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1. Introduction

As machine learning has become increasingly ubiquitous, there has been a growing need
to assess the trustworthiness of learned models. One important aspect to model trust is
conceptual soundness, i.e., the extent to which a model uses features that are appropriate
for its intended task. Deep networks have quickly become the face of modern machine
learning, with unparalleled success at complex human tasks such as vision and natural
language processing. However, deep networks are notoriously opaque, further emphasizing
the need for transparency into their internal logic. A large body of work has arisen to
address this problem, by providing explanations that distill aspects of a model’s behavior
to be better understood by human practitioners.

In this demonstration,1 we present TruLens, a new cross-platform library for explaining
deep network behavior that implements a general class of gradient-based explanations cap-
tured by the “influence-directed” explanation framework of Leino et al. (2018). Throughout
our presentation, we will take the unique perspective that to accurately assess the concep-
tual soundness of a model, an explanation must be faithful—i.e., the explanation must be
causally related to the model’s behavior. By contrast, the literature has often attempted to
justify explanations based on their appeal to human intuition. However, this begs the ques-
tion, as it assumes the model captured human intuition in the first place. Instead, we argue
that the utility of an explanation framework comes from its flexibility to faithfully answer a
wide range of queries, but not from its tendency to produce reasonable, visually-appealing,
or intuitive explanations.

Our demonstration will show that faithful explanations can surface erroneous model
behavior that may not be manifested in the validation set, and would therefore otherwise
go unnoticed prior to model deployment. Thus, conversely, faithful explanations that align
with our expectations of conceptually sound predictions, serve as evidence that the model
is trustworthy. Finally, we observe that erroneous behavior caused by adversarial exam-
ples (Szegedy et al., 2014) is indicative of a lack of conceptual soundness. As adversarial
examples are ubiquitous in standard deep networks, this observation suggests that robust-
ness to adversarial examples is necessary for establishing conceptual soundness.

1. Full materials for this demonstration are available at https://truera.github.io/neurips-demo-2021.
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2. Influence-Directed Explanations via TruLens

When a deep neural network makes a decision, we would like to know whether we can trust
it. Did our model make a connection between spuriously-correlated events? Did our model
learn a pattern that we overlooked but might find useful? If our model made a mistake,
why? Answering these high-level questions requires the ability to make a rich set of queries
that help us learn about a model’s predictive behavior and assess its conceptual soundness.
Primarily, an explanation framework is meant to give us the means to make such queries—its
utility comes from its ability to express and accurately answer a wide range queries.

TruLens implements the explanation framework of Leino et al. (2018), which formalizes
a general family of axiomatically justified gradient-based explanations through a saliency
measure, Internal Influence, that assigns an importance score to input features. A key
property of gradient-based explanation methods is their causal relationship to the model’s
behavior, which ensures faithfulness. Many popular gradient-based explanation methods
can be viewed as an instantiation of Internal Influence, e.g., Saliency Maps (Simonyan
et al., 2014), Integrated Gradients (Sundararajan et al., 2017), and SmoothGrad (Smilkov
et al., 2017). In addition, Internal Influence provides flexibility along three key axes not
captured by other approaches: (1) the quantity of interest, which allows us to specify the
aspect of the model’s behavior we are interested in understanding—e.g., why did the model
predict class A? Or, which features specifically distinguish between class A to class B? (2)
the distribution of interest, which allows us to specify how local we want our explanation to
be—e.g., do we want to explain a behavior on a single point? Or, do we want to understand
a model’s behavior more globally in the neighborhood of that point? And (3) the network
slice allows us to peer into the internal mechanisms at a specific layer in the network—this
lets us understand the model’s behavior in terms of the high-level features it encodes.

TruLens allows the user to specify the quantity of interest, distribution of interest, and
network slice, offering the unique capability to make highly flexible queries to thoroughly
probe a model’s behavior. Finally, TruLens is unique in its cross-platform support for both
TensorFlow and Pytorch, making it accessible to a wider audience of developers.

3. Assessing Conceptual Soundness

Explanation frameworks are valuable tools for assessing the conceptual soundness of learned
models. In particular, explanations can help us detect unsound feature usage that might
lead to erroneous behavior when the model is deployed.

As a demonstration2 of this, consider the following example. Suppose that we train a
model to recognize faces from the Labeled Faces in the Wild (LFW) dataset (Huang et al.,
2007), which contains faces of several public figures from the early 2000s. Figure 1a displays
a sample of training points taken from a subset of LFW containing the five most common
public figures. We observe that the picture in the top right corner has a distinctive pink
background—in fact, this is one of only two pictures in the dataset with this background;
both are of Tony Blair. We hypothesize that a model may overfit by learning to use the
pink background as a feature for Tony Blair, as the feature is indeed predictive of Tony
Blair on the training set. Of course, despite its coincidental usefulness on the training set,

2. https://colab.research.google.com/drive/1Iswyxd4rorKqqQWkC4kieAwFpfqBS25v?usp=sharing

303

https://colab.research.google.com/drive/1Iswyxd4rorKqqQWkC4kieAwFpfqBS25v?usp=sharing


Datta Fredrikson Leino Lu Wang Shih Sen

(a) (b) (c) (d)

Figure 1: (a) training instances from the LFW dataset. (b) explanation generated with
TruLens highlighting the most important features for labeling the shown instance as “Tony
Blair.” (c) test image correctly labeled as “Gerhard Schröder.” (d) edited image erro-
neously labeled as “Tony Blair.”

the background is clearly not conceptually sound, and is unlikely to be useful on new data.
If the model overfits in this way, it will be evident from an inspection of the features that
are encoded and used by the model on instances with pink backgrounds.

To test our hypothesis, we train a simple convolutional neural network and use TruLens
to probe its behavior. Figure 1b shows the results of explaining the model’s behavior on
the training instance with the pink background using Internal Influence—the details of
the parameters used to generate this explanation with TruLens are not important for our
discussion, but they are included in the full demonstration materials. We see that indeed,
the pink background is used by the model to identify Tony Blair in this instance, warning
us that our model is not conceptually sound.

The fact that the model uses the background as a feature may lead to errors on new
points as the model is deployed. This may not be readily apparent without explanations, as
our validation set contains no points with similar pink backgrounds. However, the possibility
of this scenario is corroborated by the model’s behavior on the instances from Figures 1c
and 1d, where we see that the model correctly classifies the former as Gerhard Schröder, but
when the image is edited to have a pink background, as in the latter, the model incorrectly
predicts “Tony Blair.”

Quality Explanations Require Quality Models. Prior work has often judged the
quality of explanation frameworks based on the degree to which their generated explana-
tions appeal to human intuition. When we admit the possibility of conceptually unsound
models, we see that this is a flawed approach. For example, the highlighting of the pink
background in Figure 1b can hardly be considered an “intuitive” explanation. However, we
saw evidence that the model did use a pink background as a feature for Tony Blair, making
it a more faithful explanation. Measures of explanation quality that reward explanations
that highlight pixels within human-designated bounding boxes (Zhang et al., 2016), or that
are rated as “trustworthy” by human subjects (Chattopadhay et al., 2018) end up penaliz-
ing faithful explanations in favor of wishful but fallacious methods that assume conceptual
soundness a priori. Indeed, many explanation methods that produce visually appealing
explanations have been found to fail basic sanity checks for faithfulness (Adebayo et al.,
2018). As we will further explain in Section 4, conceptually unsound models are the norm
in modern machine learning, not the exception. Thus, future work will have to focus on
training conceptually sound models before we can expect intuitive explanations.
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Figure 2: Visualizations of Saliency Map explanations generated with TruLens on MNIST
digits for a standard (left) and a robust model (right).

4. Robustness as a Prerequisite for Conceptual Soundness

Deep networks are easily fooled by malicious perturbations to their inputs, termed adver-
sarial examples (Szegedy et al., 2014). The ubiquity of adversarial examples in typical
networks clearly constitutes a security concern—manifested as unexpected erroneous be-
havior on seemingly benign inputs. Moreover, adversarial examples establish a network as
conceptually unsound. Specifically, the perturbations that produce adversarial examples are
semantically meaningless by construction, but are nonetheless causally relevant to changing
the model’s prediction—meaning that they will be identified by faithful explanations de-
spite their conceptual irrelevance. Indeed, adversarial examples can be understood to arise
as a result of models relying on “non-robust” features (Ilyas et al., 2019).

A rich body of literature provides various methods for training “robust” neural networks
that are resistant to adversarial examples, ranging from heuristic defenses (Madry et al.,
2018; Zhang et al., 2019) to those that facilitate provable robustness guarantees (Croce
et al., 2019; Leino et al., 2021; Leino and Fredrikson, 2021; Trockman and Kolter, 2021;
Wong et al., 2018). As adversarial examples are a fundamental roadblock for conceptual
soundness, robustness is essential for achieving networks that can faithfully exhibit intuitive
explanations. This observation is borne out in the literature as the gradients on models
trained to be robust have been shown to be more interpretable than those on their non-
robust counterparts (Etmann et al., 2019; Tsipras et al., 2019; Wang et al., 2021).

As a demonstration3 of these findings, we compare explanations generated by TruLens
on robust models to those on their non-robust “standard” counterparts (Figure 2). For
the robust models in our demonstration we use GloRo training (Leino et al., 2021),4 which
represents the state-of-the-art for provably-robust training methods. It is apparent from
Figure 2 that explanations from the robust model are more interpretable than their non-
robust counterparts, as the former delineate crisper outlines of corresponding digits.

3. https://colab.research.google.com/drive/196PjI40gjIUtV4hqBMCymgY2B3Urj5zC?usp=sharing
4. Code available at https://github.com/klasleino/gloro.
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