
Proceedings of Machine Learning Research 176:220–231, 2022 NeurIPS 2021 Competition and Demonstration Track

The Machine Learning for Combinatorial Optimization
Competition (ML4CO): Results and Insights

Co-organizers
Maxime Gasse∗, Simon Bowly, Quentin Cappart, Jonas Charfreitag,
Laurent Charlin, Didier Chételat, Antonia Chmiela, Justin Dumouchelle,
Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil, Pawel Lichocki,
Andrea Lodi, Miles Lubin, Chris J. Maddison, Christopher Morris,
Dimitri J. Papageorgiou, Augustin Parjadis, Sebastian Pokutta,
Antoine Prouvost, Lara Scavuzzo, Giulia Zarpellon

Primal task winners
Linxin Yang yanglinxin@cuhk.edu.cn

Sha Lai 221049039@link.cuhk.edu.cn

Akang Wang wangakang@sribd.cn

Xiaodong Luo xiaodongluo@cuhk.edu.cn

Xiang Zhou zhouxiang60@huawei.com

Haohan Huang huanghaohan@huawei.com

Shengcheng Shao shaoshengcheng@huawei.com

Yuanming Zhu zhuyuanming5@huawei.com

Dong Zhang zhangdong48@huawei.com

Tao Quan quantao@huawei.com

Dual task winners
Zixuan Cao caozixuan.percy@stu.pku.edu.cn

Yang Xu 1800010740@pku.edu.cn

Zhewei Huang huangzhewei@megvii.com

Shuchang Zhou zsc@megvii.com

Configuration task winners
Chen Binbin cbb18@mails.tsinghua.edu.cn

He Minggui heminggui@huawei.com

Hao Hao 52194506007@stu.ecnu.edu.cn

Zhang Zhiyu zhangzhiyu6@huawei.com

An Zhiwu anzhiwu1@huawei.com

Mao Kun maokun@huawei.com

Editor: Douwe Kiela, Marco Ciccone, Barbara Caputo

∗ Primary contact (maxime.gasse@polymtl.ca)

© 2022 M. Gasse et al.

ML4CO Competition

Abstract

Combinatorial optimization is a well-established area in operations research and computer science.
Until recently, its methods have focused on solving problem instances in isolation, ignoring that
they often stem from related data distributions in practice. However, recent years have seen a
surge of interest in using machine learning as a new approach for solving combinatorial problems,
either directly as solvers or by enhancing exact solvers. Based on this context, the ML4CO aims
at improving state-of-the-art combinatorial optimization solvers by replacing key heuristic
components. The competition featured three challenging tasks: finding the best feasible solution,
producing the tightest optimality certificate, and giving an appropriate solver configuration.
Three realistic datasets were considered: balanced item placement, workload apportionment, and
maritime inventory routing. This last dataset was kept anonymous for the contestants.

Keywords: Combinatorial optimization, machine learning for combinatorial optimization

1. Introduction

The Machine Learning for Combinatorial Optimization competition (ML4CO) aims at improving
state-of-the-art combinatorial optimization solvers by replacing key heuristic components with
machine learning models. The main scientific question is the following: “Is machine learning a
viable option for improving traditional combinatorial optimization solvers on specific problem
distributions, when historical data is available?”

While most combinatorial optimization solvers are presented as general-purpose, one-size-fits-all
algorithms, this competition focuses on the design of application-specific algorithms from historical
data. This general problem captures a highly practical scenario relevant to many application
areas, where a practitioner repeatedly solves problem instances from a specific distribution with
similar patterns and characteristics. For example, managing a large-scale energy distribution
network requires solving similar CO problems daily, with a fixed power grid structure while only
the demand changes over time. This demand change is hard to capture by hand-engineered expert
rules, and ML-enhanced approaches offer a possible solution to detect typical patterns in the
demand history. Other examples include crew scheduling problems that have to be solved daily or
weekly with minor variations or vehicle routing where the traffic conditions change over time, but
the overall transportation network does not.

The competition features three challenges for machine learning. Each of them corresponds to
a specific control task arising in the open-source solver SCIP (Gamrath et al., 2020) and is
exposed through a unified OpenAI Gym-like API based on the Python library Ecole (Prouvost
et al., 2020). The three challenges are as follows: (1) a primal task, consisting of producing the
best feasible solution, (2) a dual task, consisting of producing the best branching decisions, and (3)
a configuration task, consisting of finding the best parameters before calling the solver. For each
challenge, participants were evaluated on three problem benchmarks originating from diverse
application areas, each represented as a collection of mixed-integer linear program (MILP)
instances.

2. Datasets

The participants’ solutions were evaluated on three problem benchmarks from diverse application
areas for each challenge. Each participant submitted a decision-making code, i.e., an algorithmic
solution or trained ML model, for each of the benchmarks, or a single code that works for all

221

Gasse et al.

benchmarks. A problem benchmark consists of a collection of MILP instances in the standard
MPS file format. Each benchmark was split into a training and a test set, originating from the
same problem distribution. While the training instances were made public at the beginning of the
competition for participants to train their models, the test instances were kept hidden for
evaluation purposes and were only revealed at the end of the competition. The first two problem
benchmarks were inspired by real-life applications of large-scale systems at Google, while the third
benchmark was presented to the participants as an anonymous problem inspired by a real-world,
large-scale industrial application. The dataset used are publicy available on Github.1

Benchmark 1: Balanced Item Placement This problem involves spreading items, e.g., files or
processes, across containers, e.g., disks or machines, utilizing them evenly. Items can have
multiple copies, but at most, one copy can be placed in a single bin. The number of items that
can be moved is constrained, modeling the real-life situation of a live system for which some
placement already exists. Each problem instance is modeled as a MILP, using a multi-dimensional,
multi-knapsack formulation. This dataset contains 10000 training instances (pre-split into 9900
train and 100 validation instances).

Benchmark 2: Workload Apportionment This problem deals with apportioning workloads,
e.g., data streams, across as few workers, e.g., servers, as possible. The apportionment is required
to be robust to any worker’s failure. Each instance problem is modeled as a MILP, using a
bin-packing with an apportionment formulation. This dataset contains 10000 training instances
(pre-split into 9900 train and 100 validation instances).

Benchmark 3: Maritime Inventory Routing (Anonymous Problem) This problem plays
an integral role in global bulk shipping. The instances corresponding to this benchmark are
assembled from a public dataset (Papageorgiou et al., 2014), whose origin was kept secret to
prevent cheating. Reverse-engineering for the purpose of recovering the test set was forbidden.
The dataset contains 118 training instances (pre-split into 98 train and 20 validation instances).

3. Evaluation Metrics

Each of the three challenges is associated with a specific evaluation metric reflecting a different
objective. We describe how each metric is computed over a single problem instance. The final goal
of the participants is to optimize this metric in expectation over a hidden collection of test
instances. Because the evaluation metrics are time-dependent, all evaluations were run on the
same hardware setup, using an Intel Xeon processor with 2.4GHz, 20GB of RAM, and an Nvidia
Tesla V100-8G GPU with 8GB of GPU memory. A maximum time budget was given for each task
to process each test instance (5, 15, and 15 minutes for the primal, dual, and configuration tasks,
respectively), after which the environment was terminated. By doing so, participants were asked
to focus on making both good and fast decisions.

In general, a MILP instance is expressed as follows,

arg min
x

c⊤x

subject to A⊤x ≤ b

x ∈ Zp × Rn−p,

1. https://github.com/ds4dm/ml4co-competition

222

https://github.com/ds4dm/ml4co-competition

ML4CO Competition

where c ∈ Rn denotes the coefficients of the linear objective, A ∈ Rm×n and b ∈ Rm, denote the
coefficients and upper bounds of the linear constraints, respectively, while n is the total number of
variables, p ≤ n is the number of integer-constrained variables, and m is the number of linear
constraints. We used the following three metrics for the evaluation.

Primal Integral This metric measures the area under the curve of the solver’s primal bound, i.e.,
its global upper bound, which corresponds to the value of the best feasible solution found so far.
By providing better feasible solutions over time, the value of the primal bound decreases. With a
time limit T , the primal integral is expressed as follows,∫ T

t=0
c⊤x⋆

t dt− Tc⊤x⋆,

where x⋆t is the best feasible solution found at time t, so that c⊤x⋆t is the primal bound at time
t, and Tc⊤x⋆ is an instance-specific constant that depends on the optimal solution x⋆. The
primal integral is to be minimized, and takes an optimal value of 0.To compute this metric
unambiguously, a trivial initial solution x⋆0 is always provided to the solver at the beginning of the
solving process. Also, the constant term c⊤x⋆ can be safely ignored at training time when
participants train their control policy. However, when we evaluated the participant submissions at
test time, this constant term, or a proper substitute, was incorporated in the reported metric.

Dual Integral This metric measures the area over the curve of the solver’s dual bound, i.e., its
global lower bound, which usually corresponds to a solution of a valid relaxation of the MILP.
By branching, the linear relaxation corresponding to the branch-and-bound tree’s leaves gets
tightened, and the dual bound increases over time. With a time limit T , the dual integral is
expressed as follows,

Tc⊤x⋆ −
∫ T

t=0
z⋆t dt,

where z⋆t is the best dual bound at time t, and Tc⊤x⋆ is an instance-specific constant that
depends on the optimal solution value c⊤x⋆. The dual integral is to be minimized, and takes an
optimal value of 0.

In the context of branching, this metric is unambiguous to compute, as the root node of the
tree always provides an initial dual bound z∗0 at the beginning of branching. The constant term
c⊤x⋆ can be safely ignored for training, but it was incorporated in the evaluation metric.

Primal-Dual Gap Integral This metric measures the area between two curves, the solver’s
primal bound and dual bound. Hence, the metric benefits both from improvements obtained
from the primal side (finding good feasible solutions), and on the dual side (producing a tight
optimality certificate). With a time limit T , the primal-dual gap integral is expressed as follows,∫ T

t=0
c⊤x⋆

t − z⋆t dt.

The primal-dual gap integral is to be minimized, and takes an optimal value of 0. In the context
of algorithm configuration, an initial value is required for the two curves at time t = 0. Therefore,
an initial trivial solution x⋆0 and a valid initial dual bound z⋆0 are always provided to the solver for
this task.

223

Gasse et al.

4. Solving the Primal Task (Winning Solution by CUHKSZ ATD)

The primal task deals with finding good primal solutions at the root node of the branch-and-bound
tree (Khalil et al., 2017; Nazari et al., 2018; Nair et al., 2020). To that end, the environment
(SCIP solver) does not perform any branching but enters an infinite loop at the root node, which
collects the solutions proposed by the agents, evaluates their feasibility and updates the overall
best solution reached so far, thus lowering the current primal bound (upper bound). The metric of
interest for this task is the primal integral, which considers the rate at which the primal bound
decreases over time. To model a realistic scenario, each problem instance has been preprocessed
by SCIP (problem reduction, cutting planes, etc.). Moreover, the root linear program (LP)
relaxation was solved before the participants were asked to produce feasible solutions. To prevent
SCIP from searching for primal solutions by itself, all primal heuristics were deactivated. Further,
to compute this metric unambiguously, even when no solution has been found yet, an initial
primal bound (trivial solution value) was provided for each instance, which is to be given to SCIP
at the beginning of the solving process in the form of a user objective limit. Execution time was
limited to five minutes. We exploit the problem structures and tackle item placement, workload
apportionment, and anonymous problems by utilizing classic primal heuristics in a more judicious
manner.

4.1. Balanced Item Placement

Let I denote the set of items and J denote the set of containers. Let a binary variable xij be 1 if
item i is placed in container j and 0 otherwise. Each item will be placed in exactly a single
container, as shown by constraints (2). Let K represent the set of dimensions. For dimension
k ∈ K of container j ∈ J , knapsack constraints (3) represent some physical considerations while
(4) and (5) properly account for the placement unevenness, which is penalized in the objective (1).

min
x,y,z

∑
j∈J

∑
k∈K

αkyjk +
∑
k∈K

βkzk (1)

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (2)∑
i∈I

aikxij ≤ bk ∀j ∈ J,∀k ∈ K (3)∑
i∈I

dikxij + yjk ≥ 1 ∀j ∈ J, ∀k ∈ K (4)

yjk ≤ zk ∀j ∈ J, ∀k ∈ K (5)
xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (6)
yjk ≥ 0 ∀j ∈ J, ∀k ∈ K (7)

We analyze 10, 000 item placement instances and find out that: (i) |I| = 105, |J | = 10;
(ii) aik, dik values of 5 items are big and placing any two of them in the same container would
incur large penalty. Based on this empirical finding, we place the 5 big items into the first five
containers respectively before applying any primal heuristics.
Meta-heuristics We apply a greedy method in which items are first sorted based on their sizes
and then assigned to containers. This will produce the very first feasible solution. After that, we
select one or two items respectively from two containers and swap them if this leads to a better
incumbent.

224

ML4CO Competition

Math-heuristics We consider a construction method and an improvement method, based on
solving mathematical models. The construction method consists of two steps: (i) first assign items
to the first five containers by solving an assignment model; (ii) then assign the remaining items to
the last five containers by solving a sub-MIP. For solution improvement, we properly choose two
out of the last five containers, and then solve a sub-MIP to reassign items within those two
containers optimally.

4.2. Workload Apportionment

Let M and N denote the set of tasks and the set of machines, respectively. For task i ∈ M ,
only a subset of machines, denoted by N i ⊆ N , are accessible. Let a binary variable yj be 1 if
machine j is used and 0 otherwise. Let xij denote the amount of workload from task i to machine
j, as defined in constraints (9). Constraints (10) enforce the capacity requirement for each
machine. The apportionment is required to be robust to any one machine’s failure, as indicated by
constraints (11).

min
x,y

∑
j∈N

yj (8)

s.t. xij ≤ aiyj ∀i ∈ M, ∀j ∈ N i (9)∑
i∈M :j∈N i

xij ≤ bj ∀j ∈ N (10)

∑
j∈N i\{j′}

xij ≥ ai ∀i ∈ M,∀j′ ∈ N i (11)

yj ∈ {0, 1} ∀j ∈ N (12)

0 ≤ xij ≤ bj ∀i ∈ M,∀j ∈ N i (13)

Rounding up a solution to the linear programming relaxation of model (8) – (13) would produce a
feasible solution to (8) – (13). To further exploit the possibility of rounding a fractional solution
towards a new incumbent, we choose a rounding threshold parameter η in an adaptive manner
and round up yj only if it exceeds η. Specifically, we first select a target objective value based on
the current primal and dual bounds and then determine η via quantile selection such that after
rounding with η the objective matches the pre-determined value. If the rounding step produces a
new incumbent solution, we then update the primal bound; otherwise, we set the dual bound to
the corresponding objective value. We iterate this process until the primal-dual gap falls below a
predetermined value. In model (8) – (13), constraints (10) can be tightened as follows:∑

i∈M :j∈N i

xij ≤ bjyj ∀j ∈ N. (14)

Furthermore, across 10, 000 instances, we observe that ai < bj for i ∈ M, j ∈ N i. As a result,
constraints (9) are dominated by (14) and thus eliminated from the model. Now we call (8),
(11) – (14) as the “tightened model”.

In our implementation, we first apply the rounding heuristic method to the root LP solution
to the original model and then to the optimal LP solution to tightened model. We then use
RINS (Danna et al., 2005) to further improve the incumbent. In particular, we define and solve a
sub-MIP based on the tightened model, using its LP solution and the current incumbent as a
guide to fix part of the binary variables.

225

Gasse et al.

4.3. Anonymous Problem

Though the concrete MILP formulation is not available, we discover some pattern from anonymous
instances in the LP file format. In particular, one can define a planning horizon and associate
with each discrete variable a time period. The details can be deduced from the constraint
hypergraph (Rossi et al., 2006) in which every node represents a discrete variable and every edge
joins a pair of variables if they occur together in a constraint. Let H denote the planning horizon
and h ∈ H denote a time period. We use a heuristic called the “rolling-horizon” method to
generate our final high quality primal solution. It consists of the following steps: (i) ignore
constraints involving discrete variables with their h values greater than H̃ ; (ii) relax the integrality
constraints on variables with their h values greater than H; (iii) fix those discrete variables
with their h values less than Ĥ at the optimal solution from a previous run; (iv) solve the
sub-MIP;(v) increase Ĥ,H and H̃ adaptively and then iterate steps (i) - (iv) until Ĥ = H.
Before calling the computationally expensive rolling-horizon method, we utilize feasibility
pump (Fischetti et al., 2005; Bertacco et al., 2007) to generate the very first solutions and call
RENS (Berthold, 2014) once to improve that solution. The RENS model is a sub-MIP defined by
fixing those discrete variables with their h values less than 0.9H at the incumbent.

5. Solving the Dual Task (Winning Solution by Nuri)

The dual task deals with obtaining tight optimality guarantees (dual bounds) with branching
(Khalil et al., 2016; Balcan et al., 2018; Gasse et al., 2019; Gupta et al., 2020; Cappart et al., 2021).
Making good branching decisions is regarded as a critical component of modern branch-and-bound
solvers. However, it has received little theoretical understanding to this day (Lodi and Zarpellon,
2017). In this task, the environment runs a full-fledged branch-and-cut algorithm with SCIP, and
the participants only control the branching decisions of the solver. The metric of interest is the
dual integral, which considers the rate at which which the dual bound increases over time.
Fruther, all primal heuristics are deactivated to focus only on proving optimality using branching.
Execution time was limited to 15 minutes.

We propose Knowledge Inheriting Dataset Aggregation (KIDA), which trains a neural model
to decide branching variables with an enhanced version of Dataset Aggregation and a surprisingly
effective Model Weight Averaging (MWA) trick. KIDA consists of three steps. First, candidate
models are trained by combining the ideas of DAgger (Ross et al., 2011) and Born-Again Neural
Networks (Furlanello et al., 2018) to imitate the Strong Branching (Achterberg et al., 2005)
heuristics on an expanded dataset. Then, we apply the MWA trick to derive more candidate
models. Finally, the model with the highest cumulated reward on the validation set is selected as
the final model to be used for testing in the deployment environment. We demonstrate that KIDA
achieves top performance on the benchmarks of Balanced Item Placement and Anonymous
Problem with a single model, surpassing methods that purely imitate Strong Branching heuristics.

Limitations of Imitating Strong Branching Classical approaches (Gasse et al., 2019;
Nair et al., 2020) to train neural models to decide branching variables rely on imitation of
Strong Branching heuristics. However, on the two benchmarks of Balanced Item Placement and
Anonymous Problem, we find that having good performance measured by the accuracy of
imitating Strong Branching (SBA) does not always lead to good performance on the deployment
environment measured as cumulated reward (CR), as shown in Table 1. On the other hand,
though CR is a reliable evaluation metric that is highly consistent between validation and

226

ML4CO Competition

deployment, as shown in Table 1, it is a sparse signal and cannot be used directly in an Imitation
Learning framework. In light of these, we propose to first train models to imitate Strong Branch
heuristics, and then use a greedy search to select the final model from trained models and their
derived weight averaging models. We also note on the benchmark of Workload Apportionment,
SBA almost completely fails to correlate with the deployment-time CR as models with high SBA
are often inferior to simple random strategy, as shown in Table 2.

Table 1: Performance Comparison of Models of Different Epochs on the benchmark of Balanced
Item Placement. SBA is not strictly related to CR

Epoch Top 1 SBA Top 3 SBA
Cum. Reward on

Validation Set
Cum. Reward on

Test Set

1 0.780 0.932 5202.6 5028.6
5 0.803 0.948 5545.7 5289.3
10 0.808 0.946 5131.9 4807.9
20 0.810 0.947 5038.8 4840.7

Enhanced Dataset Aggregation We find that Dataset Aggregation (DAgger) (Ross et al.,
2011) improves SBA of trained models and helps to get better final performance in the deployment
environment. We are also inspired by Born-Again Neural Networks (Furlanello et al., 2018) to
utilize all trained models from the whole training process. The training of the current model
depends on the data generated with the last model. By the end of this step, we have a collection
of candidate models that can be leveraged in the next step.
Model Weight Averaging and Greedy Search In the setting of Dual Task, Model
Ensembles (Dietterich, 2000; Kidziński et al., 2018), which simply averages outputs of multiple
models, doesn’t work because the increase in run time by using multiple models will lead to fewer
rounds of interaction with the underlying SCIP solver, and consequently degrading performance.
In our experiments, averaging the weights of models trained in different epochs (Tarvainen and
Valpola, 2017) doesn’t have any positive effect either. In contrast, we consider building a new
model πavg by averaging the weights of different trained models during the DAgger process.
Formally, for Ω models obtained from DAgger with parameters (θ0, θ1, ..., θΩ−1), the parameters
of πavg are obtained by: θavg =

∑Ω−1
i=0 θi/Ω. In practice, we perform a greedy grid search over

different model combinations and different Ω to select the best averaged model with the highest
CR. Note original models are also included in the search as the particular case of Ω = 1.
Results

The final performance of our methods on benchmarks is shown in Table 2. Baseline results are
strictly from the official code. For KIDA, we select the best-performing model by greedy search
over Ω = 1, 2, ..., 5.

Table 2: The Cumulated Reward in Three Benchmarks of Different Methods

Random Baseline KIDA

Balanced Item Placement 3300.7 4937.8 7561.6 (Ω = 3)
Workload Apportionment 624928.9 624043.6 623996.0
Anonymous Problem 31145708.4 30965031.6 32832618.7 (Ω = 1)

Balanced Item Placement: a KIDA model with Ω = 3 overtakes the other methods with a
significant margin.

227

Gasse et al.

Workload Apportionment: surprisingly, the random strategy is significantly better than the
baseline model in this benchmark. This may be attributed to the failure of Strong Branching
heuristics for this set.

Anonymous Problem: the best KIDA model we find is a single DAgger model without
averaging. Applying KIDA with Ω ≥ 2 leads to a slight decline in deployment-time CR.

6. Solving the Configuration Task (Winning Solution by EI-OROAS)

The configuration task deals with deciding on a good parameterization of the solver for a
given problem instance (Hutter et al., 2011). The environment required for this task is more
straightforward than for the two previous ones since it involves only a single decision for the
agents, i.e., contextual bandit problem). Participants were allowed to tune any of the existing
parameters of SCIP. They could choose between providing a fixed set of parameters that work well
on average for each problem benchmark or producing instance-specific parameterizations based on
the characteristics of each instance. The metric of interest for this task was the primal-dual gap
integral, which combines both improvements from the dual and from the primal side over time.
To compute this metric unambiguously, even when no primal or dual bound exists, an initial
primal bound (trivial solution value) and an initial dual bound (pre-computed root LP solution
value) for each instance are both provided. Execution time was limited to 15 minutes.

The configuration task deals with deciding on a good parameterization of the solver for a
given problem instance. Specifically, there are two questions need to answer: 1. How to search
good parameters for seen instances? 2. How to recommend parameters for unseen instances?
With a basic exploration, we conclude the following challenges: 1) Numerous, heterogeneous and
conditional dependent configurable parameters 2) Expensive optimization cost for open instances
and Limited samples for anonymous set. In our solution, we proposed a novel space reduction
pipeline and adopted HEBO (Cowen-Rivers et al., 2020) as optimizer to search good parameter,
while a ML-based classifier to recommend parameters.

Implementation of method First, the search space is reduced to accommodate Bayesian
optimization. Expert experiences were introduced to filter insignificant parameters. Then, fitting a
XGboost observer to tighten the region of candidate parameters again with Gini coefficients. The
search space Ω will be split to k sub-space (om)at the start, then optimized one by one with
broad first search order. Algorithm 1 presents the pseudo-code for search. Specifically, a two-layer
loop is used to solve the problem. The outer loop optimizes each sub-space, and the inner loop
is a standard BO method that minimizes the objective function. Some comments are all as
follows. 1) Full solution initialization: The x∗ is assigned the SCIP default value for initialization
and replaced by optimal partial solution xi (i = 1, · · · , k) until the end of the iterations. 2)
Partial solution initialization: The sub-space Ωi is defined as the current search space, and
the initial dataset Di

0 is sampled in this space. 3) Model construction and optimization: The
surrogate model construction and acquisition function optimization is following the HEBO. 4)
Objective evaluation: The new suggested solutions xi1:q will supplemented by x∗ into full solutions,
configuring for SCIP, and solving for all instances in I. the mean value of the Primal-dual gap
integral for all instances is returned as an objective value. 5) Update full solution: When the inner
loop ends, the optimal solutions xi will update the global full optimal solution x∗.

Empirical study We solve the problem as described above, where the anonymous dataset is
divided into three clusters according to the features. The statistical results of SCIP solver with

228

ML4CO Competition

Table 3: The statistical results of primal-dual gap by default and tuned parameters of SCIP.

Dataset
Default

Performance
Tuned

Performance
Improvement

Item Placement 16942 8781 ×1.92
Load Balancing 22168 9499 ×2.33
Anonymous-c1 277e+4 257e+4 ×1.08
Anonymous-c2 1133e+6 730e+6 ×1.55
Anonymous-c3 726e+4 574e+4 ×1.26

Algorithm 1: Pseudocode of Parameter Adaptive Bayesian Optimization
Input :Ω = {Ω1, Ω2, · · · , Ωk} : Search space; I : Instances set; N : Total number of iterations of each sub-search

space
x∗ ← SCIP default value in Ω. /* full solution initialization */

for i← 1 to k do
Initialize Di

0 by random sample from sub-search space Ωi. /* partial solution initialization */

for j ← 0 to N − 1 do
Fit a surrogate model to current dataset Di

j . /* modeling */

Find q solutions xi
1:q by maximizing three acquisition functions. /* suggest */

Evaluate new partial solutions (xi
1:q) by querying the function to get y1:q = f(xi

1:q , x
∗, I). /* evaluate */

Update the dataset creating Di
j+1 = Di

j ∪ {xi
l , yl}

q
l=1. /* tell */

end
x∗ ← x∗ ∪ argminxi∈Di . /* update full optimum solution */

end
Output : x∗ (the best-performing parameters set for SCIP solver on I).

default and tuned parameters are summarize in Table 3. The performance of the SCIP has been
improved, with a maximum of 2.33 times improvement on Load Balancing dataset and minimum
of 1.08 times on Anonymous-c1. The experimental results demonstrate the effectiveness and
robustness of our method in the MIP solver configuration.

7. Conclusion

The goal of this competition was to foster the design of innovative methods to improve
state-of-the-art combinatorial optimization solvers by replacing key heuristic components with
machine learning models. To that, we proposed three challenging benchmarks. In total, we
received 12 for the primal task 23 for the dual task, and 15 for the configuration task. We provide
descriptions of some of the participants’ solutions on the competition website.2 The results
indicate that machine learning for combinatorial optimization has potential, although more work
must be done before it becomes relevant for practical, real-world use. We plan to maintain this
competition across the years to monitor performance improvements over the years.

Acknowledgments

The event was sponsored by the Artificial Intelligence Journal, as well as Compute Canada, Calcul
Québec, and Westgrid who graciously provided the compute resources and the prize money. We
finally thank all the participants.

2. https://www.ecole.ai/2021/ml4co-competition/

229

https://www.ecole.ai/2021/ml4co-competition/

Gasse et al.

References

Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations
Research Letters, 33(1):42–54, 2005.

Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, and Ellen Vitercik. Learning to branch. In
International Conference on Machine Learning, pages 344–353. PMLR, 2018.

Livio Bertacco, Matteo Fischetti, and Andrea Lodi. A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization, 4(1):63–76, 2007.

Timo Berthold. Rens. Mathematical Programming Computation, 6(1):33–54, 2014.

Quentin Cappart, Thierry Moisan, Louis-Martin Rousseau, Isabeau Prémont-Schwarz, and
Andre A Cire. Combining reinforcement learning and constraint programming for combinatorial
optimization. In AAAI Conference on Artificial Intelligence, volume 35, pages 3677–3687, 2021.

Alexander I Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan Rhys
Griffiths, Hao Jianye, Jun Wang, and Haitham Bou Ammar. An empirical study of assumptions
in bayesian optimisation. arXiv preprint arXiv:2012.03826, 2020.

Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighborhoods
to improve mip solutions. Mathematical Programming, 102(1):71–90, 2005.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on
multiple classifier systems, pages 1–15. Springer, 2000.

Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathematical Programming,
104(1):91–104, 2005.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In International Conference on Machine Learning, pages 1607–1616.
PMLR, 2018.

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization
Online, March 2020. URL http://www.optimization-online.org/DB_HTML/2020/03/

7705.html.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. In Advances in Neural
Information Processing Systems, 2019.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. 2020.

230

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html

ML4CO Competition

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Sequential model-based optimization for
general algorithm configuration. In International Conference on Learning and Intelligent
Optimization, pages 507–523. Springer, 2011.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In AAAI Conference on Artificial Intelligence, volume 30, 2016.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In Advances in Neural Information Processing Systems,
pages 6348–6358, 2017.

 Lukasz Kidziński, Sharada Prasanna Mohanty, Carmichael F Ong, Zhewei Huang, Shuchang Zhou,
Anton Pechenko, Adam Stelmaszczyk, Piotr Jarosik, Mikhail Pavlov, Sergey Kolesnikov,
et al. Learning to run challenge solutions: Adapting reinforcement learning methods for
neuromusculoskeletal environments. In The NIPS’17 Competition: Building Intelligent Systems,
pages 121–153. Springer, 2018.

Andrea Lodi and Giulia Zarpellon. On learning and branching: a survey. Top, 25(2):207–236,
2017.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov,
Brendan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al.
Solving mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Mohammadreza Nazari, Afshin Oroojlooy, Martin Takáč, and Lawrence V Snyder. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems, pages 9861–9871, 2018.

Dimitri J Papageorgiou, George L Nemhauser, Joel Sokol, Myun-Seok Cheon, and Ahmet B Keha.
Mirplib–a library of maritime inventory routing problem instances: Survey, core model, and
benchmark results. European Journal of Operational Research, 235(2):350–366, 2014.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. arXiv preprint arXiv:2011.06069, 2020.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and
Conference Proceedings, 2011.

Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming. Elsevier,
2006.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consis-
tency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780,
2017.

231

	Introduction
	Datasets
	Evaluation Metrics
	Solving the Primal Task (Winning Solution by CUHKSZ_ATD)
	Balanced Item Placement
	Workload Apportionment
	Anonymous Problem

	Solving the Dual Task (Winning Solution by Nuri)
	Solving the Configuration Task (Winning Solution by EI-OROAS)
	Conclusion

