
The NeurIPS 2021 NetHack Challenge

Appendix A. AI Crowd Evaluation

The evaluation service on AI Crowd worked as follows: each participant was required to
submit their inference code and trained models, using AIcrowd’s Gitlab repositories corre-
sponding to their username. The participant’s submitted code was packaged into a Docker
image for every submission, and run on AWS “g4dn.xlarge” instances with 4 CPUs, 8 GB
of RAM, and 1 NVidia T4 GPU with 16 GB video memory. Simultaneously, AIcrowd also
started separate Docker images, which ran the NetHack environment with the fixed settings
decided by the organizers, as well as code for tracking the scores of the rollouts. These ran
on AWS “t3a.medium” instances with 2 CPUs and 4 GB of RAM. These two Docker im-
ages communicated observations and actions to each other respectively and provides the
security guarantee that the environment or the scores cannot be hacked in any way by the
participants.

Appendix B. Trajectory Analysis

The following plots show the investigation made in the trajectories of the Top 8 finalists in
the NetHack Challenge. In particular, it consists of the three sets of evaluations submitted
in Phase 2, consisting of a maximum of 12,288 trajectories. In some cases, this may have
been reduced if the agent was unable to complete all 4,096 episodes during an evaluation.

1



Hambro et al.

Figure 5: Box plots of the score broken down by starting role. The black line indicates
the median, the box-plot is the interquartile range, and whiskers are the 5-95th
percentiles. Outliers are shown in the second plot. Note how Symbolic 2nd and
Neural 1st show evidence of early episode termination.

2



The NeurIPS 2021 NetHack Challenge

Figure 6: [Top] A plot of dungeon level exploration frequencies per episode. In what fraction
of episodes was that dungeon reached? [Bottom] Top plot broken down by role,
plotted as a box plot. The black line indicates the median, the box-plot is the
interquartile range, and whiskers are the 5-95th percentiles. Outliers are shown in
the second plot. Note how several entries (Neural 1, Neural 3) indicate restriction
to the first level. Characters can still teleport or fall through holes to new levels
by accident.

3



Hambro et al.

Figure 7: [Top] Boxplots of (clockwise from top left): max change in AC over an episode
(NB this can happen by accident by damaging armour or polymorphing); gold
accumulated; episode length; experience level at the time of death. [Bottom] The
box plots for agent score, aggregated. Left without outliers, right with outliers.
The black line indicates the median, the box-plot is the interquartile range, and
whiskers are the 5-95th percentiles. Outliers are shown in the second plot. Note
how Symbolic 2nd and Neural 1st show evidence of early episode termination.

4



The NeurIPS 2021 NetHack Challenge

Figure 8: Agents’ deaths are described as “Killed by [Death] while [Cause]”. In this case
[Top] A chart of most common [Death]. [Bottom] A chart of most common
[Cause]. Note that in many cases, death is aggravated by fainting from a lack of
food, or occuring whilst praying.

5



Hambro et al.

Figure 9: [Top] Number of episodes where certain events took place: death from angered
god; death from food poisoning; contracting food poisoned status; starving to
death; choking to death; killing a pet; killing a pet while hallucinating. [Bottom]
Frequency of episodes where status was encountered.

6



The NeurIPS 2021 NetHack Challenge

Appendix C. AutoAscend

We implemented numerous behaviours and features targeting di↵erent aspects of the game.
We list the most important ones to show the comprehensiveness of our solution.

Exploration related

• Untrapping traps and chests, looting containers

• Keeping track of all dungeon level states including glyphs, items (also stacked), search
count per every tile, altars with their alignment, corpse ages, shop positions and types,
stairs with the information where they lead

• Detecting vault entrances to avoid stepping into them, but if the agent happens to
fall into the vault by an accident, drops gold and follows the guard to the exit

• Handling map specific behaviors, such as changed diagonal movement in Sokoban, no
doors kicking in Minetown, or dungeon level finding helpers, e.g. Sokoban is always
one level below the Oracle

• Basic wish handling

• Graceful handling of blindness, confusion, stun, hallucination, polymorph, etc.

• Curing lycanthropy by using a sprig of wolfsbane, holy water, or praying

• Sokoban solving including error-proof behaviours like checking for monsters before
pushing the boulder to a place that cuts the player component in the movement
graph, checking for boulder mimics, and destroying boulders

Item management related

• Smart item identification, e.g. using buy shop prices, possible glyph-object association
(e.g. gem color), engrave-identification for wands, bijective properties of glyph-object
association (if an item is identified, it cannot be under an unidentified glyph), com-
bining results from these methods for drawing better conclusions

• Naming items (#call) for easy instance identification, e.g. too old corpses for sacrifi-
cation, bag identifiers to keep track of items in bags

• Using bags for carrying items

• Dipping long swords in fountains to get the Excalibur

• Identifying BUC status of items using altars

• Sacrificing corpses on altars to get an artifact

Combat strategy related

• Damage calculation is implemented using NetHack code and the data from the wiki

• Enhancing skill proficiencies

• Avoiding melee attacking some enemies like “floating eye” or “gas spore”

• Not using ranged weapons when a pet or a peaceful monster is in the way

• Simulating ray wands reflection trajectory (with probabilities for all possible paths)

• Healing by using healing potions, using basic healing spells, and praying

We also developed a visualisation tool to help us debug the policy of our agent, displayed
in Figure 10

7



Hambro et al.

Figure 10: An example visualization of game state and current agent behaviour. The state
is visualized before every action (in raw NLE action space). On the top, there
are four log panes (one line per step): raw NLE actions, messages, pop-ups (e.g.
opened inventory), simplified strategy stacks (from left to right). In the centre,
the current level is visualized using a graphical tileset. On the bottom, there is
a raw TTY data visualization and miscellaneous stats. The left bar is used for
inventory and item knowledge visualization.

8



The NeurIPS 2021 NetHack Challenge

Figure 11: Model Structure of Team KakaoBrain.

Appendix D. RAPH

Algorithm 1: RAPH agent
Data: view distance, agent, hard coded skills
state, done env.reset(), False;
while not done do

action queue = parse message(state);
if action queue then

state, reward, done, info = env.step(action queue); /* We have a prompt to

response */

continue
end
monster distance, preprocessed state = parse dungeon(state);
if monster distance <view distance then

action queue = agent.act(preprocessed state);
else

action queue = first fit(hard coded skills, preprocessed state); /* Select

non-rl action on first-fit basis */

end
state, reward, done, info = env.step(action queue);

end

Appendix E. KakaoBrain

Here we explain details of our approach. An in-depth model structure is illustrated in
Figure 11.

• Observation Encoding: For in-game message tokenization, we tokenize in-game
messages by words rather than characters since it will be easier to understand a
sentence in a limited vocabulary setting. We encode the first 32 words at most (tokens)
for a sentence. For extended blstats, we use the blstats with extra information (race,

9



Hambro et al.

gender, alignment, and condition mask) which helps select optimal behaviors. For
glyph encoding, we encode a glyph value (an integer between 0 and 5,976) of each
pixel in the screen with its glyph group, object class, id, and is-agent. We expect that
directly providing game-specific information rather than converting to an RGB image
is more helpful for the agent to learn a general behavior. For usable items, we encode
each item in the inventory with its glyph group, object class, cursed, worn, enchant,
and count. For pickable items, we encoded pickable items similarly to usable items
by parsing their information from the screen (it is not directly given in the original
observation). For spells, we encode each spell information with its id, level, failure,
and retention by parsing their information from the screen (it is not directly given in
the original observation). We encode the information of at most 5 spells for simplicity.

• Separated Action Spaces: As we explained in the main text, our separated ac-
tion spaces are composed of action-type, direction, use-item, pick-item, and use-spell.
action-type is the same as the original action space, direction is composed of 8 direc-
tion choices for choosing a direction, use-item consists of item choices for choosing
an item to be used, pick-item and use-spell are comprised of item choices for pick-
ing up items and spell choices for casting a spell, respectively. Generally, the agent
chooses an action in action-type, and the other actions are used when required. This
encourages better item farming, item utilization, and spell utilization by separating
and clarifying action spaces for them.

• Network Structure: Tokenized message is fed to EmbeddingBag which embeds
token id into a vector of 80 size and averages these vectors of multiple (32) tokens.
We use 3-layer CNNs with 128, 64, and 32 channels, stride size of 3, and 2⇥2 average
pooling for the first and second layers. We use a 2-layer MLP with the out sizes of 256
for blstats. We use a 1-layer GRU with the hidden size of 1024. We use a 1-layer
MLP with the out size of 64 for last atype. We use TrXL-I structure without memory
(Parisotto et al., 2020) to encode information of usable items, pickable items, and
spells. We use 1-layer TrXL-I with the hidden size of 1024, the head size of 256, and
4 heads for each of them.

• Role-specific Training: To improve the score by encouraging a role-specific strategy,
we train models that are dedicated to a specific role. In specific, we apply the role-
specific reward shaping for Healer, Ranger, Rogue, Tourist, and Wizard. We set the
HP di↵erence as a reward to encourage healing itself for Healer. We give an incentive
in killing monsters with firing for Ranger, killing monsters by throwing for Rogue,
killing monsters by throwing for Tourist, and killing monsters with spells for Wizard.

10


	Introduction
	Competition
	Environment
	Metrics
	Competition Structure
	Evaluation Setup

	Results & Discussion
	Competition Results
	Analyzing Agent Behavior
	Symbolic vs. Neural Approaches

	Approaches
	Baselines
	TorchBeast Baseline
	Sample Factory Baseline

	Competitor Approaches
	Team AutoAscend: Symbolic
	Team RAPH: Hybrid
	Team Kakao Brain: Neural


	Conclusion
	AI Crowd Evaluation
	Trajectory Analysis
	AutoAscend
	RAPH
	KakaoBrain

