disability, and 5-10 for severe
disability. In this paper, we consider both the pre-
diction of raw EDSS scores (EDSSmean) and more

clinically insightful tasks such as the severity of EDSS
scores and whether it crosses a certain disability risk-
threshold. Detecting a change in EDSS severity could
signal to a clinician the need to change the medica-
tion a patient is on, or be used to check whether a
treatment is effective.

All tasks are implemented as continuous predic-
tions, triggered at every visit. Fixed prediction hori-
zons are chosen for each task based on expert clinical
input on the window of actionability (Table 2). These
are 0 - 6 months, 6 - 12 months, 12 - 18 months and
18 - 24 months.

2.3.2. Floodlight

2.3.2.1. Disability scores: Floodlight does not
contain any expert annotations, so we developed a
score that closely mimics EDSS. EDSS is divided
into multiple components measuring different kinds
of disability: neural function, ambulatory, and walk-
ing. We categorize the assessment tests present in
the Floodlight dataset into the above categories and
perform a weighted combination of the tests in each
category to develop three individual disability scores
for separate functional systems. We also compute
an overall disability score by taking the average of
the individual functional scores. Given no litera-
ture exists on how to define disability scores from
smartphone-based assessment tests, we rely on ex-
pert input and expect the score to be a close proxy
of EDSS. These tasks are formulated as regression
tasks since smartphone-based tests are relatively new
and hence severity categories are not defined in lit-

378



MS disability prediction

erature. For the purpose of this work, we assume
that continuous predictions of this derived disability
score provides insights on the progression of the dis-
ease. While the EDSS-derived labels in Sec. 2.3.1.1
track long-term changes in disability, the higher fre-
quency recordings of Floodlight enables the predic-
tion of short-term changes.
Similar to the section above, all tasks are posed as

continuous predictions, triggered after a new POM
is available. Prediction horizons for these tasks are
smaller than for MSOAC: 0 - 1 weeks, 1 - 2 weeks
and 2 - 4 weeks (Table 3). This is because (a) fre-
quent measurements are possible via a smartphone
and hence short-term changes in disability trends can
be predicted and (b) most Floodlight users stop us-
ing the app after a certain point, so long-term data
is not available.

2.3.2.2. Smartphone-based diagnosis of MS:
While predicting disability progression in MS is ben-
eficial in both a clinical and at-home context, earlier
diagnosis and treatment of MS is considered the best
path to fighting it (Miller, 2004). Multiple studies
have shown a delay between symptom development,
to first medical visit and then finally to diagnosis,
with an average of 1-2 years between symptom onset
and diagnosis (Ghiasian et al., 2021; Fernández et al.,
2010). We believe that the usage of smartphones can
enable large-scale diagnosis of MS in a more timely
manner.
To test this hypothesis, we use the Floodlight

dataset to predict whether a subject has MS or not.
This is not possible in MSOAC as we do not have
control subjects. The problem statement is formu-
lated as follows: we are given N POMs in total for
each subject since the start of data collection, along
with the self-reported ground truth on whether or not
they have MS. The models have to predict whether
the set of N tests belong to a subject with MS. We
vary N as = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100.
Note that it is desirable to use less tests for making
this prediction, not only to enable earlier access to
clinical care, but also to tackle the adherence prob-
lem which plagues smartphone-based health studies
(Patoz et al., 2021; Pathiravasan et al., 2021).

2.3.3. Cross-dataset

2.3.3.1. Disability progression: To investigate
differences in signal between the two datasets, we
also define a common label across both MSOAC and
Floodlight (Figure A6, Appendix D). It is focused

on forecasting disability by predicting substantial de-
viations of questionnaire and functional test values.
This is because: (a) EDSS or other aggregated dis-
ability scores are combined across functional systems
and (b) EDSS has been criticised to be focused more
on mobility and less on cognitive abilities or dexterity
(Meyer-Moock et al., 2014). Successfully predicting
the deviation of individual functional tests can po-
tentially be more informative for clinicians in under-
standing which functional systems of a subject are
likely to contribute to a subject’s future disability.
We define the disability progression labels as a change
(greater/lesser) of 20% (Goldman et al., 2019) from
a baseline, where the baseline is updated as time pro-
gresses, for each subject and each feature. This led to
a three-class classification problem where each times-
tamp was annotated with one of the three labels: dis-
ability unchanged, improved, or worsened.

2.4. Features and Missingness

We define a set of input features for each task to pre-
vent any label leakage during the training and testing
of the model. For MSOAC, we eliminate the EDSS
score feature for EDSS-derived targets. For both
datasets we only use the questionnaires, functional
tests, and patient characteristics such as age, sex,
weight, height (dataset dependent, where available).
In total, there are 92 distinct features for MSOAC
(POMs are multi-component) and 24 for Floodlight.

Figure 2: Feature sparsity in MSOAC

To evaluate feature sparsity in our datasets, we
look at population level counts for each feature and
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a given time bucket. For MSOAC we use buck-
ets of 1 month from the start of the study, while
for Floodlight we use 1 week intervals from the
time the subject joined the app. Based on figure 2
we see that in MSOAC functional tests (Nine Hole
Peg Test (NHPT), Timed 25-Foot Walk (T25FW),
Paced Auditory Serial Addition Test (PASAT), Sym-
bol Digit Modalities Test (SDMT)) have a much
higher count than questionnaires (Kurtzke Functional
Systems Scores (KFSS), RAND-36 Item Health Sur-
vey (RAND-36), 12-Item Short Form Survey (SF-12),
Beck Depression Inventory (BDI)) and are present
until much later in the study as well. For Floodlight
(Appendix B, Figure A5) we observe a similar down-
ward trend as time progresses, but in this case the
functional tests and questionnaires behave in a simi-
lar manner. This can be explained by the simplicity
of the questionnaires in this dataset, since only one
mood related question is available.

Missing values at various timestamps were replaced
by 0 in the case of numerical features, or empty string
for text-based features.

2.5. Models

For benchmarking purposes, we choose a few popu-
lar baseline models from Scikit-Learn (Logistic Re-
gression, Linear Regression, Gradient Boosted Clas-
sifier, Gradient Boosted Regressor), a non-sequential
(Multi-layer Perceptron), and a sequential deep neu-
ral network (Temporal Convolutional Neural Net-
works (TCN) (Bai et al., 2018).

For predictions, the models use information across
a specified window before the prediction timepoint.
While for Scikit-Learn models information is aggre-
gated across the window by taking the mean, TCN
processes them sequentially and hence retains the
temporal information.

We report the area under the precision-recall curve
(AU PRC) for the classification tasks since most pre-
diction problems are imbalanced (see Appendix E,
Table 9) and R-MSE for regression tasks. We perform
10-fold cross-validation for each model and report the
mean and standard deviation of AU PRC / R-MSE.
For TCN we use the Adam optimizer (Kingma and
Ba, 2015). We performed a hyperparameter search
for each model to find the optimal hyperparameters,
and the search space is reported in Appendix C.

3. Experiments and results

3.1. Performance on the full feature set

3.1.1. MSOAC

Illustrative example: Figure 3 shows an exam-
ple usage of our predictive models for the MSOAC
dataset. The model is trained to predict whether the
patient will transition to a state of moderate disabil-
ity in the next 0-6 months and 6-12 months interval.
Updated risk estimates of future disease worsening
are made for every clinic visit throughout the course
of the clinical study. Identifying an increased risk of
decline sufficiently well in advance can enable early
preventative action (Schlaeger et al., 2012). This is
possible even when clinicians may not be monitoring
a patient or actively intervening.

Performance on EDSS-derived labels: Table 2
summarizes model performance on the labels (see Sec.
2.3.1.1) derived from EDSS scores. We show the
mean and standard deviation of the metrics across
different folds. We observe that TCN consistently
outperforms other ML algorithms by achieving supe-
rior performance in all regression and classification
tasks. We also see that although the dataset is com-
posed of data from 9 different clinical trials, the mod-
els still manage to learn meaningful representations,
as demonstrated by the results. For MSOAC, we ob-
serve a general trend that, as the prediction inter-
val slides into the future, the tasks progressively get
more difficult, leading to a reduction in model per-
formance. This phenomenon has also been shown
in other sequential healthcare prediction problems
(Tomašev et al., 2021; Nestor et al., 2019).

3.1.2. Floodlight

Performance on disability scores: Table 3 re-
ports model performance on disability scores defined
on the Floodlight dataset (see Sec. 2.3.2.1). For
Floodlight, we observe that Gradient Boosted Regres-
sor outperforms the other models in all 12 tasks. We
believe that this is due to the fact that Floodlight
endpoints are zero-inflated (see Appendix E, Table
A9) and we intend to explore zero-inflated versions of
the models in future. The standard deviations show
that the obtained results have tight bounds. Note
that the inclusion of multiple families of models al-
lows us to explore and find the best model per dataset
or task. Performance on the Floodlight dataset re-
mains relatively similar across different time hori-
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Figure 3: Illustrative example of the trained model successfully predicting that a female subject of age 29 is
going to have moderate disability (EDSSmean > 3) in the (b) 0-6 and (c) 6-12 months horizon.

zons, potentially since these are not as further out
as MSOAC.
Performance on smartphone-based MS diag-
nosis: We summarize the results of diagnosing MS in
this dataset (see Sec. 2.3.2.2) using smartphone-based
tests in Figure 4. The results demonstrate that over-
all TCN achieves the best performance across various
values of N (number of tests) and shows 71.67% accu-
racy at N = 100 (approximately 1.5 weeks of app us-
age). Moreover, while for all models the performance
improves as N increases, the improvement is highest
for TCN (8.89% increase from N=5 to N=100) and
lowest for Logistic Regression (1.95% increase from
N=5 to N=100).

3.1.3. Cross-dataset

Performance on disability progression labels:
Next we look at the disability progression labels de-
scribed in Sec. 2.3.3.1 for both the MSOAC and
Floodlight dataset. For MSOAC we focus only on

TCN, since TCN outperforms all other models for the
previous endpoints (see Table 2). We observe that the
disability progression tasks have a high class imbal-
ance (92.86–98.27%), and hence we use both cross-
entropy loss and focal loss (popular for imbalanced
datasets) (Lin et al., 2018) during training. The lat-
ter provides a much better performance for this task,
with an average AU PRC improvement of 10.27%.
The mean and standard deviation of AU PRC are
reported in Table 4. Note that we also explored fo-
cal loss for the classification labels listed in Table 2,
however there was no observable improvement, po-
tentially since these endpoints do not show high im-
balance.

While results are promising on MSOAC, the mod-
els were not able to obtain significant results using
Floodlight. This result might be due to the daily
bucketing of measurements, which leads to a label
prevalence lower than 0.01%. Weekly bucketing could
be considered in the future.
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Table 2: Performance (and standard deviation) obtained by machine learning models on a diverse set of
prediction tasks for the MSOAC dataset. Best performance is reported in bold.

Dataset
Prediction
tasks

Prediction
Window

Metric
Logistic
Regression

Linear
Regression

MLP
Gradient
Boosted
Classifier

Gradient
Boosted
Regressor

TCN

MSOAC EDSSmean 0 - 6 mo R-MSE - 1.929 (0.098) - - 1.700 (0.045) 1.264 (0.055)
6 - 12 mo - 2.114 (0.111) - - 1.901 (0.057) 1.650 (0.067)
12 - 18 mo - 2.186 (0.115) - - 1.892 (0.065) 1.725 (0.074)
18 - 24 mo - 2.068 (0.133) - - 1.748 (0.062) 1.666 (0.128)

EDSSmean

> 3 (Moderate
disability)

0 - 6 mo AU PRC 0.803 (0.012) - 0.826 (0.015) 0.843 (0.017) - 0.909 (0.014)

6 - 12 mo 0.707 (0.014) - 0.731 (0.019) 0.756 (0.019) - 0.82 (0.027)
12 - 18 mo 0.605 (0.025) - 0.664 (0.036) 0.706 (0.027) - 0.768 (0.031)
18 - 24 mo 0.502 (0.036) - 0.594 (0.038) 0.641 (0.038) - 0.703 (0.038)

EDSSmean

> 5 (Severe
disability)

0 - 6 mo AU PRC 0.695 (0.026) - 0.727 (0.026) 0.785 (0.025) - 0.848 (0.035)

6 - 12 mo 0.576 (0.028) - 0.597 (0.027) 0.676 (0.032) - 0.722 (0.039)
12 - 18 mo 0.457 (0.035) - 0.504 (0.032) 0.594 (0.034) - 0.669 (0.037)
18 - 24 mo 0.362 (0.042) - 0.421 (0.047) 0.536 (0.054) - 0.632 (0.037)

EDSSmean

as severity
category

0 - 6 mo
Avg.
AU PRC

0.523 (0.015) - 0.687 (0.01) 0.717 (0.015) - 0.782 (0.028)

6 - 12 mo 0.47 (0.015) - 0.633 (0.018) 0.675 (0.016) - 0.709 (0.044)
12 - 18 mo 0.434 (0.017) - 0.606 (0.012) 0.649 (0.019) - 0.674 (0.037)
18 - 24 mo 0.413 (0.017) - 0.575 (0.02) 0.625 (0.02) - 0.632 (0.037)

20 40 60 80 100
Number of POMs recorded

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Ac
cu

ra
cy

Logistic Regression
MLP
Gradient Boosted Classifier
TCN

Figure 4: Comparison of model performance for di-
agnosing MS on Floodlight (smartphone-
based dataset).

3.2. Feature ablation

To assess the signal related to disease progression in
each feature group, we perform different feature abla-
tion experiments. For both MSOAC and Floodlight
we choose the following groups: demographics, ques-

tionnaires, functional tests, and all POMs (question-
naires + functional tests).

The results are presented in Table 5. Due to space
constraints, we choose a single prediction horizon per
dataset (6-12 months for MSOAC and 1-2 weeks for
Floodlight), for all the tasks considered in Tables 2
and 3. While in Table 5 we show the results for
only the top performing model per dataset (TCN for
MSOAC and Gradient Booster Regressor for Flood-
light), results for all models are reported in Table
A10 (Appendix). The trends obtained for the top
performing models are consistent across other mod-
els as well.

For MSOAC, the results depict that the feature
groups are of following importance: demographics <
questionnaires < functional tests < all POMs < full
feature set. In line with expectations, the full feature
set containing both POMs and demographic features
produces the best performance. Demographics (static
features) impact model performance the least, and
are outperformed by functional tests and question-
naires (dynamic/temporal features). Between func-
tional tests and questionnaires, we observe that the
former outperforms the latter. We believe the rea-
son is evident from Figure 2 which shows that the
questionnaires are orders of magnitude sparser than
functional tests thereby leading to less signal for the
ML models.

382



MS disability prediction

Table 3: Performance (and standard deviation) obtained by machine learning models on a diverse set of
prediction tasks for the Floodlight dataset. Best results are reported in bold.

Dataset
Prediction
tasks

Prediction
Window

Metric
Linear
Regression

Gradient
Boosted
Regressor

TCN

Floodlight
Cognitive
disability
score

0 - 1 wk R-MSE 0.275 (0.015) 0.262 (0.016) 0.313 (0.018)

1 - 2 wks 0.285 (0.015) 0.275 (0.014) 0.337 (0.025)
2 - 4 wks 0.286 (0.014) 0.279 (0.013) 0.353 (0.023)

Dexterity
disability
score

0 - 1 wk R-MSE 0.152 (0.011) 0.146 (0.012) 0.162 (0.018)

1 - 2 wks 0.153 (0.012) 0.148 (0.012) 0.171 (0.022)
2 - 4 wks 0.152 (0.011) 0.149 (0.011) 0.178 (0.019)

Mobility
disability
score

0 - 1 wk R-MSE 0.244 (0.017) 0.226 (0.018) 0.283 (0.021)

1 - 2 wks 0.256 (0.018) 0.244 (0.021) 0.313 (0.026)
2 - 4 wks 0.26 (0.017) 0.249 (0.019) 0.328 (0.027)

Overall
disability
score

0 - 1 wk R-MSE 0.192 (0.012) 0.18 (0.013) 0.225 (0.019)

1 - 2 wks 0.206 (0.012) 0.197 (0.013) 0.246 (0.017)
2 - 4 wks 0.209 (0.011) 0.209 (0.011) 0.265 (0.019)

Table 4: Performance (and standard deviation) of
TCN on functional test specific disability
progression labels defined on the MSOAC
dataset.

Functional
test

Prediction
horizon

Loss type

Cross-entropy
loss

Focal loss

NHPT 0-6 mo 0.406 (0.030) 0.583 (0.142)
6-12 mo 0.396 (0.021) 0.534 (0.171)

PASAT 0-6 mo 0.476 (0.016) 0.533 (0.172)
6-12 mo 0.482 (0.012) 0.567 (0.161)

SDMT 0-6 mo 0.471 (0.058) 0.522 (0.112)
6-12 mo 0.534 (0.084) 0.535 (0.158)

T25FW 0-6 mo 0.422 (0.017) 0.558 (0.147)
6-12 mo 0.423 (0.015) 0.600 (0.053)

For Floodlight, the order of importance of feature
groups is as follows: questionnaires < demograph-
ics < functional tests < all POMs < full feature
set. Compared to MSOAC, the importance of ques-
tionnaires and demographics have flipped. This re-
sult is expected for Floodlight since it contains only
one questionnaire feature (Mood Response) unlike
MSOAC consisting of multiple questionnaire features.

3.3. Subgroup results

Apart from performance on the entire dataset, sub-
group analysis enables researchers and clinicians to
understand where models fall short.

For both datasets we look at the sex and age-
bucketed subgroups. Given that MS is a disease that
tends to affect more women than men, we assess po-
tential discrepancies in model performance between
males and females. Stratification on age is also a rel-
evant evaluation, as MS is a long-term condition and
younger patients typically have a less severe form of
the disease. As the disease progresses, it can evolve
from relapse-remitting to a progressive state (Meca-
Lallana et al., 2021), which is often accompanied by
an increase in symptom severity. Our age buckets
were chosen based on expert input on what would be
most clinically useful.

Table A11 (Appendix) contains the results on 3
predictions tasks for MSOAC, for the 6-12 month
horizon on all models. We only report results where
the subgroup was known, as this information is not
present for all patients.

We see that for both males and females the mod-
els tend to have a similar, and sometimes identical
performance (AU PRC), across all folds. Age on the

383



MS disability prediction

Table 5: Summary of feature ablation studies on MSOAC and Floodlight for 6-12 months and 1-2 weeks
horizon respectively for the best performing models from Table 2 and 3 respectively. For MSOAC,
will EDSSmean reports R-MSE (lower better), all other labels report AU PRC (higher better). For
Floodlight, R-MSE is reported for all labels.

Dataset
Prediction

tasks
Feature Groups

Demographics
Functional

Tests
Questionnaires

Performance
Outcome
Measures

Full feature set

MSOAC EDSSmean 1.957 (0.051) 1.777 (0.091) 1.860 (0.049) 1.676 (0.077) 1.650 (0.067)

EDSSmean > 3
(Moderate disability) 0.678 (0.019) 0.766 (0.025) 0.789 (0.020) 0.816 (0.037) 0.820 (0.027)

EDSSmean > 5
(Severe disability) 0.456 (0.028) 0.665 (0.036) 0.608 (0.037) 0.691 (0.034) 0.722 (0.039)

EDSSmean as severity
category 0.520 (0.011) 0.672 (0.086) 0.659 (0.016) 0.686 (0.042) 0.709 (0.044)

Floodlight
Cognitive

disability score 0.306 (0.017) 0.286 (0.012) 0.416 (0.037) 0.283 (0.014) 0.275 (0.014)
Dexterity

disability score 0.159 (0.014) 0.153 (0.012) 0.198 (0.021) 0.152 (0.012) 0.148 (0.012)
Mobility

disability score 0.278 (0.018) 0.249 (0.017) 0.381 (0.031) 0.248 (0.019) 0.244 (0.021)
Overall

disability score 0.220 (0.012) 0.206 (0.012) 0.308 (0.034) 0.205 (0.013) 0.197 (0.013)

other hand sees a discrepancy when it comes to the
various subgroups, with people aged under 30 seeing
the biggest decrease in AU PRC. For people aged 50-
70 we see that performance is either on par (EDSS
>3, EDSS >5) or slightly lower (EDSS as severity
category) to that on the full dataset. This is surpris-
ing, as the overall composition of MSOAC is relapse-
remitting patients and we would expect people in this
age group to have a more stable form of the dis-
ease. We note that evaluation for patients aged 70
or older is not informative given the low number of
cases (n=11) in this group. A distribution of label
values based on age can be found in Appendix E.

4. Discussion and future work

In this paper, we show for the first time that it is
possible to predict disease progression in MS using
POMs, demographic information, and machine learn-
ing for both a clinical trial and smartphone-based
dataset. Early prediction of disability in both set-
tings has the potential to support MS subjects and
healthcare professionals, since the best course of ac-
tion is early diagnosis and symptom treatment. This
in turn can lead to a slower disease progression and
a better quality of life for a longer period of time

(Cerqueira et al., 2018). Smartphone-based monitor-
ing can also enable early diagnosis of MS.

Temporal patterns of POMs seem to play an impor-
tant role in the prediction of longer term disability,
as shown by the better performance of TCN in all
tasks in the MSOAC dataset. Similarly, results on
Floodlight display that short-term patterns (a couple
of weeks) also carry predictive power. These results
suggest that the continuous evaluation of POMs is
a promising avenue for the monitoring and early de-
tection of disease progression of MS patients. Both
long- and short-term predictions are potentially clin-
ically actionable since while the former may lead
to individually-tailored disease-modifying therapies
(Robertson and Moreo, 2016), the latter may prompt
a clinician to prescribe medications to control symp-
toms (National MS Society, 2021).

While the full feature set leads to the highest model
performance (according to AU PRC) when compared
to feature ablations, we note that POMs without de-
mographics perform on par. This result, although
preliminary, questions the recording of demographic
data for predictive purposes. Future work could fur-
ther investigate whether demographic data is indeed
beneficial in terms of model performance and patient
outcome, considering the balance between data need
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and privacy. Moreover, the relatively higher sparsity
of questionnaires compared to functional tests and
its eventual impact in model performance points to-
ward the need of collecting more user-friendly ques-
tionnaires, more reliably, and over a longer horizon.
The limitations of this study include (i) the dis-

ability scores defined for Floodlight, while inspired
from EDSS, are experimental and would require fur-
ther clinical validation to ensure soundness and clini-
cal relevance, and (ii) the disability progression labels
(Sec. 2.3.3.1) did not lead to a well-defined machine
learning problem for the Floodlight dataset due to a
high-frequency of short-term recordings.
The plans for future work for this study are multi-

fold. First, we shall ingest more relevant features
(e.g. medication, medical history), in addition to the
current POMs and demographic data. Second, we
intend to explore different time-bucketing techniques
for Floodlight to tackle the imbalance of disability
progression labels and more closely relate to clinical
actionability. Third, we intend to handle the irreg-
ularity of the features by continuous time modelling
instead of missing-value imputation (Kidger et al.,
2020). Fourth, we plan to further evaluate the ro-
bustness of our models, especially across longer time
horizons. Fifth, we intend to create a large-scale
multi-site smartphone-based MS dataset for further
evaluation and potential deployment of the developed
models. As discussed in Sec. 3.3, we lack data in spe-
cific patient subgroups. Targeted data acquisition in
e.g. patients over 70 could be considered for model
evaluation, and potentially for model training.
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Appendix A. Subject representation
and MS dataset
conversion

As described in Sec. 2.2, we convert the MS datasets
into a common representation called Subject de-
scribed in Table 6. The Subject representation allows
us to map a diverse set of datasets into a common
format consisting a pre-defined set of fields. This al-
lows not only for an easier downstream processing
of multiple datasets, but potentially joining multiple
datasets into one.
The fields in Subject are chosen in a way that it

stores all information relevant to MS datasets (both
clinical and at-home), and to generalize to other
healthcare datasets as well. The representation can
also be expanded to include unique dataset-specific
intricacies.
The Prediction format is described in Table 7, and

while it’s simplistic in its setup, it enables the down-
stream metrics pipeline development and cross-model

comparisons. While in its current form it mainly fo-
cuses on time series (through the use of the times-
tamp field), we believe that it can be adapted to other
types as well by simply ignoring the time value. We
chose to store a series of label targets and predictions
at once, to ease at-scale metrics computations. Thus,
our pipeline computes a variety of metrics for all tasks
at once.

Appendix B. Feature statistics

Figure 5: Feature sparsity in Floodlight

Figure 5 shows a summary of the Floodlight func-
tional tests and questionnaires, and how often they
appear at a population level, when each patient se-
quence is bucketed into 1-week intervals. The start
of the sequence is when they joined the app.

We observe a similar trend to that on MSOAC,
with time playing an important factor in feature spar-
sity. As mentioned in the main text, both functional
tests and questionnaires follow a similar pattern due
to the simplicity of questionnaires (only one mood
related question). This is consistent with the patient
drop-off that takes place in Floodlight, which in turn
is consistent with other mobile-based studies.

We believe a focus on preventing attrition is needed
for an increase in mobile dataset quality, as these
types of datasets have the power to harness diverse
information at-scale.

Appendix C. Hyperparameter search
space

The hyperparameter search space for each model can
be found in Table 8. Future work will look into using
parameter auto-tuning tools such as Vizier (Golovin
et al., 2017), in order to expand the search space and
identify the optimal set-up for our suite of models.
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Table 6: Description of the common Subject representation.
Field Type Format Description
Subject: Defines all the data provided for a single subject.
subject id string Optional Unique ID for each subject.
subject characteristics SubjectCharacteristics Optional Defines the subject’s characteristics.
medical history MedicalHistory Optional Defines the subject’s medical history.
episodes Episode Repeated A sequence of encounters corresponding to a single subject.
SubjectCharacteristics: Defines all the data provided for a single subject.
sex Sex.Enum Optional The subject’s sex.
MedicalHistory: Defines a sequence of outpatient events recorded before the current system started recording events.
These typically are recorded with the same timestamp even though they took place over longer periods of time.
clinical events ClinicalEvent Repeated A clinical event.
Episode: An abstraction of an event sequence.
clinical event ClinicalEvent Repeated A sequence of clinical events.
changing characteristics ChangingSubjectCharacteristics optional Defines the subject’s changing characteristics.

clinical trial ClinicalTrial optional
Details about the clinical trial the subject was part of
(if applicable).

ChangingSubjectCharacteristics: Defines the subject’s changing characteristics.
age float optional The subject’s age.
gender Gender.Enum optional The subject’s gender
race string optional The subject’s race.
weight float optional The subject’s weight.
height float optional The subject’s height.
country string optional The subject’s country.
Sex.Enum: Defines the subject’s sex information.
FEMALE 0 - Female sex.
MALE 1 - Male sex.
Gender.Enum: Defines the subject’s gender information.
UNKNOWN 0 - Unknown gender.
FEMALE 1 - Female gender.
MALE 2 - Male gender.
OTHER 3 - Other gender.
ClinicalEvent: Defines a single event or a set of coinciding individual events that happen at the same time.

timestamp int64 optional
Timestamp of event. While for MSOAC, this corresponds to
the day of the clinic visit, for Floodlight, this is the
timestamp recorded by the smartphone.

resources Resource repeated A list of specific clinical entries recorded at this timestamp.
classification labels map<string, int64> required Classification labels for prediction.
regression labels map<string, float> required Regression labels for prediction.
Resource: Describes the various types of resources that can be contained within ClinicalEvent.
functional test FunctionalTest optional Functional assessment test data.
questionnaire Questionnaire optional Questionnaires filled by the subjects.
generic resource GenericResource optional Generic resource to store dataset-specific intricacies.
FunctionalTest: Functional assessment test data recorded from the subject.
name string optional Name of performance outcome measure.
category string optional Category of performance outcome measure.
response NumericalResponse optional Numerical response recorded from subject.
Questionnaire: Questionnaire data recorded from the subject.
name string optional Name of performance outcome measure.
category string optional Category of performance outcome measure.
response QuestionnaireResponse optional Questionnaire response recorded from subject.
NumericalResponse: Numeric response converted to standardized unit.
numerical response std unit float optional Numeric response converted to standardized unit.

std unit string optional
Standardized unit. This unit was used for
homogenizing the data.

QuestionnaireResponse: Responses recorded from questionnaires.
text response orig string optional Response in original text.
text response std string optional Response in standardized text.
numeric response std float optional Standardized numeric response.

categorical response std string optional
Standardized categorical response.An example entry
is EDSS.
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Table 7: Description of the common Prediction representation.
Field Type Description
Prediction: Defines the model output information.
subject id string Unique ID for each subject.

timestamp int64
Timestamp of event. While for MSOAC, this corresponds
to the day of the clinic visit, for Floodlight, this is the
timestamp recorded by the smartphone.

.

label targets map<string, float>
A mapping from label name to the target value for the
particular timestamp this is recorded for.

label predictions map<string, list<float>>
A mapping from label name to the predicted values for
the particular timestamp this is recorded for. Multiple
values are recorded to account for multi-class predictions.

subgroup attributes map<string, oneof<string, int, float>>
A mapping from subgroup name (such as Sex, or Age) to
the exact value (e.g. Female, or 56).

Table 8: Hyperparameter search for models considered in this study.
Model Hyperparameter search space
Logistic Regression C = [1e-2, 1e-1, 1., 1e+1, 1e+2]
Linear Regression -

MLP
network size = [(16, 16), (16, 16, 16), (32, 32)]
learning rate = [0.001, 0.01]

Gradient Boosted Classifier
n estimators = [100, 150]
learning rate = [0.001, 0.01]
max depth = [3, 5]

Gradient Boosted Regressor
n estimators = [100, 150]
learning rate = [0.001, 0.01]
max depth = [3, 5]

TemporalConvNet

num filters = [16, 32, 64]
kernel size = [3, 5]
learning rate = [0.001, 0.05, 0.01]
dropout = [0.0, 0.5]

Appendix D. Disability progression
labels

Figure 6 illustrates the computation of the baseline
values and how they are used to create the final Wors-
ening/Unchanged/Improved outcome, for each func-
tional test and questionnaire. In the first c timesteps
we compute a baseline value for each feature. For
each following timestep we perform two actions:

• We compare the value at the new timestep with
the baseline value we have for that feature. If
the difference in value is greater than a threshold
(in our case 20% increase or decrease), we set
a label of Worsening/Improving. Otherwise the
label value gets set to Unchanged.

• We update the baseline value for each feature
based on this new information.

While this task could have been posed as ”are any
of the tests/questionnaires deviating from the base-
line?”, the per-test prediction was considered to be

Figure 6: Disability progression label definition

more clinically actionable as the actual test is more
informative than ”something is wrong”.
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Appendix E. Statistics of prediction
tasks

Table 9 shows the class distribution for both binary
and multi-class classification tasks, while Figures 7
and 8 present a histogram of the label values for the
regression tasks.
We note a higher class imbalance for EDSSmean >

5, even for the shorter horizon of 0-6 months, while
EDSSmean > 3 starts off in a more balanced state for
the same timeframe. EDSSmean as severity category
shows a similar trend to EDSSmean > 3, with the
shorter time horizon being balanced and the longer
time horizon seeing ”No disability” as the most preva-
lent label. We believe this is due to the fact that we
do not have information so far into the future, so the
default values of ”No disability” get used instead. Fu-
ture work will look into handling this lack of future
information. For Floodlight we note that the labels
are zero-inflated.
For the classification tasks in MSOAC, we can see

the class distribution for the age subgroups, by each
cross-validation split, in Figures 9, 10 and 11. Note
that splits tend to have very different distributions of
age groups, which explains the higher standard devi-
ation for the less prominent groups (age <30).

Appendix F. Feature ablation studies

Table 10 contains results for the feature ablation
studies on both MSOAC and Floodlight. For
MSOAC the label horizon chosen was 6-12 months,
while for Floodlight it was 1-2 weeks.

Appendix G. Subgroup analysis

Table 11 presents subgroup results for the classifica-
tion tasks performed on the MSOAC dataset, for the
6-12 month horizon.

Appendix H. Ethical considerations
and broader impact

Employing easily accessible information in diagno-
sis and predicting the progression of MS, can have
many advantages, including but not limited to bet-
ter choices of treatment and interventions for each
patient, and hopefully reducing the number of re-
lapses in RRMS and hence, the disability of patients.
However, these studies should be done with a great

amount of care. First, multiple studies have shown
great disparity of results between various demograph-
ics, typically stemming from representation issues in
datasets. Besides potential disparity of results among
demographics, we should pay great care about where
and how this research is being used. This is of im-
portance, especially where the resources are scarce.
In addition, it is important to note, we intend the
outcome of this study to be used for patients’ access
to better choices of treatment and not for this infor-
mation to be used for unintended purposes such as
insurance policies.
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Table 9: Label distributions for classification tasks

Dataset
Prediction
tasks

Prediction
Window

Class Percentage

MSOAC
EDSSmean

> 3 (Moderate
disability)

0 - 6 mo False 53.49

True 46.51
6 - 12 mo False 60.02

True 39.98
12 - 18 mo False 69.47

True 30.53
18 - 24 mo False 77.28

True 22.72
EDSSmean

> 5 (Severe
disability)

0 - 6 mo False 77.3

True 22.7
6 - 12 mo False 79.8

True 20.2
12 - 18 mo False 83.83

True 16.17
18 - 24 mo False 87.73

True 12.27
EDSSmean

as severity
category

0 - 6 mo No disability 24.52

Mild 24.63
Moderate 26.17
Severe 24.66

6 - 12 mo No disability 36.72
Mild 20.05
Moderate 21.57
Severe 21.65

12 - 18 mo No disability 53.04
Mild 14.12
Moderate 15.47
Severe 17.35

18 - 24 mo No disability 64.90
Mild 10.52
Moderate 11.42
Severe 13.14
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Figure 7: Histograms of regression labels derived from EDSS scores recorded in the MSOAC dataset.
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Figure 8: Histograms of regression labels derived from the Floodlight dataset.
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Figure 9: Class distribution by split for EDSS >3.

Figure 10: Class distribution by split for EDSS >5.
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Table 10: Summary of feature ablation studies on MSOAC and Floodlight for 6-12 months and 1-2 weeks
horizon respectively.

Dataset
Prediction

tasks
Models Feature Groups

Demographics
Functional

Tests
Questionnaires

Performance
Outcome
Measures

Full feature set

MSOAC EDSSmean Linear Regression 2.497 (0.091) 2.138 (0.050) 2.271 (0.052) 2.131 (0.083) 2.114 (0.111)
Gradient Boosted Regressor 2.342 (0.062) 2.045 (0.058) 2.32 (0.063) 1.951 (0.088) 1.901(0.057)

TCN 1.957 (0.051) 1.777 (0.091) 1.860 (0.049) 1.676 (0.077) 1.650 (0.067)

EDSSmean >3
(Moderate disability) Logistic Regression 0.529 (0.022) 0.597 (0.025) 0.631 (0.014) 0.693 (0.011) 0.707 (0.014)

MLP 0.558 (0.020) 0.662 (0.025) 0.630 (0.027) 0.716 (0.017) 0.731 (0.019)
Gradient Boosted Classifier 0.573 (0.020) 0.67 (0.018) 0.713 (0.015) 0.75 (0.016) 0.756 (0.019)

TCN 0.678 (0.019) 0.766 (0.025) 0.789 (0.020) 0.816 (0.037) 0.82 (0.027)

4*
EDSSmean >5

(Severe disability) Logistic Regression 0.344 (0.036) 0.467 (0.032) 0.491 (0.032) 0.549 (0.031) 0.576 (0.028)
MLP 0.368 (0.038) 0.557 (0.023) 0.440 (0.038) 0.556 (0.04) 0.597 (0.027)

Gradient Boosted Classifier 0.425 (0.04) 0.570 (0.098) 0.553 (0.012) 0.641 (0.032) 0.676 (0.032)
TCN 0.456 (0.028) 0.665 (0.036) 0.608 (0.037) 0.691 (0.034) 0.722 (0.039)

EDSSmean as
severity
category

Logistic Regression 0.302 (0.009) 0.384 (0.017) 0.423 (0.014) 0.457 (0.014) 0.470 (0.015)

MLP 0.397 (0.013) 0.521 (0.016) 0.475 (0.019) 0.582 (0.014) 0.633 (0.018)
Gradient Boosted Classifier 0.400 (0.010) 0.515 (0.015) 0.561 (0.031) 0.630 (0.013) 0.675 (0.016)

TCN 0.520 (0.011) 0.572 (0.086) 0.659 (0.016) 0.686 (0.042) 0.709 (0.044)

Floodlight
Cognitive
disability
score

Linear Regression 0.308 (0.018) 0.305 (0.008) 0.322 (0.021) 0.303 (0.016) 0.285 (0.015)

Gradient Boosted Regressor 0.306 (0.017) 0.286 (0.012) 0.312 (0.019) 0.283 (0.014) 0.275 (0.014)
TCN 0.306 (0.017) 0.286 (0.012) 0.416 (0.037) 0.283 (0.014) 0.275 (0.014)

Dexterity
disability
score

Linear Regression 0.161 (0.015) 0.163 (0.011) 0.165 (0.012) 0.161 (0.012) 0.153 (0.012)

Gradient Boosted Regressor 0.159 (0.014) 0.153 (0.012) 0.163 (0.013) 0.152 (0.012) 0.148 (0.012)
TCN 0.159 (0.014) 0.153 (0.012) 0.198 (0.021) 0.152 (0.012) 0.148 (0.012)

Mobility
disability
score

Linear Regression 0.283 (0.016) 0.269 (0.017) 0.298 (0.019) 0.268 (0.021) 0.256 (0.018)

Gradient Boosted Regressor 0.278 (0.018) 0.249 (0.017) 0.292 (0.018) 0.248 (0.019) 0.244 (0.021)
TCN 0.278 (0.018) 0.249 (0.017) 0.381 (0.031) 0.248 (0.019) 0.244 (0.021)

Overall
disability
score

Linear Regression 0.224 (0.014) 0.222 (0.008) 0.237 (0.017) 0.220 (0.014) 0.206 (0.012)

Gradient Boosted Regressor 0.220 (0.012) 0.206 (0.012) 0.230 (0.016) 0.205 (0.013) 0.197 (0.013)
TCN 0.220 (0.018) 0.206 (0.012) 0.308 (0.034) 0.205 (0.013) 0.197 (0.013)
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Figure 11: Class distribution by split for EDSS as severity category.

Table 11: Subgroup results for prediction tasks in MSOAC on the 6-12 months horizon.
Tasks Models Female Male Age <30 Age 30-50 Age 50-70 Age >70

Instance count - 23028 11604 3643 17151 7489 11

EDSSmean >3 Logistic Regression
0.71
(0.027)

0.72
(0.016)

0.63
(0.055)

0.65
(0.017)

0.77
(0.022)

1.0
(0.0)

MLP
0.74
(0.024)

0.72
(0.027)

0.70
(0.090)

0.67
(0.029)

0.71
(0.032)

0.90
(0.0)

Gradient Boosted
Classifier

0.76
(0.029)

0.75
(0.025)

0.76
(0.068)

0.71
(0.023)

0.78
(0.031)

1.0
(0.0)

TCN
0.81
(0.032)

0.84
(0.034)

0.61
(0.171)

0.78
(0.048)

0.88
(0.033)

0.81
(0.0)

EDSSmean >5 Logistic Regression
0.56
(0.035)

0.60
(0.024)

0.41
(0.095)

0.52
(0.043)

0.63
(0.045)

NaN
(NaN)

MLP
0.60
(0.053)

0.58
(0.040)

0.57
(0.0125)

0.54
(0.028)

0.55
(0.049)

NaN
(NaN)

Gradient Boosted
Classifier

0.68
(0.043)

0.67
(0.058)

0.66
(0.116)

0.64
(0.042)

0.71
(0.045)

NaN
(NaN)

TCN
0.72
(0.061)

0.72
(0.041)

0.43
(0.324)

0.68
(0.057)

0.78
(0.051)

0.58
(0.0)

EDSSmean

as severity
category

Logistic Regression
0.47
(0.018)

0.48
(0.023)

0.48
(0.033)

0.48
(0.027)

0.48
(0.028)

0.70
(0.0)

MLP
0.63
(0.019)

0.63
(0.028)

0.61
(0.045)

0.60
(0.019)

0.58
(0.028)

0.67
(0.0)

Gradient Boosted
Classifier

0
(0.0)

0
(0.0)

0.69
(0.039)

0.60
(0.026)

0.62
(0.031)

0.62
(0.0)

TCN
0.71
(0.050)

0.71
(0.041)

0.57
(0.085)

0.62
(0.056)

0.60
(0.065)

0.52
(0.0)
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