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Appendix B. Supplementary Figures

Task Metric

Task 1: Modality prediction

Task Metric

Task 2: Match modality
Task Metric

Task 3: Joint embedding

(a) (b)

(c)

(d) (e)

Integrated Multiome data (RNA & ATAC)

Cell type

Figure 1: Competition set-up. (a) Experimental design to generate the multimodal
single-cell benchmarking dataset with nested batch structure and (b) an exam-
ple of an integrated representation of the Multiome data created using multiVI
(Ashuach et al., 2021). (c-e) Conceptual figures of the three tasks and evaluation
metrics used in the competition. Task 1 was the prediction of one modality from
another based on paired training data and evaluated by RMSE. Task 2 was the
matching of cells across modalities, evaluated by a match probability score. Task
3 was learning a joint embedding leveraging the variance of two modalities, evalu-
ated by the removal of batch effects and conservation of biological signatures such
as cell type and cell differentiation. See Luecken et al. (2021) for details.

4



NeurIPS 2021 - Multimodal single cell data integration challenge

(a) (b)

Figure 2: Toolkit breakdown. Software packages used by competitors for both single cell
analysis (a) and deep learning (b) based on all survey responses.

Bio conservation

Batch removal

Pre-trained Multiome

Figure 3: Task3: joint embedding evaluation metrics by rank on the pre-trained
Multiome subtask. Top left shows the overall integration score, which is split
up in batch removal and bio-conservation metrics. See Luecken et al. (2021) for
detailed metric descriptions.
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Figure 4: Task 3: Extended joint embedding metric evaluation. Additional best
performing methods (left to right) ranked by batchASW sample, batchASW site
and iLISI site.

Appendix C. Additional method descriptions

The code for all methods described here can be found at https://github.com/openproblems-bio/
neurips2021_multimodal_topmethods.

C.1. Task 1: Modality prediction

GEX→ATAC - 1st place: Living Systems Lab Living Systems Lab used PCA
to project the input and output modalities into 50 dimensions, and then trained a k-
nearest neighbors regression model between these representations using 25 neighbors with
the Minkowski distance metric (Fig 5). The full-dimensional output was reconstructed using
the saved principal axes. The dataset was split into five folds stratified by the batches. The
model was trained on each fold, and the outputs were then averaged. Hyperparameters were
optimized in the local validation and public testing sets using the RMSE metric.

ATAC→GEX - 1st place: Cajal Cajal is a deep neural network method for the predic-
tion of one modality from another. Cell-type specific features are selected as input, based
on differential expression (Wilcox test) or differential accessibility (T-test after binarization
of data), using an annotated reference dataset. The analysis of this reference dataset is
performed using SCANPY (Wolf et al.). Feature selection is not performed when the input
modality is ADT, due to the small number of proteins profiled in CITE-seq datasets. Total
counts, median total counts per batch and the standard deviation in total counts per batch
are also calculated and used as input features. Values for the selected features are centered
and scaled before being input into the neural network. The network architecture consists of
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Figure 5: GEX→ATAC: Living Systems Lab.

a dropout layer, 3 to 6 hidden layers which use the ReLU activation function, an output layer
with no activation function (linear regression), and a final Lambda layer. This Lambda layer
serves to clip the output to biologically reasonable values (the range present in the training
data). The neural networks are implemented using TensorFlow (Abadi et al., 2016) and,
during the training and validation phases, KerasTuner (O’Malley et al., 2019) was used to
optimize hyperparameters (percentage dropout, number of hidden layers, number of nodes
per layer).

Team Cajal initially sought to create a heteroencoder, however discovered that imple-
menting a bottleneck architecture did not result in optimum performance across tasks. Thus,
the hyperparameter search was restricted to 10 – 90% dropout, 3 - 6 hidden layers (after
initial experimentation showing less than 3 resulted in reduced performance), and 10 – 800
nodes per layer (range chosen loosely based upon single-cell deep learning tasks reported in
the literature). A number of approaches were attempted that did not improve performance,
including pre-training as an autoencoder, L2 regularization, one-hot encoding of cell type
as inferred by label transfer from the challenge reference dataset using ingest, and the use
of additional datasets during training. To prevent overfitting, Team Cajal found that early
stopping was necessary before the addition of a dropout layer. After this addition, early
stopping was no longer essential, although no improvement in performance on the validation
dataset was seen after 50 epochs. The final model parameters are detailed in Table 2.

GEX→ADT - 1st place: Guanlab - dengkw Team Guanlab - dengkw built a Kernel
Ridge Regression (KRR) model with the Radial Basis Function (RBF) kernel k(xi, xj) =

exp(− |xi−xj |2
2l2

). Here, the d(., .) is the Euclidean distance (Fig 6). Processed data was used as
input to the model. Data processing was done by: (1) concatenating the data from modality
1 (Mod 1) in the training and test set with an outer join by the features and labeling them
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Modality Dropout Layer Sizes

ATAC - GEX 0.8 320, 360, 620, 440
GEX - ATAC 0.8 500, 20, 110, 430, 310
GEX - ADT 0.2 170, 300. 480, 330, 770
ADT - GEX 0.2 180, 140, 520

Table 2: Cajal modality prediction submission parameters

with ”train” and ”test”; (2) applying a truncated SVD to the combined matrix for dimension
reduction; (3) applying a truncated SVD to the training data from modality 2 (Mod 2); (4)
applying row-wise z-score normalization on the reduced matrix and splitting the matrix by
the labels. Finally, the KRR model was fit with the normalized training matrix and the
processed Mod 2 data. Outputs from predicting the test matrix were mapped back to the
dimensions of test Mod 2 data by multiplying by the right singular matrix.

Figure 6: GEX→ADT: Guanlab - dengkw. Model overview.

In the final submission, in order to overcome memory limitations, Team Guanlab -
dengkw applied a training strategy consisting of random sampling and assembling (Fig 7).
First, batches were randomly shuffled in the training data and two models were trained on
the first and second half batches of the data. Then the steps were repeated 5 times and
10 models were generated with 10 outputs. The final predictions were the average of these
outputs.

There are 4 tunable parameters in the model: the number of components for Mod 1
and Mod 2, the length scale l in the RBF kernel, and the regularization strength α in
ridge regression. These parameters were determined by cross-validation performances on
the Phase I data. They are listed in Table 3. For the ADT2GEX task no feature reduction
was applied to the ADT data.

ADT→GEX - 1st place: Novel Team Novel used an MLP with encoder-decoder struc-
ture, with most of the model capacity contained in the decoder given the high dimensional
output. Although ATAC and GEX modalities were compressed via latent semantic index-
ing (LSI) for other input modalities, the ADT input data was not pre-processed due to its
already low dimensionality. To avoid overfitting, the model was regularized using dropout
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Figure 7: GEX→ADT: Guanlab - dengkw. Strategy to overcome memory limitations.

Task # of Mod 1 components # of Mod 2 components l α

GEX2ADT 300 70 10 0.2
ADT2GEX None 50 10 0.2
GEX2ATAC 1000 50 10 0.1
ATAC2GEX 100 50 10 0.1

Table 3: Guanlab - dengkw modality prediction submission parameters

before every hidden layer, as well as and weight decay. Alternative regularization techniques
that were explored include batch swap noise and a variational prior on the latent variables,
however these did not lead to beneficial results. Notably, in some cases a higher test metric
score was achieved after training on a smaller data set rather than the full data set. For
example, using the phase 1 data as a training dataset proved best to train the ADT2GEX
model. The optuna framework was used to tune hyperparameters (LSI dimension, dropout
rate before every hidden layer, depth, layer widths, activation function, learning rate, opti-
mizer and weight decay). The optimal hyperparameter values are detailed in Table 4.

ADT→GEX - 2nd place: Living Systems Lab Living Systems lab used a similar
pipeline for the ADT2GEX subtask as for the winning submission in the GEX2ATAC task
(see above). They trained a neural network with 2 hidden layers, a ResNet-style neural net-
work with skip connections and a batch prediction head with 3 hidden layers; and catboost
models with Bernoulli bootstrapping and Bayesian bootstrapping on 5 folds. These models
were ensembled by averaging the output features.

Overall: DANCE Team DANCE leverages a bipartite graph between cells and different
modalities (GEX, ADT, and ATAC) to represent interactions. They utilize graph neural
networks adapted from Battaglia et al. (2018); Kipf and Welling (2016) and Wu et al.
(2020) to exploit the structural information of this bipartite graph. Specifically, the solution
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GEX2ATAC ATAC2GEX ADT2GEX GEX2ADT

# HL 3 3 3 3
HL dims [1024, 256, 2048] [2048, 2048, 512] [512, 512, 512] [512, 512, 2048]
HL dropout rates [0.30, 0.11, 0.14] [0.26, 0.18, 0.25] [0.0, 0.0, 0.0] [0.20, 0.15, 0.17]
Activation functions GeLU GeLU GeLU GeLU
Learning rate 1e-05 8e-05 4e-04 3e-05
Optimizer AdamW AdamW Adam AdamW
Batch size 64 256 64 32
Weight decay 4e-04 7e-04 1e-05 1e-02
# LSI components 256 256 - 256

Table 4: Novel modality prediction submission parameters; HL - hidden layers; dims - di-
mensions

consists of three major components: (1) bipartite graph construction, (2) heterogeneous
graph convolution, and (3) representation concatenation. In the first step, a bipartite graph
is constructed between modality (GEX, ADT and ATAC) and cell nodes. In the GEX2ADT
and GEX2ATAC tasks, they additionally introduced pathway data from hallmark gene sets
(i.e. sets of related genes). Based on the original bipartite graph, gene features which are
shown to be related in the pathway dataset were linked.

The initial node embedding of feature nodes is a one-hot index of each feature, thus, the
node embedding matrix for all feature nodes X̂feat = Rk×k , is an identity matrix (a.k.a
X̂feat = Ik ), where k is the number of modality 1 (Mod1) features. To model the batch
effect, initial cell embeddings were computed from batch features, the statistical features
of all the cells in one batch. Eventually, for each cell a 9-dimensional batch feature was
obtained, so that the batch features for all cell nodes could be described as X̂batch ∈ RN×9.

This graphs was used as the basis for heterogeneous graph convolution. In the hetero-
geneous graph convolution, parameters for different types of edges were separated. In each
convolution layer three sets of aggregation approaches were simultaneously completed to
aggregate the information from different types of neighbors to the target node. The node
embeddings were then updated with residual connection and a weighted sum of aggregation
results:

X l
feat = X l−1

feat + α ∗AGGc2f + (1− α) ∗AGGf2f (1)

X l
cell = X l−1

cell +AGGf2c (2)

where l is the number of current layer, AGGf2f is the pathway aggregation (i.e., the
aggregation from feature to feature), AGGc2f is the cell-feature aggregation, α is a scalar
hyper-parameter to control the ratio between those two aggregations, and AGGf2c is the
aggregation from features to cells. Finally, Team DANCE took the embeddings of cell
nodes from each convolution layer, concatenated them and projected them to the space of
downstream task via a linear transformation.
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C.2. Task 2: Match modality

All subtasks - 2nd place: Novel Team Novel approached the match modality task
using a metric learning approach and post-processing adapted from graph theory. For each
data type, a shallow MLP encoder was used to learn spherical sample embeddings. ATAC
and GEX input data was preprocessed by latent semantic indexing (LSI) transformation
(a TF-IDF transformation followed by SVD). In contrast to their approach in the Predict
Modality task, the first LSI component was discarded as it was broadly associated with
technical variation. ADT input data was directly fed into the network due to its lower
dimensionality. The encoders were trained by minimizing the symmetric cross-entropy of
cosine similarities between sample pairs. This approach was inspired by CLIP, a model
designed to connect text and image data (Radford et al., 2021). Matching probabilities
were inferred in a two step procedure: (1) evaluation of a dense pairwise cosine similarity
matrix based on the embeddings of each modality; and (2) finding a maximum weight
matching in a bipartite graph, where each vertex represents a sample in the data. To ensure
computational feasibility, the input matrix was sparsified by discarding elements smaller than
their corresponding row- and column-wise 0.995 quantiles. This way, the matrix was greatly
sparsified while retaining values in all rows and columns. The proposed algorithm for sample
matching is making hard bets rather than soft probability assignments. It is intrinsically
symmetric so its output and metrics are consistent for both directions of the matching
problem (i.e. ADT2GEX and GEX2ADT). For the ATAC2GEX and ADT2GEX subtasks
the model was trained on Phase 2 and Phase 1 data, respectively, for 7000 epochs. Due to
the high cost of the bipartite matching procedure, the competition metric was evaluated on
each epoch using probabilities obtained by a row- and column-wise softmax averaged for the
modality pair. The hyperparameters for the embedding model were found by an extensive
search using the optuna framework and are shown in Table 5.

C.3. Task 3: Joint embedding

Multiome, pre-trained and CITE, pre-trained: Amateur Team Amateur’s method
”joint embedding with a regularized autoencoder” (JAE) was inspired from previous work
on scDEC (Liu et al., 2021), which aims at simultaneous deep generative modeling and
clustering of single-cell data. Here, the scDEC model was simplified by removing the dis-
criminator networks and adding constraints to the encoder latent space so that JAE requires
latent features to recover more biological knowledge, including cell type, batch, and cell-cycle
phase.

In the JAE model, each modality (except ADT) is first SVD transformed (e.g. to 100
components) and concatenated. The information from cell annotations (e.g., cell label, cell
cycle score, and cell batch) is incorporated to constrain the structure of latent features.
In this manner some latent features should recover the cell type information and some
should recover the cell cycle score. Batch-related features should recover batch labels as
randomly as possible to potentially eliminate this effect. Some features in the latent space
were left without constraint to ensure the flexibility of network. JAE was pre-trained using
the provided annotated datasets in an end-to-end fashion (Adam optimizer, lr = 10−4),
where multiple loss functions were used, including autoencoder reconstruction loss, cell type
prediction cross entropy loss, cell cycle phase score mean squared error (MSE) loss, and batch
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ADT ↔ GEX ATAC ↔ GEX

Learning rate 8e-05 6e-04
Optimizer AdamW AdamW
Weight decay 0 0
Batch size 2048 16384
Embedding dimension 64 256
# HL in GEX encoder 2 2
# HL in Mod 2 encoder 2 1
HL dims (GEX) [1024,512] [1024,1024]
HL dims (Mod 2) [512, 2048] [2048]
HL dropout rates(GEX) [0.01, 0.25] [0.54, 0.4]
HL dropout rates(Mod 2) [0.02, 0.3] [0.66]
Initial temperature (symmet-
rical cross-entropy [log])

3.46 3.06

Number of LSI components 128 for GEX 512 for ATAC, 64 for GEX

Table 5: Novel match modality submission parameters; HL - hidden layers; dims - dimen-
sions

loss. These losses were balanced, resulting in a total loss of 0.7AE + 0.2CT + 0.05CC +
0.05Batch. In the online testing stage where cell annotations were not available, the model
was fine-tuned only based on the autoencoder reconstruction loss. This was done for 1 epoch
with learning rate of 10−4 and 2 epochs with a learning rate of 2 ∗ 10−5 for the Multiome
and CITE-seq data, respectively. Finally, all the features in the JAE latent space were used
as the joint embedding.

Multiome, online: Living Systems Lab The Living Systems Lab team solved this
task using a concatenated autoencoder (cAE) architecture. The cAE consists of two en-
coders, each with a single hidden layer that is concatenated and then projected down to an
embedding layer, a concatenated inverse layer, and two decoder layers. Before training the
cAE, the data were pre-processed by (1) identifying highly variable genes and (2) setting a
threshold to filter peaks that are rarely identified (3% or less of cells). Furthermore, a weight
orthogonality constraint was applied to both encoding layers, enhancing the embedding’s
discriminability and representability.

Each encoder, which receives data from a different modality, has 64 dimensions, lead-
ing to 128 dimensions after concatenation. The embedded layer, which contains the two
domain’s integrated low-dimensional representation, again consists of 64 dimensions. ReLU
was used as an activation function for all layers with a dropout value of 0.1 applied to two
encoding layers, except in the bottleneck layer, where a linear activation function was used.
Training was performed with the ADAM optimizer for 600 epochs at a learning rate of
lr = 0.0001 and a batch size of 32. An MSE loss function was used.

CITE, online: Guanlab - dengkw Team Guanlab - dengkw solved the CITE online
subtask using the same linear approach as in task 1. Truncated SVD was applied to the
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Figure 8: Joint embedding (CITE, online): Guanlab - dengkw.

modality 1 and the modality 2 data, respectively, and normalized on the rows for each
matrix. The output is a simple concatenation of the reduced features. The numbers of
components for each modality were determined by submission performance in experiments
using the Phase 1 data. In the task of embedding the CITE data, the dimensions for GEX
and ADT are 73 and 27, respectively. More details and a schematic diagram can be found
in Figure 8.
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