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Abstract
In this report, we describe the Open Catalyst Challenge held at NeurIPS 2021, focusing
on using machine learning (ML) to accelerate the search for low-cost catalysts that can
drive reactions converting renewable energy to storable forms. Specifically, the challenge
required participants to develop ML approaches for relaxed energy prediction, i.e. given
atomic positions for an adsorbate-catalyst system, the goal was to predict the energy of
the system’s relaxed or lowest energy state. To perform well on this task, ML approaches
need to approximate the quantum mechanical computations in Density Functional Theory
(DFT). By modeling these accurately, the catalyst’s impact on the overall rate of a chemical
reaction may be estimated; a key factor in filtering potential electrocatalyst materials. The
challenge encouraged community-wide progress on this task and the winning approach
improved direct relaxed energy prediction by ∼15% relative over the previous state-of-the-art.
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Figure 1. Hourly electricity demand for California on a typical summer day (August 6th, 2020) as
reported by California ISO (left). The demand (blue line) peaks around 19:00, the same time that
output from solar and wind (green line) declines. If we naively scale up solar and wind by 3x (right),
excess power is generated during the afternoon hours, but evening peak demand remains unmet. For
renewable energy to meet the grid’s needs, energy storage is needed to transfer excess power from
times of peak generation (noon hours, summer) to times of peak demand (evenings, winter).

1. Introduction

Scalable and cost-effective solutions to renewable energy storage are essential for addressing
the world’s rising energy needs while mitigating climate change. As we increase our reliance
on renewable energy sources such as wind and solar, which produce intermittent power,
storage is needed to transfer power from times of peak generation to peak demand (Fig. 1).
This may require the storage of power for hours, days, or months. One solution that offers
the potential of scaling to nation-sized grids is the conversion of renewable energy to chemical
fuels, such as hydrogen. To be widely adopted, this process requires cost-effective solutions
to running chemical reactions (Zitnick et al., 2020).
An open challenge is finding low-cost catalysts to drive these reactions at high rates (Chanus-
sot* et al., 2021). Through the use of quantum mechanical simulations (Density Functional
Theory, DFT (Sholl and Steckel, 2009)), new catalyst structures can be tested and evalu-
ated. Unfortunately, the high computational cost of these simulations limits the number
of structures that may be tested. The use of machine learning may provide a method to
efficiently approximate these calculations; reducing the time required from ∼24 hours to a
second. This improvement in throughput would transform the search for new catalysts from
the present day practice of evaluating 1,000s of handpicked candidates to brute force search
over millions or even billions of candidates.
The Open Catalyst Challenge 2021 was designed to spawn interest and research in the
consequential and complex problem of discovery of catalyst materials, an important effort in
meeting the world’s energy needs in the decades ahead. An important quantity in screening
catalysts is the adsorption energy for the molecules, referred to as ‘adsorbates’, involved in
the reaction of interest. The adsorption energy may be found by simulating the interaction
of the adsorbate molecule on the surface of the catalyst to find their resting or relaxed
energy, i.e. how tightly the adsorbate binds to the catalyst’s surface. The rate of the chemical
reaction, a value of high practical importance, is then commonly approximated using simple
functions of the adsorption energy. Specifically, given an initial set of atomic positions for an
adsorbate-catalyst structure, the task in this competition was for ML models to predict the
energy of the structure at the local minimum or relaxed state.
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Figure 2. Two pathways to IS2RE – 1) iteratively estimating atomic forces and updating atomic
positions until a relaxed state is reached and predicting the energy of that state, 2) directly predicting
the energy of the relaxed state from the initial state, without estimating intermediate states.

As part of the broader Open Catalyst Project (opencatalystproject.org) effort, we publicly
released the world’s largest quantum mechanical simulation dataset – OC20 Chanussot* et al.
(2021) – in the Fall of 2020 along with a suite of baselines and evaluation metrics that formed
the basis for this challenge. The creation of the dataset required over 200 million hours
of compute. This dataset enabled the exploration of techniques that will generalize across
different catalyst materials and adsorbates. If successful, models trained on the dataset
could enable the computational testing of millions of catalyst materials for a wide variety of
chemical reactions. However, techniques that achieve the accuracies required for practical
impact are still beyond reach and remain an open area for research.

2. Competition Details

2.1. Task – Initial Structure to Relaxed Energy (IS2RE)

The challenge consisted of one primary task – Initial Structure to Relaxed Energy (IS2RE) –
as originally proposed in our OC20 dataset paper (Chanussot* et al., 2021). Here the input
consists of the atomic positions for an initial structure i.e. an adsorbate-catalyst system, and
the goal is to predict the energy of the structure’s relaxed state.
Relaxed energies are a critical indicator in determining the reaction rate resulting from the
use of a catalyst. By placing an adsorbate in multiple locations above a catalyst’s surface
and relaxing the structure, the binding site between the adsorbate and catalyst with the
lowest relaxed energy can be determined. This lowest energy binding site is likely to be
the one realized in practice under experimental conditions. The energy of the lowest energy
binding site is also highly correlated with the reaction rate or selectivity. If successful, these
techniques could be used to screen millions or even billions of potential catalyst materials for
the reactions involved in renewable energy storage and solar fuel generation.
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Figure 3. Illustrations of some systems from the OC20 dataset (Chanussot* et al., 2021). Each
system consists of an adsorbate (the small molecule on the surface) and a catalyst (the large grid-like
structure sitting below the adsorbate), and is repeated in the direction of the horizontal axes infinitely.

Traditionally, relaxed energies are found by first performing structure relaxations through an
iterative local optimization process that calculates the energy gradient, i.e. atomic forces,
using the energy from DFT. Atomic forces are in turn used to update atom positions until
convergence. This very computationally expensive process typically requires hours or days of
DFT calculations to converge and forms the basis of most computational catalysis efforts.
One approach to the IS2RE task is to use ML to approximate DFT relaxations, i.e. iteratively
estimate atomic forces and update atomic positions until a relaxed state is reached and
finally predict the energy of that state. Evaluation of the IS2RE task on models built for
approximating DFT relaxations will help determine whether this approach is sufficiently
accurate and fast for practical applications. These models have the additional benefit of
predicting the relaxed structure and accelerating future DFT calculations. Alternatively,
it may be possible to predict the relaxed energy directly, without estimating intermediate
relaxation states, as many of the changes during a relaxation (say due to particular initial
guess strategies) are systematic. These direct IS2RE approaches may lead to even greater
improvements in computational efficiency. These two pathways are illustrated in Fig. 2.
As such, we placed no restrictions on the possible ML approaches to solve this task and
used to participate in this challenge. We encouraged submissions that are significantly more
computationally efficient than DFT. For example, a standard relaxation using DFT takes
∼24 hours, while ML approaches have the potential to bring this down to < 10 seconds per
relaxation or < 1 second per direct prediction, at least a 1000x improvement! To ensure con-
sistent and fair evaluation, we used a public evaluation server hosted on EvalAI. Data loaders,
metrics, and baseline models were made available at github.com/open-catalyst-project/ocp.

2.2. Data & Splits

The competition was conducted on the Open Catalyst Dataset (OC20) (Chanussot* et al.,
2021), Fig. 3. OC20 was used to provide training and validation data for the competition.
OC20 is a freely available and public dataset containing approximately 1.2M DFT relax-
ations, the world’s largest catalyst dataset. Due to its significant scale, the dataset required
over 200M hours of compute to generate. Computations were performed on servers Meta
has committed to be 100% supported by renewable energy since 2020. Each relaxation
contains a sequence of structures as the atoms move from an initial structure to a relaxed
structure. Each structure contains the atoms corresponding to the adsorbate and catalyst.
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Task Train Val In Domain Val OOD Adsorbate Val OOD Catalyst Val OOD Both

S2EF 133,934,018 999,866 999,838 999,809 999,944
IS2RE 460,328 24,943 24,961 24,963 24,987

Table 1. Sizes of OC20 training and validation splits for the Structure to Energy & Forces (S2EF)
and Initial Structure to Relaxed Energy (IS2RE) tasks. The structures for S2EF are sampled from
640, 081 relaxations for the training split, and from 30k-70k relaxations for each validation split.

Figure 4. Overview and structure counts of all subsplits in test-challenge.

The initial structures are heuristically determined and the relaxed structures correspond
to a state in which the atoms are at a local energy minima. The IS2RE training dataset,
that consists of these heuristic initial structures paired with relaxed structure energies and
per-atom positions as annotations, has ∼460k points. Alternatively, the Structure to Energy
& Forces (S2EF) dataset, that consists of every relaxation step as a training sample, has
∼134M points. See Table 1. In the S2EF splits, for each structure, DFT-computed system
energy, per-atom forces and per-atom positions are available as annotations. The OC20
validation and test splits have several subsplits to help evaluate a model’s performance on
interpolative and extrapolative tasks. A model’s interpolative ability is evaluated on samples
from the same distribution as the training dataset (In Domain). Extrapolation is evaluated
on two dimensions – new adsorbates and new catalyst compositions. Subsplits are created by
considering all combinations of potential extrapolations – Out-of-Domain Adsorbate (OOD
Adsorbate), OOD Catalyst, and OOD Both (both unseen adsorbate and unseen catalyst).

A new test-challenge split, consisting of 120k structures, was released specifically for the
competition to ensure there is no overfitting on the test data. Relaxed energy and force
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(a) (b)

Figure 5. Example structures from the ‘rotated’ and ‘anomalous’ subsplits of test-challenge.

annotations were removed from the released test-challenge data. Only initial structures were
released. Fig. 4 provides an overview of all subsplits in test-challenge, detailed below:

• Test-like: Similarly generated as the OC20 test split and used to pick winners.

• Rotated: Subset of structures in ‘test-like’ randomly rotated along x, y, z and useful for
evaluating invariance to structure rotations. See Fig. 5(a).

• Anomalous: Structures where the adsorbate dissociates or desorps. See Fig. 5(b).

• Dense: Structures with multiple adsorbate placements per adsorbate-catalyst combination,
useful for evaluating recall of the lowest energy binding site.

Participants were not provided the breakdown of test-challenge into its subsplits. They
were to submit predictions on all 120k structures from test-challenge, and were limited to a
maximum of 10 submissions per team to avoid overfitting. Teams did not know the results
of their submissions until after the evaluation server was closed at the challenge deadline.

2.3. Evaluation Metrics

All submissions to the Open Catalyst Challenge 2021 were made to the EvalAI server and
evaluated on the following metrics:

• Energy MAE: mean absolute error between the predicted relaxed energy and the DFT-
computed ground-truth relaxed energy.

• Energy within Threshold (EwT): the percentage of predicted relaxed energies within 0.02
eV of the DFT-computed ground-truth relaxed energy.

Challenge winners were decided based on the Energy MAE metric. Given the large size of
the OC20 trajectory data (∼134M training points), we realized that resource availability
could become a bottleneck for some participants. Thus, we planned to recognize 2 winners:

1. The best overall performance with no constraints on data used.
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2. The best performance using only the IS2RE dataset (size 460,328 training points, Table 1)

Participants were prompted while making submissions on EvalAI to specify whether they
used only the IS2RE dataset or not. Participants submitting to track (2) were prohibited
from using any other datasets and/or pretrained models. Data augmentation was permitted
as long as it comes only from the IS2RE dataset. Pretraining in any form that used trajectory
data (e.g . from S2EF) was disallowed for track (2). Participants submitting to track (1) were
free to use any dataset, and were allowed to participate in both tracks if they wished.

3. Results & Analysis

Energy MAE (eV)
Rank Team Test-like Rotated Anomalous Dense

1 Microsoft Research Asia 0.5474 0.5467 1.0312 0.6353
2 Innopolis AI 0.6180 0.6170 1.1859 0.6839
3 Up and Atom 0.6694 0.6707 1.1402 0.7398
3 DIVE @ TAMU 0.6710 0.6712 1.1810 0.7398
5 RedSeaSeed 0.6830 0.6811 1.1876 0.7435
6 air 0.6973 0.6999 1.3089 0.7594
7 EnergyNet 0.7351 0.8842 1.3399 0.8033

Baseline GemNet-dT (Gasteiger et al., 2021) 0.6410 0.6446 1.1681 0.7078
Baseline DimeNet++ (Gasteiger et al., 2020) 0.6593 0.6625 1.1937 0.7200

Table 2. Open Catalyst Challenge results on the test-challenge split. Note that energy MAE on the
‘test-like’ subsplit of test-challenge was used to decide competition winners. Microsoft Research Asia
won the competition with an energy MAE of 0.5474, followed by Innopolis AI with 0.6180.

The competition received 30 submissions overall, from 7 teams with participants from 6
different countries. All teams submitted to track (2) – the IS2RE-only track. Table 2
reports results across all test-challenge subsplits. Team ‘Microsoft Research Asia’ won the
competition with an energy MAE of 0.5474 eV on test-like. Compared to our best baseline –
GemNet-dT (Gasteiger et al., 2021) – this is a substantial 14.6% relative improvement in
energy MAE. This approach also outperforms all other models on the other test-challenge
subsplits. Team ‘Innopolis AI’ placed 2nd with an energy MAE of 0.6180 eV, also beating
the GemNet-dT baseline by 3.59% relative. Teams ‘Up and Atom’ and ‘DIVE @ TAMU’
shared the 3rd position since their energy MAEs on test-like had overlapping standard errors.

3.1. Winning approaches

3.1.1. Microsoft Research Asia

Researchers from Microsoft Research Asia won the first prize based on their Graphormer (Ying
et al., 2021) model. Unlike typical graph neural networks, Graphormer is built upon the
standard Transformer architecture (Vaswani et al., 2017), which enjoys great expressive power
and has good potential for scalability. In addition, compared to conventional message-passing
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schemes, Graphormer benefits from a global receptive field by better capturing long-range
forces, e.g . Coulombic forces that are non-negligible in quantum mechanical computations.
The model employed a 48-layer standard Graphormer, where the parameters are shared across
each 12-layer block for efficiency. A Gaussian kernel function (Schütt et al., 2017; Unke and
Meuwly, 2019) is adopted as the spatial encoding, and the spatial encodings of all nodes are
then summed up to obtain the centrality encoding that describes the importance of each atom
in the 3D molecular graph. In addition, the output self-attention layer projects the attention
scores to x, y, and z axes to keep the overall network equivariant. All implementations and
model details are available at github.com/microsoft/Graphormer.

3.1.2. Innopolis AI

.Researchers from Innopolis University won the second prize based on a graph neural network
approach for catalyst design (CatGNNs). Their model consisted of convolutional and message
passing layers with physically-informed node and edge attributes for atomistic systems. The
authors experimented with three base GNN architectures – EdgeUpdateNet, OFMNet and a
variant of DimeNet++ (Gasteiger et al., 2020). The edge attributes consisted of interatomic
interaction matrices – Coulomb matrix, Ewald sum matrix, and sine matrix – and the node
fingerprints consisted of elements of the orbital field matrix (OFM), a one-hot representation
of the electronic state of atoms with surrounding atomic orbitals. This model demonstrated
improved accuracy in adsorption energy prediction, especially on out-of-domain examples for
both adsorbates and catalysts, making it well-suited for use in catalyst screening. Scripts,
models and configurations used are available at github.com/AI4Materials-lab/catgnns.

3.2. Rotational invariance

Fig. 6 compares energy MAE on the test-like subsplit against that on the rotated subsplit.
Recall that the rotated subsplit consists of a subset of structures from test-like that are
randomly rotated along x, y, and z axes. We find that all approaches except ‘EnergyNet’
demonstrate similar errors across the test-like and rotated structures, i.e. their energy
predictions are largely robust to structure rotations, a useful property for good generalization.

3.3. Predicting dissociations and desorptions

Recall that the anomalous subsplit of test-challenge consists of adsorbate dissociations –
when a chemical bond in an adsorbate breaks during relaxation – and desorptions – when
the adsorbate molecule separates from the catalyst surface during relaxation because it is
energetically favorable. Fig. 7(a) shows the energy MAE on this subsplit. We find that the
winning approach performs the best here as well, but the energy MAEs are significantly
worse than on the test-like subsplit (1.031 vs. 0.547 eV for Microsoft Research Asia).

3.4. Recall of lowest energy site

The dense subsplit consists of multiple adsorbate placements per adsorbate-catalyst system
and helps determine the lowest energy binding site from a set of relaxations. This is a
proxy to determine the effect of the catalyst on the rate of a chemical reaction. Realistically,
the adsorption happens at a place on the catalyst surface where the adsorbate is most
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Figure 6. Energy MAE on the test-like (solid) vs. rotated (dashed) subsplits for all entries to the
competition. Entries with overlapping standard error margins have the same color. Baselines are in
grey. All entries except ‘EnergyNet’ demonstrate similar MAEs on test-like vs. rotated.

(a) (b)
Figure 7. (a) Energy MAE on the anomalous subsplit. Entries with overlapping standard error
margins have the same color. The winning approach performs the best here as well, but the overall
energy MAEs are significantly worse than on the test-like subsplit. (b) Lowest energy site recall rate
for the winning approach compared to the DimeNet++ and GemNet-dT baselines. This reports the
percentage of times the true lowest energy site for an adsorbate-catalyst pair is included in the k
lowest energy sites predicted by models. The winning approach has a recall rate of 89% at k = 10.

energetically stable, but we have no knowledge of where that site is in advance, especially on
a complicated catalyst surface that consists of multiple elements. The dense subsplit helps
solve this by enumerating all the unique sites on a catalyst surface and performing DFT
relaxations of an adsorbate on each site to determine the lowest energy. However, DFT is
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costly and ML could significantly reduce the computational resources required. We evaluated
each entry on this subsplit using a metric called "Lowest energy site recall" (Algorithm 1).

Algorithm 1 Lowest energy site recall

Require: Na; σb; kc;
let Ebest = actual lowest adsorption energy of N sites
let S1 ..., Sk = ML-predicted best sites (i.e. sites ranked by ML-predicted energies)
let E1 ..., Ek = actual DFT energies of the ML-predicted best sites
if any(E1 ..., Ek) - Ebest ≤ σ then

best site recalled
end

a Total number of sites enumerated
b Energy threshold (eV)
c Number of sites selected; 0 < k ≤ N

The σ we chose was 0.1 eV, which is a threshold deemed reasonable by the catalysis
community (Grabow, 2014; Tian and Rangarajan, 2019). k ranged from 1 to 10. At each k,
we calculated the lowest energy site recall percentage for the competition-winning approach as
well as the DimeNet++ and GemNet-dT baselines. Fig. 7(b) shows that the winning approach
was able to recall 89% of all combinations provided in the dense subsplit at k = 10. Since
there are on average 26 heuristic adsorbate placements per adsorbate and catalyst surface
combination, a recall of 89%@k = 10 could approximately reduce 54.7% DFT calculations.

4. Conclusion

We described details of the Open Catalyst Challenge held at NeurIPS 2021 – the Initial
Structure to Relaxed Energy (IS2RE) task, test-challenge dataset, evaluation metrics, results,
and key takeaways. The challenge received 30 submissions overall from 7 teams with
participants from 6 different countries. The winning approach achieved an energy MAE
of 0.55 eV, an improvement of ∼15% relative over the previous state-of-the-art for direct
relaxed energy prediction. Given a dense sampling of multiple adsorbate placements per
adsorbate-catalyst pair, the winning approach could recall the lowest energy site 89% of times
within its k = 10 lowest predicted energy sites, roughly translating to a ∼55% reduction in
DFT calculations. For context, a standard relaxation using DFT takes ∼24 hours. These
results represent substantial progress from the community in the very first edition of our
challenge, but still quite far from ‘solving’ the task – an energy MAE below ∼0.2 eV is
considered accurate for practical purposes by the catalysis community – thus motivating
further research in developing accurate and fast approaches for approximating DFT.
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