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Abstract

Millions of people around the world can not access content on the Web because most of
the content is not readily available in their language. Machine translation (MT) systems
have the potential to change this for many languages. Current MT systems provide very
accurate results for high resource language pairs, e.g., German and English. However, for
many low resource languages, MT is still under active research. The key challenge is lack
of datasets to build these systems. We present Lesan 1, an MT system for low resource lan-
guages. Our pipeline solves the key bottleneck to low resource MT by leveraging online and
offline sources, a custom Optical Character Recognition (OCR) system for Ethiopic and an
automatic alignment module. The final step in the pipeline is a sequence to sequence model
that takes parallel corpus as input and gives us a translation model. Lesan’s translation
model is based on the Transformer architecture. After constructing a base model, back
translation is used to leverage monolingual corpora. Currently Lesan supports translation
to and from Tigrinya, Amharic and English. We perform extensive human evaluation and
show that Lesan outperforms state-of-the-art systems such as Google Translate and Mi-
crosoft Translator across all six pairs. Lesan is freely available and has served more than
10 million translations so far. At the moment, there are only 217 Tigrinya and 15,009
Amharic Wikipedia articles. We believe that Lesan will contribute towards democratizing
access to the Web through MT for millions of people.
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1. Machine Translation Pipeline

Our machine translation pipeline shown in Figure 1 has the following three key compo-
nents: OCR, automatic alignment and MT modeling that leverage current advances in
deep learning.

Data sources Machine translation (MT) systems today provide very accurate results
for high resource language pairs Barrault et al. (2019). However, these systems rely on
large-scale parallel corpus to work. For pairs such as German and English, these parallel
sentences can be easily obtained from the Web. However, for the majority of languages
there is not enough data online to build these datasets. We leverage offline and online
sources to mitigate this bottleneck.

Offline sources are gathered through partnerships with media companies, libraries and
other archives that have books, magazines and other linguistic materials. These are typically
translated books or magazines that have daily news of source and target language in different
file formats and hard copies. Online sources include news sites, blogs, religious and legal
sites that feature stories in both the source and target language.

1. https://lesan.ai/
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Figure 1: Lesan machine translation system pipeline

Data preprocessing After gathering large-scale unstructured data from online and of-
fline sources, the next step is a preprocessing step. The goal of this module is to generate
clean text (corpus) in machine readable format. Scanned books and magazines pass through
an OCR system to convert them into machine readable format. We built a custom OCR
system for Ethiopic, script used for Tigrinya, Amharic and several other languages. The
output of our OCR system is passed through post-editing to correct errors in characters
and words. Data crawled from the Web is parsed to extract text by removing HTML-tags
and gathering metadata such as author, date that could be helpful in downstream steps.
Text coming from different sources such as text parsed from web pages and text coming
from the post-editing module passed through several NLP modules such as deduplication,
language detection and sentence splitting.

Automatic alignment All source and target sentences that have been cleaned are then
passed through an automatic alignment system to construct parallel corpus. A candidate
generation step, produces candidate pairs, then each pair of source and target sentence is fed
to our automatic matching system that determines whether an input pair is a translation
or not. This system is similar to Junczys-Dowmunt (2018) where we compute cross-entropy
scores according to two inverse translation models, and take the weighted average aggregated
over a set of candidate pairs.

Sequence-to-sequence modeling with back translation The final step in the pipeline
is a sequence to sequence model that takes the parallel corpus as input and gives us a trans-
lation model. Lesan’s translation model is based on the Transformer architecture Vaswani
et al. (2017). After constructing a base model, back translation Edunov et al. (2018) is used
to leverage monolingual corpora.

Our machine translation pipeline solves the key bottleneck to low resource MT by lever-
aging online and offline sources, a custom OCR system for Ethiopic and an automatic
alignment module.

2. Evaluation

In this section we will describe human evaluation of Lesan compared to three state-of-the-art
commercial systems: Google Translate 2, Microsoft Translator 3 and Yandex Translate 4.

2. https://translate.google.com/
3. https://www.bing.com/translator
4. https://translate.yandex.com/
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Google Translate uses neural MT (Wu et al., 2016). Yandex Translate uses a hybrid system
of neural MT and statistical MT 5. All these services provide APIs to access their system.
Lesan’s MT models are implemented using the OpenNMT Klein et al. (2017) toolkit.

Human Evaluation Experts were selected to evaluate the translation outputs of the
systems. We assign the task of selecting what news sources to translate to the expert
evaluators in order to avoid bias. The main requirements were: identify 20 news stories (1 -
2 paragraphs); select stories across different genres: politics, social, economy, entertainment,
health, sport, technology etc. The output of translation systems next to the sources are
given to expert evaluators to assign a score. The outputs are shuffled in such a way that one
cannot tell which output is from which system. We chose a Likert scale 6 of 5 corresponding
to a range from completely wrong (0) to accurate and fluent (4). These error categories
are adapted from the severity levels for error categories 7 used in evaluation of translation
quality developed by TAUS. The complete description of the scoring scheme is shown in
Table 1. We have released the evaluation datasets 8 to foster research and progress on
evaluating MT systems for low resource languages.

Table 1: Human evaluation guideline to evaluate performance of MT systems.
Scale Value Description

Wrong translation 0 This is for a completely wrong translation. The translation output
does not make sense given the source text.

Major problem 1 There is a serious problem in the translation with some parts of
the source missing or mistranslated and it would be hard to match
translation output with source text without major modifications.

Minor problem 2 The translation has minor problems given the source text but
requires some minor changes, e.g, changing a word or two to make
it fully describe the source text.

Good translation 3 The translation describes the source text; however, there may
be some problems with style such as punctuation, word order or
appropriate wording.

Accurate and fluent 4 Great job! The output is a correct translation of the source text.
It’s both accurate and fluent.

We report the normalized mean and standard deviation of the scores. The results are
given in Table 2 for Amharic to and from English and in Table 3 for Tigrinya to and
from Amharic and English. Across all directions Lesan outperforms these state-of-the-art
systems.

3. Broader Impact

There are several applications of machine translation systems for broader impact. Let’s take
the case of Wikipedia. Wikipedia currently has a total of more than six billion articles and

5. https://tech.yandex.com/translate/doc/dg/concepts/how-works-machine-translation-docpage/
6. https://en.wikipedia.org/wiki/Likert_scale
7. https://www.taus.net/qt21-project#harmonized-error-typology
8. https://zenodo.org/record/5060303
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Table 2: Human evaluation comparing Lesan against three commercial MT systems for
Amharic to and from English.

Direction System Sentence Story

Am → En

Yandex 0.23 ± 0.30 0.19 ± 0.25

Microsoft 2.13 ± 0.51 2.06 ± 0.50

Google 2.58 ± 0.54 2.54 ± 0.48

Lesan 2.68 ± 0.41 2.71 ± 0.55

En → Am

Yandex 0.28 ± 0.34 0.20 ± 0.29

Microsoft 2.57 ± 0.43 2.54 ± 0.44

Google 2.98 ± 0.30 2.88 ± 0.33

Lesan 3.25 ± 0.38 3.17 ± 0.42

Table 3: Human evaluation comparing Lesan and Microsoft for Tigrinya to and from
Amharic and English.

Direction System Sentence Story

Am → Ti
Microsoft 1.92 ± 0.43 1.85 ± 0.54

Lesan 1.94 ± 0.47 1.86 ± 0.53

Ti → Am
Microsoft 1.60 ± 0.44 1.44 ± 0.57

Lesan 1.94 ± 0.50 1.77 ± 0.50

En → Ti
Microsoft 2.32 ± 0.6 2.17 ± 0.63

Lesan 2.33 ± 0.63 2.19 ± 0.58

Ti → En
Microsoft 2.01 ± 0.63 1.89 ± 0.67

Lesan 2.78 ± 0.31 2.63 ± 0.39
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over 17 billion words in its English edition. Unfortunately, millions of people cannot access
this because it’s not available in their language. For instance, at the moment there are only
217 articles on the Tigrinya Wikipedia and 15,009 articles on the Amharic Wikipedia 9. In
future work, we would like to leverage Lesan’s MT system to empower human translators
towards our mission of opening up the Web’s content to millions of people in their language.
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Figure 2: Web interface of Lesan - on the left is an excerpt from English Wikipedia and on
the right the translation output to Tigrinya.
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