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Abstract

Scaling the current QA formulation to the open-domain and multi-hop nature of web
searches requires fundamental advances in visual representation learning, multimodal rea-
soning and language generation. To facilitate research at this intersection, we propose
WebQA challenge that mirrors the way humans use the web: 1) Ask a question, 2) Choose
sources to aggregate, and 3) Produce a fluent language response. Our challenge for the
community is to create unified multimodal reasoning models that can answer questions
regardless of the source modality, moving us closer to digital assistants that search through
not only text-based knowledge, but also the richer visual trove of information.

Keywords: Vision-and-Language, Multimodal reasoning, Multimodal information retrieval,
Knowledge aggregation, Multi-hop question answering

1. Introduction

Amazing strides have been made in the Question-Answering (QA) field. A myriad of tasks
have emerged such as open-domain QA Rajpurkar et al. (2016); Dhingra et al. (2017),
VQA Goyal et al. (2017); Antol et al. (2015); Marino et al. (2019); Hudson and Manning
(2019), multi-hop QA Yang et al. (2018), and multi-modal QA Hannan et al. (2020); Singh
et al. (2021); Talmor et al. (2021). However, at the very core of existing QA systems still
lies keyword matching, span-based extraction and classification over a pre-defined answer
vocabulary. While the wild success achieved by existing QA systems is undeniable, those
models still largely fall short of human performance because they lack language groundable
visual representations for novel objects and the ability to reason over multiple pieces of
knowledge. Take for example a question which requires combining multimodal information
dispersed in different knowledge pieces to reveal the whole picture (below): Are the Golden
Lion, Golden Unicorn and Golden Eagle statues on the same side of the Old State House?
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Even if a question answering system successfully figured out that the lion and unicorn statues
are on the east side while the eagle statue is on the west side, it would struggle without the
ability to reason about union or intersection. However, humans are comfortable with this
kind of reasoning process because we can switch between modalities with ease as well as
combining parts into the whole.

To encourage such multi-modal, multi-hop question answering, we introduced WebQA
(Chang et al., 2021),1 a novel dataset consisting of open-domain, factoid QA pairs that
requires information retrieval and aggregation given a list of external snippets and images.
Apart from questions that require reasoning over images, WebQA also includes text-only
questions to ensure improved visual reasoning performance does not come at the cost of
textual reasoning. The challenge motivates the move to build more intelligent search engines
which are able to bear the bulk of information filtering and aggregation work for downstream
users. Our formulation is specifically constructed to center on core scientific questions while
allowing for rapid deployment of resulting technologies for shared interest with industry.

2. Current Challenges

We briefly discuss three important aspects of Question-Answering research and their as-
sociated challenges. These factors are independent of one another and if simultaneously
achieved would accurately reflect question answering tasks we engage in our daily life.

Multi-hop QA requires systems to gather information from different sources of evidence.
The subsequent processing of gathered pieces should involve consolidation and reasoning
beyond simple concatenation. Based on the logical relationships between different sources,
such consolidation may either process the sources in a chain or in parallel. More complex
scenarios may also benefit from revisiting an evidence at multiple processing steps. The
primary challenge for multi-hop QA lies in how multiple sources can be effectively combined
such that they collectively inform the derivation of the final answer.

Multi-modal QA requires systems to take input from different modalities. This is ne-
cessitated by the fact that knowledge can exist not only in a text-only landscape, but also
in visual or audio forms. The main difference between multi-modal QA and VQA is that,
the multi-modal property lies on the knowledge side for multi-modal QA, versus on the
question side for VQA. Also, multi-modal QA is more demanding than VQA because a
query is usually agnostic to the answer modality, although it is possible to infer a preferred
answer modality from the content of the query. In contrast, a query in VQA is, by task
definition, paired with a given image.

Text and Image are the two dominant modalities at interest, since they are the major
sources humans acquire knowledge from, though, some recent work (Chen et al., 2020;
Talmor et al., 2021) has considered tables as a modality different from text, given their more
structured organization of information. Speech is another important knowledge-carrying
modality, especially targeting at low-literacy or visually-impaired users, which grants future
exploration. Since different modalities vary a lot in the raw input format, (e.g. language
comes in discrete symbols, images in 2D pixel-matrices, speech in waveforms), research has
focused on jointly representing multi-modal information in a single unified space before

1. All data and leaderboard are available at https://webqna.github.io/
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further consolidation. Such joint representations highlight the main difficulty of multi-
modal QA. Existing unification approaches include joint embedding or translation. Joint
embeddings aim to represent text and images in the same embedding space so subsequent
processing can operate agnostic to the modality. Translation-based approaches focus on
translating information in one modality (typically images) into the other modality (typically
text), so that they can be analyzed in one representational space. This often leverages image
captioning (Li et al., 2019) and scene-graph generation (Shi et al., 2019).

Open-domain QA In the literature, the “domain” can both refer to the answer domain
and the knowledge domain. An open answer domain means answers are produced by free-
form generation, as opposed to classification over pre-defined candidates. This requires a
generative model, whereas most current models focus on discriminative tasks. An open
knowledge domain means that, in order to answer the query, one is expected to first per-
form knowledge retrieval in an unrestricted knowledge base (e.g. the Web). However, most
existing open-domain QA datasets provide a restricted set of knowledge candidates among
which to select supporting evidence, for the ease of prototype building and model compar-
ison. In addition, a more unrestricted retrieval space is often approximated by Wikipedia,
the collection of all knowledge candidates across a particular dataset, or a large-scale knowl-
edge graph. To extract knowledge from a large, heterogeneous space, one has to overcome
challenges on efficient filtering, indexing and ranking. The authentic “retrieval in-the-wild”
setting could also involve extra difficulties such as noise and misinformation handling.

WebQA Challenge Highlights WebQA is interdisciplinary and reflects challenges in
all three aspects. WebQA requires a system to 1) represent both text and images (multi-
modal), 2) identify relevant knowledge in either modality (open knowledge domain), 3)
aggregate information from multiple sources via logical or numerical reasoning (multi-hop),
and 4) generate answers in free-form natural language (open answer domain).

3. Problem Definition

Given a question Q, and a set of candidate sources s1, s2, ..., sn, a system is expected to
answer the question with a natural language sentence and indicate which sources were used
to support the answer. A source can be either a snippet or an (image, description) pair.
Under this task setup, systems are required to reason over a heterogeneous space without
knowing in advance which modality the target knowledge comes from. In total, WebQA
has over 34K QA training pairs, with an additional 5K and 7.5K held out for development
and testing. See Chang et al. (2021) for a detailed breakdown of dataset statistics.

4. Related Datasets

Recent work in question answering has transitioned from multiple-choice (Clark et al., 2019;
Marino et al., 2019; Hannan et al., 2020) and span prediction (Talmor and Berant, 2018;
Yang et al., 2018; Tu et al., 2019; Welbl et al., 2018; Choi et al., 2018; Chen et al., 2017;
Hannan et al., 2020; Joshi et al., 2017) to the more general open-domain paradigm. In
addition, novelty of newly released datasets have centered around multimodal knowledge
retrieval (Talmor et al., 2021; Singh et al., 2021), answer modality disambiguation (Hannan
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#Train #Dev #Test #Img Len Q Len A

VQA v2 (Goyal et al., 2017) 443K 214K 453K 200K 6.1 1.2

OKVQA(Marino et al., 2019) 9.0K 0 5.0K 14.0K 8.1 1.3
MultiModalQA(Talmor et al., 2021) 23.8K 2.4K 3.6K 57.7K 18.2 2.1
ManyModalQA(Hannan et al., 2020) 2.0K 3.0K 5.1K 2.9K – 1.0
MIMOQA(Singh et al., 2021) 52.4K 0.7K 3.5K 400.0K – –

WebQA (ours) 34.2K 5K 7.5K 390.0K 17.5 12.5

Table 1: Comparison of relevant benchmarks by size and average question/answer lengths.

Eval Metrics Answer Schema

VQA v2
min{#human agreement

3 , 1} Top training answers
OK-VQA

MultimodalQA
Exact Match
F1

Txt: span/Y/N
Img: Fixed vocab
Table: Y/N, cell selection, or logical operation.

ManymodalQA Classification Accuracy Word selection from context or vocab

MIMOQA
Txt: ROUGE-1/-2/-L or BLEU
Img: Precision@1/@2/@3

Span prediction
+ Image retrieval

WebQA (ours)
Fluency: BARTScore
Keyword Acc: Recall/F1

Complete NL sentence

Table 2: Comparison of evaluation metrics and answer schemas

et al., 2020) as well as information consolidation with logical operations (Talmor et al., 2021)
or message passing along a reasoning chain (Jhamtani and Clark, 2020; Yang et al., 2018;
Welbl et al., 2018; Chen et al., 2020). Table 1 and 2 compare WebQA with recent related
datasets in this field in terms of basic statistics, evaluation metrics and answer schema.
Specifically, we compare WebQA with MultiModalQA (Talmor et al., 2021), ManyModalQA
(Hannan et al., 2020) and MINOQA (Singh et al., 2021) in detail, since they share the most
high-level commonalities, while each highlights different sub-challenges.

MultimodalQA focuses on heterogeneous knowledge extraction across snippets, tables
and images. However, MultiModalQA requires different answer schemas for TextQA, Im-
ageQA and TableQA. TextQA answers are either a span, “yes” or “no”, while ImageQA
selects from a fixed answer set. TableQA can select a table cell, combine several cells, or
produce “yes”/“no”. By contrast, we state that modality unification has to be done either
explicitly or implicitly before generating the final answer.

ManyModalQA features ambiguity in the choice of answer modality. We focus more
on building multimodal knowledge space and less on distinguishing the answer modality.
Importantly, ManyModalQA restricts all answers to be a single word chosen from a prede-
fined vocabulary and given context. While such simplification facilitates easy evaluation, it
is unnatural when considering the unlimited coverage of the Web, and constantly shifting
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domain knowledge, since the finite answer space imposes a hard limit on the flexibility of an
answering system. To handle the more general real-world use case, we formulate WebQA
as a free-form generation task.

MIMOQA highlights accompanying a textual answer with an image to improve the com-
pleteness and informativeness of an answer presented to the user. Their approach only re-
quires span prediction and source selection, both under the classification banner. We differ
by our additional requirement of summarizing selected snippets and images into a natural
language sentence, suggesting our advantage over MIMOQA in reasoning depth.

To summarize our unique contributions, previous work does not require the answers to be
complete, free-form natural language sentences, as opposed to extractive spans, or elements
from a finite set. Also, no existing multi-modal QA challenges has supported both natural
language generation (NLG) evaluation and accuracy-style evaluation as we do.

5. Dataset Collection

We collected data via crowdsourcing with a five-stage pipeline: qualification, interestingness
filter, QA-pair creation, validation and multi-human-reference generation. Annotator pay
averaged $13/hr overall, including the qualification HITs which paid less than annotation.
We closely spot-check quality and generously bonus out-of-the-box thinking to incentivize
workers for producing high-quality and diverse samples.

Qualification We restricted to crowd-
workers located in the US or Canada,
who has at least 1,000 approved anno-
tations with an approval rate ≥ 95%.
The pool of annotators were selected
with a tutorial and a qualification
exam. The exam included 15 annota-
tion examples, some of which obviously
violated the annotation guidelines. An-
notators had to point out problematic
examples as well as the specific instruc-
tion violated. One had to score at least 80% on the qualification exam in order to be granted
access to our main task interface. Considering that workers who had patience to complete
the qualification exam were generally more coachable, we gave workers who achieved 60%
- 80% at their first attempt a second chance.

Image Interesting-ness Filter We aimed to include visually interesting images as the
evidence for our knowledge-seeking queries. Most categories in the topic list on Wikimedia
Commons do not satisfy this criterion. Therefore, we seeded our image pool with natural
scenes and designed a filter HIT to obtain image groups that are both semantically relevant
and visually interesting. In the filter HIT, we presented 10 images at a time, which are
returned by an Image Search API call using a seed term. Tasks for the annotators included
1) selecting 3 out of the 10 images that are distinct, but related, and 2) assigning a label that
would best summarize the shared semantics. We further paired up image triples obtained
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from this stage according to the cosine similarity between their semantic labels, resulting
in groups of 6 images which were to appear as prompts in the QA-pair creation stage.

QA Pair Creation We crowdsourced question-answer pairs with either text- or image-
based sources. All sources were crawled from Wikipedia and grouped according to their
topics. In each HIT, an annotator was presented with a group of 6 candidate knowledge
sources, among which one had to select one or two and write down a question attending to
information present in the selected sources. Annotation tasks were released batch-wise to
facilitate expert-feedback-in-the-loop for quality maintenance.

Validation All data
was run through val-
idation HITs to en-
sure the correctness
of source selection,
the necessity of all
sources, and the cor-
rectness of the an-
swer. Samples were
only kept upon agree-
ment of 3 different
validators.

Multi-human-reference generation On the test set, each question received answers
from multiple (3-6) humans for improved evaluation and to compute human performance.
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6. Evaluation Metrics

The goal of WebQA is a system that answers a question, by aggregating knowledge to
produce an accurate and fluent natural language response. To assess progress, on this overall
goal we evaluate model performance with respect to both source retrieval and question
answering separately. While source retrieval is easily evaluated via F1, question answering
quality is factored into two scores: fluency (FL) and accuracy (Acc). FL is based on
BARTScore (Yuan et al., 2021), which measures the grammaticality and general semantic
relevance between an output and a reference. However, we cannot rely solely on embedding-
similarity-based metrics (Yuan et al., 2021; Zhang et al., 2019) as they cannot precisely
distinguish between entities within an answer domain (e.g. all color words). Therefore, we
also compute an accuracy measure, Acc, with precision and recall within a corresponding
answer domain, which not only penalizes mindless guessing, but also remains lenient with
superfluous words outside the answer domain.

7. Participating and Comparison Systems

Below we detail several of the most important components of the natural baselines and
strongest performing models in this space.

Baseline: VLP+x101fpn This system finetuned VLP (Zhou et al., 2020) with a ResNeXt-
101 FPN image feature extraction backbone. Separate models were finetuned for source
retrieval and question answering respectively on top of VLP’s released checkpoints.

Baseline: VLP+VinVL This system replaced the image feature extraction backbone
in the previous system with the latest state-of-the-art visual representation model VinVL
(Zhang et al., 2021). Other training techniques remained the same.

PICa To explore to what extent models can answer web search queries by leveraging
implicit knowledge stored in parameters, this system prompted GPT-3 (Brown et al., 2020)
(davinci) with engineered prefixes containing a few examples selected from the training set
(Yang et al., 2021). All images were converted to textual descriptions by the Oscar (Li et al.,
2020) image captioning model to pass to GPT-3. This system required oracle sources.

KD-VLP This system used image grid features from CNNs in place of the region features
proposed by an object detector. This would overcome the hard limit imposed by a fixed
vocabulary of 1600 object classes on which an object detector was trained. The multimodal
transformer was fine-tuned from KD-VLP’s released weights. KD-VLP (Liu et al., 2021)
was pre-trained to gain object awareness with knowledge distillation from external object
detectors. Please refer to Liu et al. (2021) for more details.

BERT-Large+VinVL+CLIP+KLW In this system, the multimodal transformer was
initialized from BERT-Large (Devlin et al., 2018) and visual representations were augmented
with CLIP (Radford et al., 2021) features. Additionally, the training objective for QA was
modified to put greater weight (keywords loss weight, KLW) on keywords that describe
shapes, colors and binary judgments (i.e. yes/no). More balanced data sampling strategies
were also proved to be helpful. Specifically, for the retrieval task, instances corresponding
to different ground-truth sources were grouped into one batch. For the QA task, all QA
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instances are fully shuffled to guarantee that both image- and text-based instances are
present in each batch. During inference, the threshold for source retrieval was dynamically
determined with multiple stages to reduce both false negatives and empty yields.

Kwon & Shin For retrieval, this system initialized transformers with Zhou et al. (2020)
and Sharma et al. (2018) and performed knowledge distillation from the provided baselines
(Section 7). This resulted in two distilled models Mdist

vqa and Mdist
cc , which were ensembled

intoMens. The retrieval results were produced by binary classification via lightGBM, where
the input features were the modality information of each source and variant statistics of
scores (e.g. mean, median, quantiles, top2, ...) predicted by Mens. This provides the final
prediction model (lightGBM) a global view of all candidate sources, rather than making
independent decisions for each source. For the QA task, two transformers were trained on
Visual Question Answering (VQA) (Zhou et al., 2020) and Google’s Conceptual Captions
(Sharma et al., 2018) initializations, which were ensembled to produce the final answer.

8. Results

Table 1

FL*Acc

VLP+x101pfn 24.53

VLP+VinVL 25.86

KD-VLP 23.57

Kwon & Shin 24.96

Bert-
large+VinVL+CLIP
+KLW

29.92

Human 52.35
Fluency * Accuracy (overall performance)

0

13

26

39

52

VLP+x101pfn VLP+VinVL
KD-VLP Kwon & Shin
Bert-large+VinVL+CLIP+KLW Human

1

During the competition, retrieval F1 improved dra-
matically, by ten absolute points, and QA perfor-
mance (FL∗Acc) by five points. The strongest entry
came from aggregating representations from multi-
ple sources. Specifically, Bert-large with +VinVL
(Zhang et al., 2021) +CLIP (Radford et al., 2021)
+KLW (Dong et al., 2019). When combined, this
system won first place in the challenge, with an in-
tegrated 29.92 FL∗Acc score. A very different ap-
proach was to leverage PICa (Yang et al., 2021) to achieve a 40.1 FL ∗Acc score. Since
PICa is not capable of source retrieval, it was not included in the final ranking for fair com-
parison, but serves as an upper-bound for the best possible performance of the strongest
known NLG models given perfect source information. Though important insights have been
shared among the Vision and Language community, current models still lag far behind hu-
man performance, making WebQA an important playground for further improvements.

9. Lessons Learned and Open Challenges

9.1. Extending retrieval to full-scale

Given the great interest in open-domain, multi-modal retrieval as a prerequisite for the
QA task, we added a full retrieval setting where a retriever is supposed to select from the
entire collection of sources (∼900K) across the dataset. We benchmarked full-scale retrieval
on WebQA with both sparse (BM25 Robertson and Zaragoza (2009)) and dense (CLIP
Radford et al. (2021)) retrieval methods and observed a huge drop in F1 score at this large
scale (see Chang et al. (2021)). What holds promise is that having VLP re-rank the top
20 sources predicted by CLIP doubles F1, suggesting ample room for a future of large-scale
coarse-to-fine filtering that better deals with the efficiency-accuracy trade-off.
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Retrieval Fluency Accuracy FL*Acc

VLP+x101pfn 68.86 44.56 40.35 24.53
VLP+VinVL 70.87 45.73 42.16 25.86

KD-VLP 74.55 42.7 38.51 23.57
Kwon & Shin 78.45 46.13 40.25 24.96
Bert-large+VinVL+CLIP+KLW 76.59 48.47 47.10 29.92

Human 90.54 55.09 94.33 52.35

Table 3: Comparison of top performing submissions against the baselines on both individual
tasks and overall performance (grey background). Specifically, models performed
retrieval (showing the largest gains) in order to then answer questions (Accuracy)
in natural language (Fluency). The combined result is evaluated as FL*Acc.

9.2. Multi-modal QA Modelling

Be cautious when using pre-trained object detectors for open-domain QA First,
the category list on which object detectors are trained is impoverished. This leads to the
problem that the vision-and-language transformer cannot establish a meaningful association
between the image regions and text tokens, even when the classification tags of region pro-
posals are included in the input. Apart from failing to provide meaningful associative links,
a finite vocabulary also restricts the image features into representing only those entities
that are deemed important in object detection benchmarks, leading to defective image rep-
resentations for downstream QA. For example, the most popular object category returned
by a detector is “person”. Nonetheless random figures detected in an image rarely become
the supporting evidence for a knowledge-seeking query.

Second, object detectors are not optimized towards distinguishing visual properties that
an object classifier should be invariant to. For example, varying the color, texture or
brightness on an object should not change its category. However, distinguishing between
those low-level features and verbalizing the results into language are the core skills required
by WebQA and web queries more generally.

Third, the object detection task does not equip the model with the ability to asso-
ciate descriptive language with visual properties. Queries in WebQA target a multitude of
knowledge types that can be gathered from visual cues, including textures, shapes, colors,
cardinality and object affordances. Unfortunately, an image encoder is unaware of how to
verbalize all these interesting aspects. And it is unclear whether this ability should emerge
during fine-tuning since the autoregressive MLM loss only serves as distant supervision for
the associative behavior between visual cues and descriptive language.

Multi-modal fusion does NOT naturally emerge Despite the rapidly advancing ar-
chitectures, objectives and pre-training tasks in multi-modal modelling, cross-modal fusion
still remains largely unsolved. This is a bitter lesson informed by the finding that initial
modeling attempts to solve WebQA do not know how to “properly” read images, even
though images are explicitly given as knowledge sources. This failing explains why a) ablat-
ing out the visual input does not lead to dramatic performance drop, b) more performance
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gain can be obtained with a large-scale pre-trained language model even if it does not take
visual input, c) directly fine-tuning from the BERT checkpoint demonstrates an advantage
over the VLP checkpoint. Importantly, simply matching the dimensions between visual
and textual token embeddings so the model can easily integrate components, is far from a
working solution for multi-modal fusion.

We posit that insufficient (visual) attention guidance during training constitutes the
reason why the supposed visual understanding component in vision-and-language models
failed to play a constructive role. We do not deny that pre-trained vision-and-language
models are good at image-text matching when each image is treated as a single component
to score. However, in the WebQA task setup, it is more helpful to view an image as a
cluttered collection of distinct components which may or may not provide useful clues.
This demands proactive decision on where to attend to within an image. Nevertheless,
all approaches implemented for WebQA at this point do not incorporate instance-level
supervision that would teach the model “where to look at” within an image.

Most of the time, holistic image encodings concatenated with the textual embeddings
are fed to the transformer in a brute-force manner, with an unrealistic hope that stacked
attention layers should somehow figure out an association between the input and the ex-
pected answer. But it is doubtful whether the current supervision signals provide enough
discriminative power for the model to learn a robust association between what it was fed
with and what it was supposed to produce. We expect that multi-modal QA should benefit
from fine-grained supervision guiding the model to “look” at a targeted image area where
the answer can be derived from.

10. Conclusion

We have documented here the community’s valiant and informative first attempts at tack-
ling the challenge of WebQA (Chang et al., 2021), which was designed to simulate the
heterogeneous information landscape one might expect when performing web search. We-
bQA covers a wide range of open-domain factoid queries that require attending to images
for supporting knowledge, while also forcing systems to reason about text and generate lan-
guage. To recap, WebQA evaluates the following capabilities with respect to open-domain
multimodal QA: 1) Perform information retrieval from both text and image collections with
hard distractors, 2) Aggregate language-groundable knowledge from multiple resources, as
opposed to extracting an existing text span or image patch, 3) Perform logical or numeric
reasoning in a multimodal space, and 4) Generate answers in natural languages, as opposed
to a classification label.

Various representation methods, model architectures, training techniques, objective
functions and data augmentation approaches have been explored to solve the task, but
there is still a considerable performance gap between models and humans. We hope We-
bQA will continue to be a playground for the community to benchmark important aspects
of web search, around reasoning, knowledge aggregation, rich visual understanding and the
use of a unified model across modalities.
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