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Abstract

The IARAI Traffic4cast competitions at NeurIPS 2019 and 2020 showed that neural networks
can successfully predict future traffic conditions 1 hour into the future on simply aggregated
GPS probe data in time and space bins. We thus reinterpreted the challenge of forecasting
traffic conditions as a movie completion task. U-Nets proved to be the winning architecture,
demonstrating an ability to extract relevant features in this complex real-world geo-spatial
process. Building on the previous competitions, Trafficfcast 2021 now focuses on the
question of model robustness and generalizability across time and space. Moving from one
city to an entirely different city, or moving from pre-COVID times to times after COVID
hit the world thus introduces a clear domain shift. We thus, for the first time, release data
featuring such domain shifts. The competition now covers ten cities over 2 years, providing
data compiled from over 10'? GPS probe data. Winning solutions captured traffic dynamics
sufficiently well to even cope with these complex domain shifts. Surprisingly, this seemed to
require only the previous 1h traffic dynamic history and static road graph as input.

1. Introduction

The global trends of urbanization and increased personal mobility force us to rethink the
way we use urban space. The Traffic/cast competitions (Kreil et al., 2020; Kopp et al., 2021)
tackle this problem in a data driven way, encouraging the application of the latest methods
in machine learning to modeling complex spatial systems over time.

This year, we provide a unique data set derived from industrial scale trajectories of
over 10'2 raw GPS position fixes, with latitude, longitude, time stamp, as well as vehicle
speed and driving direction recorded at that time. The data are made available by HERE
Technologies and originate from a large fleet of vehicles. For the new temporal and spatial
transfer learning challenges introduced in Traffic4cast 2021, we provide data for 10 culturally
and socially diverse metropolitan areas around the world, covering a time span of 2 years.

The competition task was to predict from 1 hour traffic the next 5, 10, 15, 30, 45 and
60 min into the future. The training data was provided in the same format as last year
(Kopp et al., 2021). An overview of the dynamic training data provided and the 1h test time
slots to predict is shown in Figure 1. Along with each 1h test time slot, we provided the
time of day and the day of the week but not the exact date. For each city, we provided a
static graph derived from a road map in the same spatial resolution as the dynamic data,
which could be used as mask or as a graph (Eichenberger et al., 2022; Eichenberger and
Neun, 2021).

For all cities considered, COVID-19 has lead to a visible shift in daily mobility traffic
patterns, as can be seen by comparing traffic volumes from the pre-Covid (April/May 2019)
and in-Covid data (April/May 2020), see also Eichenberger et al. (2022) and Eichenberger
and Neun (2021). Our core challenge requires participants to transfer learn across this
domain shift (Ben-David et al., 2010; Wouter, 2018; Kouw and Loog, 2019; Webb et al., 2018;
Gama et al., 2014; Widmer and Kubat, 1996) in traffic caused by the COVID-19 pandemic.
This challenge is thus a few-shot learning task (Fei-Fei et al., 2006; Lu et al., 2020; Guo
et al., 2019), which requires to transfer learn traffic dynamics across a temporal
domain shift.

Our extended challenge encourages participants to use all the data provided so far
(data from 8 different cities for the pre-COVID era and 4 different cities during the in-COVID
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Figure 1: Data overview. There is data from 10 cities from 2019 and 2020. 4 cities are used
for training (180 full days 2019 and 2020; 4 cities are used for the core challenge
(180 full days 2019 pre-Covid and 100 test slots 2020 in-Covid); 2 cities are used
for the extended challenge (50 test slots 2019 pre-Covid and 50 test slots 2020
in-Covid).

NO
TEST DATA

era) on two hitherto unseen cities for which no further training data is provided. For each
city, 100 one-hour test time slots are randomly chosen, 50 from the pre-COVID era and
50 from the in-COVID era. The underlying machine learning challenge is thus a few-shot
transfer of traffic dynamics across a spatial and temporal domain shift. It is noted
that solutions to the extended challenge can be used as a solution for the core challenge
as well, although participants will then make no use of the additional training data which
might contain local, spatially relevant information. Apart from the static data and the test
time slots, no further data from the target cities are exposed.

Informed by the previous Trafficjcast competitions (Kreil et al., 2020; Kopp et al.,
2021), we chose two non-trivial baselines. For the core competition, we used a vanilla U-Net
(Ronneberger et al., 2015) and trained models for each city separately for 4 epochs on the
city’s 2019 training data only. For the extended competition, a Graph ResNet was used
following Martin et al. (2020). More details about the baselines can be found in Eichenberger
et al. (2022) and Eichenberger and Neun (2021).

The competition brings together a range of highly active fields in machine learning —
few-shot learning, transfer learning, meta-learning more generally, as well as video frame
prediction or graph based modelling. Compared to last year’s competition an order of
magnitude more data was provided, covering ten cities across 2019 and 2020. This wealth
of data was the basis for being able to tackle how far data and machine learning driven
approaches alone can be used to decipher the implicit, largely unknown rules governing the
phenomena of traffic by applying them across complex domain shifts.

The data encoding as Traffic Map Movies (Kreil et al., 2020), featuring multiple channels,
provides a natural way to fuse information from multiple sources and show-cases the power
of Machine Learning to excel at tasks that previously had to depend on domain knowledge,
special data structures working on graphs (Snyder and Do, 2019), and manual feature
engineering. Leading the way, this approach also proved itself in other domains such as
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rainfall prediction (Agrawal et al., 2019; Gruca et al., 2021; Herruzo et al., 2021), featured
at CIKM and IEEE Big Data 2021 (https://weather4cast.ai/).

2. Standout Solutions

In the following, we give a short summary of outstanding solutions to our Traffic4cast 2021
competition. For each submission, we give a high-level diagram which we call inference
diagram and which, in contrast to architecture diagrams typically used in the ML literature,
summarizes the approach from an information-flow perspective, highlighting the trained
models, the data used to train these models and to the ensembling of these trained models
at inference time (if any). This sheds light on how the large and diverse amount of input
data was used for the different tasks. The notation is the following: rectangles refer to
data (test input, and test output); rounded rectangles represent functions in the inferences,
arrows represent flow of information. We use square brackets to denote parameterized data
or functions, bound to the parameters in the test input. For each model, after the colon, we
also show the data the model was trained on, using the notation in Table 1, see ¢ in caption.

2.1. oahciy: U-Net 4+ Multi-Task Learning

Lu (2021) presents an amazingly simple multi-task learning framework by randomly sampling
data from all available cities (4 training and 4 core) for all models in the ensemble. In the
core competition 9 models were trained for 5 epochs while in the extended competition 7
models were trained for 50’000 steps only (8% of an epoch). The models are all U-Net with
varying architecture and seeds. For more details see Table 1 and Appendix A.1.

Lu (2021) argues that this multi-task learning can be regarded as an implicit data
augmentation and regularization technique when trained on one city only and forcing to
learn city-agnostic representations thereby improving data efficiency. The implicit domain-
adaptation through the addition of 2019 and 2020 data for at least one city is reported as
crucial encouraging the model to learn to adapt to temporal domain shifts during training.
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bud z3_ /gt model_2: {T*,C*
va: {T* model_3: {T*,C*
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Figure 2: Inference oahciy (Lu, 2021) (left: core competition, right: extended competition).

2.2. sungbin: U-Net Ensemble

The approach of Choi (2021) is very similar to (Lu, 2021), also averaging ensembles of
different U-Net architectures (4 city-independent models). In contrast to Lu (2021), Choi
(2021) trained on target city training data, too (3 models in core). For more details see
Table 1 and Appendix A.2.

2.3. sevakon: U-Net with Temporal Domain Adaptation

Konyakhin et al. (2021) also base their approach on the success of U-Nets in previous
competitions. However, in contrast to (Lu, 2021) and (Choi, 2021), they train their models
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Figure 3: Inference sungbin (Choi, 2021) (left: core competition, right: extended competi-
tion).

on each target city in the core competition only (they did not participate in the extended
competition). They use three different architectures (vanilla U-Net, DenseNet, and Efficient-
Net (Tan and Le, 2019) pre-trained on Imagenet (Deng et al., 2009)), a static mask derived
from dynamic data and a per-pixel and per-channel temporal domain-adaptation (TDA)
factor. Their final prediction is derived from these 3 models; each model is used with and
without TDA, resulting in 6 predictions to which the static mask is applied and which are
then averaged.

test[i,C] |fesmzmsioccooc--oooC - T ) TDA[C] [~ ~ prediction[i,C]

efficient  }------
netb5[C]: {C}

Figure 4: Inference sevakon (Konyakhin et al., 2021) (core competition). The city mask is
derived from the training and test data.

2.4. nina: U-Net++ on Patches

Wiedemann and Raubal (2021) also use a U-Net variant, but in a patch-based manner,
as it was shown to be beneficial in other segmentation tasks (Zhang et al., 2006; Ghimire
et al., 2020) (also (Misra et al., 2020) in classification). No static road information was used.
This method allowed them to use a parameter-heavier UNet++ with more skip connections
(Zhou et al., 2019, 2018), which they suggest was helpful in light of the sparsity of the data.
Patches are sampled from all available labelled data. After different experiments, choosing
the available patches to be 100 x 100 crops with stride 10 was found to perform best. The
patch-wise prediction exhibits an ensemble-like behavior.

patch ut+: {T*,C*} patch

split osition
test[i,C] into : P - : avg prediction[i,C]
atches

Figure 5: Inference nina (Wiedemann and Raubal, 2021) (core competition and extended
competition).

2.5. aidex: SWIN-Transformer

Bojesomo et al. (2021) uses a Swin-UNet structure where all convolution blocks are replaced
by shifted window self attention; downsampling in the encoder is achieved by trainable
patch merging layers and upsampling by patch expanding layers in the decoder branch; skip
connections are implemented by a combination of addition and concatenation.
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Figure 6: Inference aidex (Bojesomo et al., 2021) (core and extended competition).

2.6. dninja: Graph-Based U-Net

Hermes et al. (2022) present a graph based approach aiming at better generalization and
transfer by leveraging knowledge of the underlying road network whilst ignoring areas without
any traffic information. In order for their solution to make full use of the 2d topological
information contained in the competition data they use 4 subgraphs corresponding to the
provided 4 heading channels of said data.

2.7. resuly: 3DResNet and Sparse-UNet

Wang et al. (2021a) use a 3DResnet (Wang et al., 2021b) with 3D convolutions in 4 residual
blocks and an output block. For the core competition, this output block consists of sequential
CNN layers to restrain the temporal relationship. For the extended competition, the output
block consists of a sparse U-Net (Graham, 2014; Choy et al., 2019) with data in Coordinate
Format (COO) for the extended competition.

testi,C] ' prediction[i,C]
[

Figure 7: Inference resuly (Wang et al., 2021a) (left: core competition, right: extended
competition). The mask is derived from the test data.

2.8. jaysantokhi: Dual-Encoding U-Net

Santokhi et al. (2021) use a dual encoding U-Net architecture aiming at a lightweight
approach for real world deployments containing significantly fewer parameters (see also
Table 1) and shorter training times. The architecture consists of two encoders one of which
has skip connections to the decoder; encoder and decoder consist of Convolutional LSTM
layers. The skip connections are not vanilla, but designed to carry the hidden and cell
states of the encoder LSTM to the decoder LSTM, which is crucial for the approach. In
both competitions, 4 models are pre-trained on the training cities and fine-tuned on the
core competition cities. In the core competition, the city-specific fine-tuned model is used,
whereas in the extended competition an architecture with fewer parameters is used and
predictions are built by averaging over the outputs of all 4 models.

ec_ finetune
Chicago: {T*,C4
— ec_ f|netune \
test[i,C] finetune mask[C] prediction[i,C] test[i,C]
CL{T*.C ‘ '
Melbourne

Figure 8: Inference jaysantokhi (Santokhi et al., 2021) (left: core competition, right: ex-
tended competition). The city mask is derived from test data.

prediction[i,C]
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3. Synopsis and Discussion

Looking at the different solutions above we see a large variety of mostly U-Net based
approaches. Based on the experiences of the previous year (Kopp et al., 2021), this is not a
complete surprise. However, it is interesting to see that for instance the simple averaging in
ensembles in the winning solutions was also able to handle the domain shifts, even slightly
outperforming some more tailored domain adaptation techniques. Table 1 highlights the
key aspects and differences of the chosen architectures and informs the discussion below.

Team, rank (core/ext), ap- | road graph, | models #models | Training datasets? S #params | maskS

proach time-of-day, trained | trained® core / ext €
day-of-week® | p. city®

oahciy (1/2) road graph | no 9/7 (9/7)x{T*,C*} 1710.2M /| -

U-Net + multi-task learning | (concat) 17.1M

(Lu, 2021)

sungbin (2/1) road graph | in two | 16/4 2x{C[1-4]}; {T1,C[1- | 123.6M /| —

U-Net Ensemble (Choi, | (concat) U-Nets 4)}; 4x {T*,C*} / 4x | 33.9M

2021) {T*,C*}

sevakon (3/-) no yes 11/- 3x{C1}; 2x{C2}; | 342.0M / - city

U-Net  with  Temporal 3x{C3}; 3x{C4} (train/

Domain Adaptation test

(Konyakhin et al., 2021) data)

nina (6/3) no no 1=1 {T*,C*} 36.7TM /| -

U-Net++ on patches 36.7M

(Wiedemann and Raubal,

2021)

aidex (4/6) no no 1=1 {C*} 141.9M /| —

SWIN-Transformer (Boje- 141.9M

somo et al., 2021)

dninja (7/4) road graph, | no 1=1 {T*,C*} 5.8M /5.8M | by

Graph-based U-Net (Her- | time-of-day, GNN

mes et al., 2022) day-of-week

resuly (5/-) road graph no 1/1 {T*, C*} 17.3M / 43k | test

3DResNet, Sparse-UNet (test

(Wang et al., 2021a) data)

jaysantokhi (8/5) no after 4/4 {T*,C[1-4]} 1.0M / 0.3M | city

Dual-Encoding U-Net (San- pre- (test

tokhi et al., 2021) training data)

Table 1: Synopsis. ¢ what supplemental information is used; ® whether some of the trained
models used in the inference are specifically trained on the target city; ¢ 9/7
means 9 models in the core and 7 different models in the extended compe-
tition, whereas 1=1 means the same trained model was used in both compe-
tition; ¢ T1=Moscow, T2=Barcelona, T3=Antwerp, T4=Bangkok, C1=Berlin,
C2=Istanbul, C3=Melbourne, C4=Chicago, E1=Vienna, E2=New York, T*=all
training cities, C*=all core cities, E*=all extended cities. E.g. (9/7)x{T*,C*}
means 9 models trained on all training and core competition cities for the core
competition and 7 from the same cities for the extended competition, and {T*,C[1-
4]} expands to a model for each city trained on all training cities plus one of the
core cities; ¢ Sum of trainable weights of all the model checkpoints used in the
inference as extracted from the participants’ checkpoint using code in Eichenberger
and Neun (2021); f Kind of mask used for post-processing.
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3.1. Why were the same strategies successful in both competitions?

Lu (2021) won the core competition with an ensemble of models all trained with data from
all training and core competition cities. This indicates that his solution already is able to
capture spatial transfer, although at the price of a high amount of parameters (see Table 1).
Hence, the combination of a diverse enough set of training cities with a large amount of data
together with the static road information seems to be enough to solve both transfer learning
challenges of our competition. Although the second placed approach of (Choi, 2021) is very
similar, apart from minor architectural choices, the main difference is that Lu (2021) only
has city-independent models. In contrast, the models by Konyakhin et al. (2021) trained
only per city are competitive with regards to the temporal transfer. This again gives an
indication that the explicit temporal domain-adaptation was necessary in this approach. In
contrast, the first two ensembles (Lu et al., 2020; Choi, 2021) successfully did an implicit
temporal adaptation through the city-independent models trained on data from multiple
cities from before and after the temporal shift. Naively, we would have expected to see more
domain-adaptation approaches in the core competition like the temporal domain-adaptations
by (Konyakhin et al., 2021) or data augmentation techniques to use the test slot inputs for
few-shot learning.

It is also remarkable to see that the patch-based approach of Wiedemann and Raubal
(2021) is competitive especially for the spatial transfer in the extended challenge. The
patches introduced an additional implicit level of ensemble learning within a city. This seems
to have had a similar positive impact. The work of Bojesomo et al. (2021), Hermes et al.
(2022) and Santokhi et al. (2021) show that transformers on patches, graph-based approaches
and light-weight UNets are also able to handle the transfer tasks in both competitions with,
in some cases, significantly smaller models (see Table 1).

In addition, we see clear traces of temporal averaging in the qualitative analysis of the
outlier special prize (see Section 3.4 and Appendix C). Hence, it seems that non-distributional
predictions evaluated by MSE seem to encourage trading off spatial, temporal, and channel-
wise features jointly. A similar temporal and spatial “blurring” effect has been reported in
weather forecasting (Ravuri et al., 2021b; Sgnderby et al., 2020; Witt et al., 2021).

Finally, we can see that most approaches did not use any additional dynamic features
such as time-of-day or day-of-week. Hence, 1h dynamic input data together with static data
seems to capture the city-specific dynamics already, which models can and did then exploit
in both our domain shift transfer learning challenges. Of course, one cannot exclude that
completely different approaches than those considered and submitted by our competition
participants could benefit from such additional features or that they could be beneficial in a
different task setting (see Section 3.5).

3.2. Where do the submission performances differ?

We analyse the MSE loss for each solution above per directed cell (viewing all 4 headings of
a pixel as virtual detector for volume and speed separately) — we bin these directional pixels
by their standard deviation in the ground truth speed data (details and full analysis can be
found in Appendix B.Thereby, we see where predictions are hard and where the competition
was decided. We see that all models struggle in the same std ranges. Of course, MSE does
not optimize each directed location independently, so the interpretation here has to be taken
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cum grano salis. Referring to Figure 9, most of speed MSE losses for all solutions under
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consideration come from the ranges 35-55 and 105-125 in speed std. If no data is collected,
speed is set to 0, hence, the higher range implies an oscillation between very high speeds
in the upper part of the value range [0,255] and no-data and all solutions seem to have
struggled in providing accurate predictions. We localized these two ranges on the city map,
see Appendix B, and observe: 35-55 speed std range tends to cover the main arteria and
some long-range country roads with commuting traffic starting early in the morning; the
105-125 speed std range tends to cover areas with usually high speeds. This would hint at
all solutions struggling where it is hard to find a good strategy of predicting speed in areas
of very high variance and in the large area of medium standard deviation where the amount
of such locations makes the total penalty so high.

3.3. What is the contribution of static road information?

Regarding static road information, Lu (2021) and Choi (2021) did not explicitly compare
training with and without static road information as input. The patch-based approach of
Wiedemann and Raubal (2021) does not use the static information; this might explain why
this approach ranks lower in the core competition. We suppose that for many test inputs,
the static road information is already in the dynamic data; however, in particular in areas
of data sparsity, the static road information may be essential. So it remains unclear to what
degree static information is required and, in particular, whether it helps in the critical ranges
above.
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3.4. What did models learn in outlier situations?

In order to tackle this questions, we asked participants to re-run their models on a new
test set provided for our Outlier Special Prize. The test slots were from two cities of the
core competition and the slots were quantitatively evaluated with a masked MSE. For the
Special Prize, that mask only contained one pixel and two channels (hence 200 - 6 - 2 integer
values were evaluated against ground truth). These pixels were selected to contain a traffic
jam situation reflected by a drastic drop in speed with a simultaneous increase in volume.
In the examples analysed in Appendix C, the winning models of our core and extended
competition predict a smoothed version of a jam resolution, underestimating speed and
overestimating density. As MSE encourages model predictions to tend towards the mean
in the data, they are never predicting a rare scenario such as a jam resolving more or less
quickly than in expectation. In the selected outliers MSE for volume and speed is at the
same level. More details on the heuristics and the design of our Outlier Special Prize can be
found in Appendix C.

3.5. What did we learn about the metric?

Both challenges used the pixel-wise mean squared error (MSE) as a loss metric as it is also
used in movie prediction tasks (Srivastava et al., 2015; Lee et al., 2018; Kwon and Park,
2019; Walker et al., 2016; Xue et al., 2016; Han et al., 2019; Oprea et al., 2020). From the
analysis in previous subsections pertaining to this year’s competition challenges as well as
from similar observations from our previous competitions (Kreil et al., 2020; Kopp et al.,
2021), we are able to identify important, desirable properties a loss metric should have
without currently being able to construct one. These properties are as follows.

Desired Property 1: The metric should not be distorted by missing values. Zero speed
values in the case of no-data lead to a high variance in the speeds to predict in any temporally
gridded bin. In contrast, zero volume for missing values does not affect the variance. A
possible solution, suggested by Wiedemann and Raubal (2021), is to evaluate speed only in
case of non-zero volume. With that models might be less defensive predicting speed.

Desired Property 2: The metric should be flexible in handling spatial and temporal shifts.
Predicting just slightly at the wrong place leads to a double punishment, encouraging
solutions that can be visually observed to show an ‘averaging phenomenon’ even in high
scoring solutions as outlined in Qi and Kwok (2020). Shifts in traffic phenomena need to be
handled depending on the application needs.

Desired Property 3: The metric should cope with different scales. Volume values can
be heavily biased due to the fact that GPS probes are only collected by a fraction of the
full traffic. Speed values are in most cases less biased (apart from idiosyncrasies such
as (un)loading) but often cluster (e.g. around signaled speed limits under normal traffic
conditions). In the competition no normalization was used on purpose, giving more weight
to speed predictions. Furthermore, outlier situations are rare, but critical, and therefore
tend to not be given enough weight compared to their utility by MSE. Hence, the metric
should be able to incorporate multiple aggregation levels.

Desired Property 4: The metric should be distribution-aware. Single-value predictions
tend to produce averaging scenarios as we see in the analysis of outliers (see Appendix C).
Similar to Espeholt et al. (2021) and Ravuri et al. (2021a) predicting a possible distribution
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instead of a single scalar could help estimating the uncertainty and evaluating at the
distributional level. Such an approach would probably make most sense in combination with
Desired Property 2.

3.6. Has transfer learning been achieved? In what sense?

If we think of the winning U-Net architecture (Lu, 2021), then models are able to combine
global and local information to create a good average forecast. However, the pixel-wise MSE
metric leads to models that do not yet cover sudden changes over time that can occur in
real-world traffic dynamics (see Sections 3.4 and 3.5).

4. Summary and Outlook

It is encouraging to see that so many different machine learning approaches lead to competitive
results in our map movie completion task. Winning solutions captured traffic dynamics
sufficiently well to even cope with complex domain shifts. Surprisingly, this seemed to require
only the previous 1h traffic dynamic history and static road graph as input. In addition, our
competition results point to interesting future research directions and questions.

The pixel-wise MSE loss metric encouraged solutions that performed poorly on real-world
relevant outlier situations with their prediction often being averaged scenarios. Improving on
this metric may necessitate a range of relevant real-world tasks, each with their own external
task-specific metric and reference data, such as predicting estimated times of arrival, ETA
(Derrow-Pinion et al., 2021). In another domain, the climate extremes indices provide a
standard catalogue of metrics (Alexander et al., 2021). The need to consider complementary
domain specific tasks was recently also demonstrated in precipitation forecasting (Ravuri
et al., 2021a; Espeholt et al., 2021). For traffic, unfortunately, there seems to be no such
standard catalogue of application tasks, metrics, and data.

The Traffic4cast 2021 competition has proven again that representing traffic in a temporal
and spatial grid is a powerful framework that allows for complex questions in traffic research
to be addressed. The prediction of effects of road closures, changed speed limits, or an
addition of lanes could thus be equally formulated in such a representation as simple
completion tasks. Fundamental questions of classical traffic research can thus be approached
in a purely data-centric, non-expert dependent way with the help of machine learning.
Finally, it is of key interest to explore whether this framework can be adapted or extended
to incorporate new data sources such as satellite data, loop counter data, or crowd-sourced
traffic data. The necessary sensor fusion and cross-platform translation tasks are interesting
applications of machine learning.
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