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Abstract

Centralized sharing of sensitive data for training and inference is challenging and undesired
due to privacy, competition, and legal concerns. While distributed learning and secure
inference have demonstrated significant privacy gains, these methods still largely ignore
the design and implementation of practical, privacy-preserving tool support. To address
these challenges, we present TripleBlind, an automated privacy-preserving framework for
creating and consuming data-driven applications from decentralized data and algorithms.
TripleBlind provides a set of automated, high-level APIs that enable (1) extracting knowl-
edge from remote data without moving it outside the owner’s infrastructure, (2) training Al
models from decentralized data, and (3) consuming trained models for secure inference-as-
a-service; all without compromising the privacy of either the model/query or the data. In
this short paper, we shed light on the underlying training and inference methods, the design
and implementation of our framework, and showcase the actual code necessary to run a
secure, remote inference using our secure multi-party computation API. A video demo high-
lighting the main features of our framework is located at www.tripleblind.ai/neurips2021

Keywords: Machine learning, deep learning, privacy, distributed learning, secure multi-
party computation, inference-as-a-service

1. Motivation and Prior Work

Artificial intelligence (AI), especially deep learning, has led to significant advances in an
ever-growing number of domains (Lopez-Jimenez et al., 2020; Lotter et al., 2021). The
common denominator for this success heavily relies on the availability of large amounts of
diverse data—which is critical for training high-performance, fair, and generalizable models.
In contrast, training on single-origin, limited data can lead to poor models !. For example,

1. Note that some ML algorithms might not require training data to make correct predictions on a new task
such as zero-shot learning (Xian et al., 2018), but such algorithms were previously trained on similar
tasks using large amounts of diverse data.
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Driggs et al. (2021) investigated more than 400 models for detecting COVID-19 and deter-
mined that each one of them was fatally flawed when tested on out-of-sample data—mainly
because they were trained on small, single-origin samples with limited diversity. The study
highlights that it is imperative to ensure easy and rapid access to diverse data without com-
promising its privacy for critical and high-quality data-driven research. Thus, there exist
pressing demands for (1) sharing multi-institutional and multi-national data to train high-
performance Al models and (2) utilizing such models for inference services without harming
the data privacy or the model’s intellectual property. Unfortunately, it is still profoundly
challenging to share and utilize such sensitive data and models due to privacy (Shokri et al.,
2017; Nasr et al., 2019; Rigaki and Garcia, 2020; Zhang et al., 2020), ethical (Krupinski,
2020; Morley et al., 2020), and legal concerns CCPA (2018); GDPR (2016).

First, to address private data sharing, distributed learning methods that enable train-
ing a shared model from decentralized data have emerged, such as Federated Learning
(FL) (McMahan et al., 2017), Split Learning (SL) (Vepakomma et al., 2018), and SplitFed
Learning (SplitFed) (Thapa et al., 2020). Second, to address inference-as-a-service pri-
vacy challenges, several studies suggested the use of cryptographic methods, specifically
secure multi-party computation (MPC) (Yao, 1986), which has illustrated promising results
(Juvekar et al., 2018; Riazi et al., 2018; Wagh et al., 2019). Nevertheless, the majority of
the existing work in this domain largely ignore the design and implementation of proper
tool support for these methods. For example, most of the distributed learning tools are
still experimental, including FedML (He et al., 2020) and Tensorflow Federated (Google,
2019). Similarly, the majority of secure MPC inference tools are either experimental, such
as CryptFlow (Kumar et al., 2020), or require deep understanding of the underlying cryp-
tographic protocols. While CrypTen (Knott et al., 2021) and PySyft (Ziller et al., 2021)
address the latter issue, they are both specific to PyTorch and do not provide a complete
privacy-preserving software system. PySyft’s implementation also adds significant latency
when used over the public Internet (see our preliminary results).

2. TripleBlind: System Overview

Figure 1 illustrates an overview of our system’s architecture, made of three major compo-
nents: the Router, Access Point (AP), and a Software Development Kit (SDK). We explain
these components and a typical workflow of the system using the following real-world use
case. We assume all parties have our software framework installed on their machines.

2.1. Use case

Alice is a physician and a deep learning practitioner at Hospital A, who developed a high-
performing model to predict a specific disease. She is interested in validating her model
on out-of-sample data which she does not own, but is available at Hospital B. However,
Hospital B cannot simply share their patients’ data with Alice due to privacy and legal
concerns. Meanwhile, Alice is concerned about the intellectual property of her model, so
she is unwilling to share it with Hospital B to validate it locally on their data. Using
TripleBlind’s secure MPC inference protocol, Alice can validate her model on Hospital B’s
data without exposing neither the model nor the test data. Following, we illustrate the
workflow of this task and then explain the system components in the next subsection.
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Figure 1: TripleBlind System Overview

First, both parties position their assets (i.e., model and data) on our software platform,
which is installed as a docker container on their local or cloud machines. Note that both
assets are still physically stored on the users’ machines—and never leave them. We refer to
these machines as Access Points, visualized as Blue boxes in Figure 1. The asset owner can
also list the asset in the Router to allow other organizations to discover it for collaboration,
either using our SDK or via the Router’s web interface. Figure 2 illustrates the actual code
snippet necessary to position an asset (e.g., Alice’s trained model) using the SDK.

Second, Alice uses our automated API to run the secure inference on Hospital B’s data.
Figure 3 illustrates the usage of the API. Line 2 uses the public ID of Hospital B data,
which Alice discovered using the Router’s web interface. Third, Hospital B will receive an
access request to use their data. Upon reviewing the request and then approving it, our
protocol will take place between both parties directly while providing live monitoring and
audit. Finally, Alice will receive the inference results in a zipped file (Line 14), which she
can use to obtain different validation metrics.

2.2. System Components

The Access Point (AP) is a Docker container running our software system within a ded-
icated machine inside the organization’s infrastructure. The AP hosts the organization’s
assets, connects them to our ecosystem, and utilizes the assets for joint operations (e.g., dis-
tributed learning, inference) without sending any raw data outside the user’s infrastructure.
The APs of different organizations interact with each other directly using secure channel
communications, which are managed by our Router but never pass through it.

The Router is responsible for managing and coordinating the users, operations, com-
munications, permissions, and digital rights. It uses JSON Web Token (JWT) for the
authentication and authorization of communications between the APs and the Router.
Communications between the involved parties are carried out using the encrypted com-
munication protocol HTTPS while the Secure Socket Layer (SSL) is used to verify the
authenticity of all parties and to encrypt the communications between them. The Router
stores a list of all organizations’ assets, but the actual assets remain at the owner’s AP.
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1 import tripleblind as tb 2 test_data = tb.Asset("Hospital B_data_ID")
3 job = tb.create_job(

“ 4 operation=model,

3 model = tb.asset.neural_network.create( 5 dataset-[test_data],

4 path= "Alice_trained_model.pth", 6- params={

5 name="model_name", "security": "smpc”,

"data_type": "numpy",

desc="Model to diagnose EKG.." ) "final layer softmax": True})

8 model.add _agreement( 11- if job.submit():
. T . " 12 job.wait_for_completion()
with org="Hospital B", 13~ if job.success:
10 operation=tb.Operation.EXECUTE) 14 filename = job.result.download("results.zip")
Figure 2: Asset Positioning API Figure 3: Blind Inference API

The Software Development KIT (SDK) is installed on the end user’s device (e.g.,
a data scientist’s workstation) and provides complete scripting control of our framework.
It is used to manage the organization’s assets or run joint operations, such as distributed
training, inferences, or analysis. The SDK supports Python, R, and provides command-line
utilities to interface with the rest of the ecosystem.

3. TripleBlind Training and Inference Algorithms

Blind Learning (BL): A distributed learning approach that introduces several novelties
over FL, SL, and SplitFed. BL splits the model’s training process between the server and
clients, thus reducing the computational burdens at the clients compared to FL. BL trains the
clients’ models in parallel leading to more efficient training compared to SL. It also utilizes
a weighted average loss function at the server-side that requires a single update per each
communication round, leading to better performing models than both SL and SplitFed.
For example, training a shared ResNet-34 model on the CIFAR-10 dataset divided among
3 clients in a practical non-IID distribution requires 60% less computations in BL compared
to FL to reach a baseline accuracy of 80%. Both SL and SplitFed fail to reach this accuracy
in the allowed number of communication rounds in this experiment.

Blind Inference: A secure multi-party computation protocol for automated inference-
as-a-service built using secret sharing techniques. It operates in a semi-honest setting, in
which an adversary tries to learn information about the other party’s data but never deviates
from the protocol. Our inference also enforces an agreement phase before the computation
begins, in which both parties decide on the input data, the results to disclose, and policies
around the task. Blind Inference can compute an inference using LeNet-5 trained on MNIST
in 0.036 seconds compared to 0.13 and 1.16 seconds in Secure NN (Wagh et al., 2019) and
Gazelle (Juvekar et al., 2018), respectively.

4. Conclusions

There is an evident lack of studies that detail the design and implementation of software
systems for privacy-preserving methods and tools. We explained in this paper our design
and implementation of a practical privacy-preserving framework that allows providing and
consuming data-driven applications over the public Internet. We hope our implementation
techniques will spur the adaption and implementation of secure and private Al systems.
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